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Abstract 

Free convection and mass transfer Casson fluid flow through a parallel plate with uniform 

magnetic field is investigated. The uniform magnetic field is applied perpendicular to the plates 

and the fluid motion is subjected to a uniform suction and injection. The upper plate is moving 

and the lower plate is stationary. The momentum, energy and concentration equations have been 

solved by explicit finite difference method. The stability conditions and convergence analysis 

of the explicit finite difference scheme are established for finding the restriction of the values 

of various parameters to obtain converse solutions. The influence of various interesting 

parameters on the flow has been analyzed and discussed through graph in details. The values of 

Shear Stress, Nusselt number and Sherwood number for both moving and stationary plates for 

different physical parameters are also discussed in the graphical form. 
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1. Introduction 
The Analysis of non-Newtonian 

Casson fluid flow has been the focus of 

extensive research by various scientists due to 

its importance in many devices such as 

magnetohydrodynamic (MHD), power 

generators, MHD pumps, aerodynamics 

heating, polymer extrusion, petroleum 

industry, pharmaceutical process, purification 

of crude oil, fluid droplet sprays, metal 

forming, wire and glass fiber drawing and 

several others. The fluid flow of Casson fluid 

by means of Couette motion is a classical fluid 

mechanics problem. The industrial 

applications of non-Newtonian Casson fluid 

flow are increasing day by day. Among the 

many industrial non-Newtonian fluids some 

fluids behave like elastic solids, and for those 

fluids, a yield shear stress exists in the 

constitutive equations. The configuration is a 

good approximation of some practical 

situations such as heat exchangers, flow 

meters and pipes that connects system 

components.  The non-linear Casson’s 

constitutive equation has been found to 

describe accurately the flow curves of 

suspensions of pigments in lithographic 

varnishes used for preparation of printing inks 

and silicon suspensions. Tao [1] studied the 

Magnetohydrodynamic effect on the 

formation of Couette flow. Soundalgekar et al. 

[2] considered Hall and Ion-slip effects in 

MHD Couette flow with heat transfer. 

Transistant effects in natural convection 

cooling of vertical plates were showed by 

Joshi [3]. Das and Batra [4] investigated 

Secondary flow of a Casson fluid in a slightly 

curved tube. Dash et al. [5] proposed a theory 
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on hydromagnetic flow between two 

horizontal porous plates into account with 

finite difference analysis. Attia and Ahmed 

[6] analyzed Hydrodynamic impulsive Lid 

driven flow and heat transfer of a Casson 

fluid. Such  type  of  flow  can  be  used  in  

Civil  engineering  point  of view. For bridge 

construction, the flow between two piers can 

be measured. Attia [7] gave the effect of 

variable properties on the unsteady Couette 

flow with heat transfer considering the hall 

effect which is very much related to Casson 

fluid. Haque and Alam [8] derived MHD heat 

and mass transfer flow of micropolar fluid. 

Krisnendu Bhattacharyya [9] showed MHD 

stagnation point flow of Casson fluid and heat 

transfer over a stretching sheet with thermal 

radiation. Kabir and Alam [10] investigated 

Unsteady Casson fluid flow through a parallel 

plate with hall current, joule heating and 

viscous dissipation. 

Hence our aim is to extend the work of Kabir 

and Alam [10] in the case of mass transfer. The 

system is considered as such that the upper 

plate is moving with a uniform velocity while 

the lower plate is fixed. A constant pressure 

gradient act on the flow and uniform magnetic 

field is applied perpendicular to the plates. The 

proposed model has been transformed into 

nonlinear coupled partial differential 

equations by usual transformations. The 

governing momentum, energy and 

concentration equations are solved 

numerically in case of one dimension flow and 

explicit finite difference method has been used 

to calculate the results and convergence 

analysis. Finally, the values of Shear Stress, 

Nusselt number and Sherwood number for 

both moving and stationary plates for different 

physical parameters are illustrated in the form 

of graphs. 

 

 

2. Mathematical Formulations 

The fluid is assumed viscous, laminar 

and incompressible flows between two 

infinite horizontal plates located at hy 

planes and extended from x to  and 

from z to  . The lower plate is 

stationary while the upper plate moves with a 

uniform velocity U o   . The upper and lower 

plates are kept at two constants temperature 

2T and 
1

T respectively with 12 TT   and 

concentration 2C and
1

C with
12

CC  . The 

fluid is acted 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Geometrical Configuration of the flow 

 
upon by an exponentially decaying pressure 

gradient
x

p




 in the xdirection and a uniform 

suction from above and injection from below 

which are applied at 0t . 

A uniform magnetic field is applied in the 

positive y -direction and is assumed 

undistributed as the induced magnetic field is 

neglected by assuming a very small magnetic 

Reynolds number. The Hall effects are taken 

into consideration and consequently a z -
component for the velocity is expected to 

arise. The uniform suction implies that the y-

component of the velocity ov is constant. 

Thus the fluid velocity vector is given by; 
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By using generalized Ohm’s law, the MHD 

free convection and mass transfer fluid flows 

are governed by the following equations. 

Continuity equation: 0
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Concentration equation: 
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The corresponding initial and boundary 

conditions are; 

1CC,1TT,0w,0u,0t 

,everywhere 

1CC,1TT,0w,0u,0t  at

hy   

2CC,2TT,0w,
o

Uu  at hy   

The non-dimensional variables that have been 

used in the governing equations are;  
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Using these above dimensionless variable the 

following dimensionless equations have been 

obtained as; 
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(9)   

where  is the constant pressure gradient 

)(
dx

dp
 and d is the decaying parameter. 

The corresponding initial and boundary 

conditions are; 

0C,0T,0w,0u,0t  ,everywhere 

0C,0T,0w,0u,0t  at 1y   

1C,1T,0w,1u  at 1y   

The non-dimensional quantities are;  
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From the velocity field, the effects of various 

parameters on Shear Stress have been studied. 

The dimensionless Shear stress for moving 

wall is given by; 
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The dimensionless Shear stress for stationary 

wall is given by; 
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From the temperature field, the effects of 

various parameters on Nusselt number have 

been described. The dimensionless Nusselt 

number at the moving and stationary wall 

respectively is given by; 
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The dimensionless Sherwood numbers at the 

moving wall is given by; 
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The dimensionless Sherwood numbers at the 

stationary wall is given by; 
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3. Numerical Analysis 

For simplicity the explicit finite 

difference method has been used to solve 

equations (6-9) subject to the initial and 

boundary conditions. In this case the region 

within the boundary layer is divided by some 

perpendicular line of Y -axis, where Y -axis is 

normal to the medium as shown in the Fig.2. 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. Finite difference grid space. 

 
It is assumed that the maximum length of the 

boundary layer is 2max Y  i.e. Y varies from 

1  to 1 and the number of grid spacing in 

Y  direction is 100P .Hence the constant 

mesh size along Y-axis becomes 
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and the initial and boundary conditions with 

the finite difference scheme are 
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The numerical values of Shear stresses and 

Sherwood number for both moving plate and 

stationary plate have been evaluated by five-

point approximation formula. Also the 

numerical values of Nusselt number for two 

plates have been evaluated by using Five-

point approximation formula and Trapezoidal 

rule. The stability conditions of the method 

are: 
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and the convergence criteria 60.0
c

S ,

51.0rP , (details are not shown for brevity). 

 

4. Results and Discussion 
In order to investigate the physical 

significance of the problem, the numerical 

values of Shear Stress, Nusselt number and 

Sherwood number have been computed for 

different values of various parameters. To 

obtain the steady state solutions, the 

computations have been carried out up to 

dimensionless time 0t to .20t It is seen 

that, the numerical values of ,,WU  and C  

show little changes after .5t Hence at 

,5t the solutions of all variables are steady 

state solutions. The Shear stress, Nusselt 

number and Sherwood number for both 

moving and stationary plates have been 

illustrated in Figs. 3-20. 
 

 

Fig.3. Shear Stress at moving plate for 

different values of S  . 

 

The Shear Stress for both moving and 

stationary plates for different values of 

Suction parameter  S  has been presented in 

Figs. 3-4 respectively. It is observed that 

Shear Stress increases in the moving plate 

with the increase of S , where decreases in the 

stationary plate with increase of S . 

 

 

 

Fig.4. Shear Stress at stationary plate for 

different values of S . 

 

Fig.5. Nusselt number at moving plate for  

Different values of S . 
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Fig.6. Nusselt number at stationary plate for 

different values of S . 

 

The effect of Suction parameter  S on 

Nusselt number and Sherwood number both at 

moving and stationary plates are illustrated in 

Figs.5-8. It is clear that Nusselt number 

decreases in the upper plate but increases in 

the lower plate with the increase of S . It is 

observed, there is an increasing and minor 

decreasing effect of Sherwood number for two 

plates at the rise of S .Such types of behavior 

have been occurred due to moving and 

stationary plates. 
 

 

Fig.7. Sherwood number at moving plate for 

different values of S . 

 

 

 

Fig.8. Sherwood number at stationary plate 

for different values of  S . 

 

The influence of Permeability of the porous 

medium   on Shear stress and Nusselt 

number both at moving and stationary plates 

are illustrated in Figs. 9-12. It is observed that 

Shear stress decreases in the moving plate but 

increases in the lower plate with the increase 

of . It is also shown from the figure Nusselt 

number decreases for both moving and 

stationary plate with the increase of  .
 

 

Fig.9. Shear Stress at moving plate for 

different values of  

 

5 10 15
0

0.25

0.5

0.75

1

1.25

1.5

S=1.0

S=2.0

S=3.0

71.0,0.1,5.1  rPrSm  

78.0,0.1,02.0  cc SE   

0.1,0.1,6.0  mr GGM  

5 10 15
-0.1

0

0.1

0.2

0.3

S=1.0

S=2.0

S=3.0

71.0,0.1,5.1  rPrSm  

78.0,0.1,02.0  cc SE   

0.1,0.1,6.0  mr GGM  

 

5 10 15

-0.15

-0.1

-0.05

0

0.05
S=1.0

S=2.0

S=3.0

71.0,0.1,5.1  rPrSm  

78.0,0.1,02.0  cc SE   

0.1,0.1,6.0  mr GGM  

 

5 10 15
0.8

0.9

1

1.1

1.2

t  

71.0,02.0,5.1  rPcEm  

78.0,6.0,0.1  cSMS  

0.1,0.1,0.1  mrr GGS  0.2

0.1

0.0













 

𝑁𝑈2 

 

𝐶𝑈1 

 

t
 

𝜏𝑤1 

 

t
 

t
 

𝐶𝑈2 

 



Thammasat International Journal of Science and Technology                                                    Vol.21, No.1, January-March 2016 

 66 

5 10 15

0.02

0.04

0.06

0.08

 

 

Fig.10. Shear Stress at stationary plate for 

different values of  

 

 

t  

 

Fig.11. Nusselt number at moving plate for 

different   values of   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. Nusselt number at stationary plate for   

different values of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13. Sherwood number at moving plate 

for different values of  
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Fig.14. Sherwood number at stationary plate 

for different values of  

 

The effects of   on Sherwood number has 

been presented in Fig.13-14 respectively. It is 

analyzed that Sherwood number decreases in 

the moving plate but in the stationary plate it 

has a slightly increasing effect. The 

decreasing effects are occurred because 

boundary layer thickness increases due to 

enhancing   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15. Shear stress at moving plate for   

different values of rS  

 

 

 

The influence of Soret number  rS  on Shear 

stress both moving and stationary plate have 

been described in the Figs. 15-16 It is shown 

that Shear stress increases in the both plate 

with the increase of rS . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16. Shear stress at stationary plate for 

different values of rS  

 

The influence of Soret number  rS  on 

Nusselt number have been described in 17-18. 

It is observed that Nusselt number have 

increased in the both plate but in stationary 

plate it has a minor increasing effect with 

increase of soret number. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.17. Nusselt number at moving plate for 

different values of rS  
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Fig.18. Nusselt number at stationary plate for 

different values of rS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.19.Sherwood number at moving plate for 

different values of rS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20. Sherwood number at stationary plate 

for different values of rS  

 

The effects of Soret number  rS  on 

Sherwood number both moving and stationary 

plate has been described in the Figs. 19-20. It 

is shown that Sherwood number increases in 

the both plate with the increase of rS . 

Thermal diffusion ratio is the main cause for 

such type of increasing behaviors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21.Grid validation for different values of 

grid space P  
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5. Conclusions 
Casson Fluid flow through a parallel 

plate under the action of mass transfer by 

using implicit finite difference method has 

been taken into consideration. The physical 

properties are graphically discussed for 

different values of corresponding parameters. 

Some important findings of this study are 

given below: 

5.1 The Shear stress increases both moving 

and stationary plate with the increasing 

rS . 

5.2 The Shear stress increases in the moving 

plate but decreases in the lower plate with 

the increase of S while it decreases in the 

moving plate but increase in stationary 

plate with increase of  . 

5.3 The Nusselt number decreases in the both 

plates with the increase of   and it 

decreases in the moving plate but 

increases in the stationary plate with the 

increase of S . 

5.4 The Sherwood number decreases in the 

moving plate but increases in the lower 

plate with the increase of  while it 

increases in the moving plate but decrease 

in stationary plate with increase of S . 

 

6. Nomenclature 

S          Suction parameter                            

M         Magnetic parameter 

cE
       

Eckert number 

           
Permeability of the porous medium 

rP         Prandtl number                                        

cS         Schmidt number  

m          Hall Parameter                                         

rS         Soret number       

rG        Grashoff number                                     

mD
      

Coefficient of mass diffusivity 

mG    Modified Grashoff number               

tK   Thermal diffusion ratio 

t   Time                                                        

mT   Mean fluid temperature 

u   Velocity component in x -direction        

mC   Mean fluid concentration 

v   Velocity component in y -direction       

   Thermal expansion coefficient 

w  Velocity component in z -direction     

*   Concentration expansion  

T   Temperature                                                 

coefficient 

P   Fluid pressure                                    

   Density of the fluid 

g   Acceleration due to gravity             

    Apparent viscosity 

pC   Specific heat                                                 

   Coefficient of kinematic  

k   Thermal conductivity               

viscosity 
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