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Abstract 

In this paper 1-distributive lattices which is a generalization of distributive lattices were 

discussed. We give a characterization of 1-distributive lattices. The Separation Theorem for 

the element 1 is proven. Normal lattices and comaximal lattices are also disscussed. It is 

shown that the class of comaximal lattices is a subclass of normal lattices but not the 

converse. The two classes are same if the lattices are 1-distributive. 
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1. Introduction 
Lattice theories play an important 

role for the study of universal algebra. We 

refer the reader to the monographs [2, 3] for 

lattice theories. There are many research 

works on modular and distributive lattices. A 

lattice L is called distributive if for any 

Lcba ,, ,  

)()()( cabacba 
 

or equivalently, 

).()()( cabacba   

Now a natural question is: when it is 

possible to generalize the results of 

distributive lattices for any lattices? In this 

paper we generalize some results of 

distributive lattices with (the largest element) 

1. A lattice L with 1 is called 1-distributive if 

for any Lcba ,, , 

1)(1  cbacaba .  

The pentagonal lattice P5 (see the diagram in 

Figure 1) is 1-distributive but not 

distributive. Thus, not every 1-distributive 

lattice is a distributive lattice. The diamond 

lattice M3 (see the diagram in Figure 1) is not 

1-distributive. 

 

       

Fig.1.The pentagonal lattice P5 and the 

diamond lattice M3. 

 

In Section 2, we study 1-distributive 

lattices. Like as distributive lattices we give a 

characterization of 1-distributive lattices. We 

also prove a separation theorem for the 

element 1. 

 

In [1] Cornish has introduced normal lattices 

in presence of distributivity. In Section 3, we 

generalize a part of his result. We study the 

class of normal lattices in general. We also 

study the class of comaximal lattices. We 
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show that the class of comaximal lattices is a 

proper subclass of the class of normal 

lattices. We also show that these two classes 

are equivalent in 1-distributive lattices. 

 

2. 1-distributive Lattices.  
There are very few works on 1-

distributive lattices. For 1-distributive 

lattices, we refer the reader to [4]. 

 

By the definition, clearly we have the 

following results. 

 

Lemma 2.1. 

(a) Every distributive lattice with 1 is  

1-distributive. 

(b) Every sublattice with the 1 of a  

1-distributive lattice is 1-distributive.  

 

Thus, the class of distributive lattices 

with 1 is a proper subclass of 1-distributive 

lattices. Another important subclass of 

lattices is modular lattices. A lattice L is 

called modular if for any Lcba ,,  with 

ac  implies 

.)()( cbacba 
 

Now we have the following 

characterization of 1-distributive lattices.
 

 

Theorem 2.2.  

Let L be a modular lattice with 1. Then 

the following are equivalent: 

 

(a) L is 1-distributive; 

(b) L contains no sublattice with the 1 

isomorphic to either M3 or N given 

in the Figure 2. 

 

Proof. 
(a)(b). Let L be 1-distributive. By 

the definition, the lattices M3 and N are not 

1-distributive. By Lemma 2.1.(b) every 

sublattice with 1 of a 1-distributive lattice is 

1-distributive. Therefore, L has no sublattice 

isomorphic to M3 or N. 

 

 
 

Fig.2. Two modular but not 1-distributive 

lattices. 
 

 (b)(a). Let L be a modular lattice 

with 1. Assume L is not 1-distributive. We 

construct a sublattice with 1 of L which is 

isomorphic to one of the lattices M3 or N 

given by the diagrams in Figure 2. Since L is 

not 1-distributive, there are non-comparable 

elements Lfed ,, such that  

fded  1 and 1)(  fed .   

Put 

)()()(: fdfeedp   

)()()(: fdfeedq   

pqdu  )(:  

pqev  )(:  

pqfw  )(:  

.)(: qdfedr   

Then clearly, wvu ,, are non-comparable, 

1 pd , 1 qd , )( fdeqe   

and pwvuq ,,, . Hence wvuq ,,  and 

pq . Now 

))(())(( pqepqdvu    

ppqeqd  )))(()((  

By modularity where ppqe  )(  

pqpeqd  )))(()((  

By modularity where pq  

pqpeqd  ))()((  

ppeqd  ))()((  

pfdefed  ))(()(((  

pefed  ))((   ]1[  fd  

ped  )(  

p   ]1[ ed  
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Similarly, pwv  and puw  . 

 

Again 

))(())(( pqepqdvu   

pqeqd  )()(  

pqqed  )))(((  

By modularity where qeq   

          pqfded  ))))((((  

pqfded  ))()((   

By modularity where dfd   

pq  

.q  

Similarly, qwv   and quw  . 

 

Case 1. When 1p . Then 

rfedqdu  )( . 

Hence the set }1 ,,,,{ wvuq with the 

operations of L forms a sublattice, say, A 

with 1 of L (see the diagram in Figure 3) 

which is isomorphic to M3. 

 
Figure 3. 

 

Case 2. When 1p . We have 

.   

))((   )(

pr

pfedpqdu




 

Thus, .ru  Now 

1)(  pfedpr . 

))(())(( pqefedvr 

eqpfed  )()(

)()( qpfeed   

By modularity, where fepe    

1 ,  since 1ed . 

Similarly, 1wr . Also 

pqeqdvr  )()(
  

pdfefed  ))(())((
 

pfeddfe  ))()))((((

By modularity )( dfefe 
 

pfedfed  ))()()((

 
By modularity where ddf   

.qpq   
Similarly, qwr  .  

 

Hence the set }1 , , , , , ,{ rpwvuq with the 

operations of L forms a sublattice, say, B 

with 1 of L (see the diagram in Figure 4) 

which is isomorphic to N. 

 
Fig.4. 

 
 

Let L be a lattice. A non-empty 

subset I of L is called an ideal of L if 

(i) La  and Ib  with ba   implies 

.Ia  

 (ii) Iba ,
 
implies .Iba   

An ideal I of L is called a proper ideal if 

.LI 
 
A minimal ideal I of L is a proper 

ideal which does not contain any other 

proper ideal, that is, if there is a proper ideal 

J of L such that ,IJ   then .IJ   A 

proper ideal P of L is called a prime ideal if 

for any Lba ,  such that Pba   implies 

either Pa or .Pb   

Now we have the following 

Separation Theorem for the element 1. 

 

Theorem 2.3. Let L be a 1-distributive 

lattice and I be an ideal of L such that I1 . 

Then there is a prime ideal P of L such that 

PI   and P1 . 
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Proof. Let L be a 1-distributive lattice and 

let I be an ideal of L such that  I)1[ . 

Suppose 

})1[ and

 containing L of idealan  is |{





J

IJJX
 

Then X  satisfies all the conditions of the 

Zorn's Lemma. Hence there is a maximal 

element, say, M of X . Now we show that M 

is a prime ideal of L. If M is not prime, then 

there are MLba \,   such that Mba  . 

By the maximality of M, we have 

](1 aM   and ](1 bM  . This implies 

bmam  1 for some Mm . Thus 

Mbam  1)(  as L is 1-distributive, 

which is a contradiction. Hence M is prime. 

 

3.   Normal and Comaximal Lattices 
A lattice L is called a normal lattice 

if  every prime ideal of L contains a unique 

minimal prime ideal. The pentagonal lattice 

P5 (see the diagram in Figure 1) is a normal 

lattice, because it has only two prime ideals 

](b  and ](c which are also minimal prime 

ideals. 

 

Two ideals P and Q of a lattice L are 

said to be comaximal if LQP  . A 

lattice L with 0 is said to be a comaximal 

lattice if any two minimal prime ideals of L 

are comaximal. The pentagonal lattice P5 

(see the diagram in Figure 1) is comaximal, 

because it has only two minimal prime ideals 

](b  and ](c where Lcb  ](]( . 

 

 

Theorem 3.1. Every comaximal lattice is 

normal. 

 

Proof. Let L be a comaximal lattice. If L is 

not normal, then there is a prime ideal P of L 

such that P contains two distinct minimal 

prime ideals Q and R (say) of L. In this case 

LPRQ  , which contradicts the fact 

that L is comaximal. Thus L is normal. 

 
The converse of the above theorem not 

necessarily true. That is, not every normal 

lattice is a comaximal lattice. For 

counterexample, if we consider the lattice L1 

given by the following diagram (see Figure 

5), then the ideals (a] and (b] are only the 

prime ideals. This shows that every prime 

ideal contains a unique minimal prime ideal. 

Thus, L1 is normal. But L1 is not comaximal 

as Lba  ](]( . Observe that the lattice L1 

is not 1-distributive as it has a sublattice with 

1 isomorphic to the diamond lattice M3. 

 
Fig.5. A normal but not comaximal lattice. 

 

Now we have the following characterization 

of comaximal lattices. 

 

Theorem 3.2. Every 1-distributive normal 

lattice is a comaximal lattice. 

 

Proof. Let L be a 1-distributive normal 

lattice. Suppose L is not comaximal. Then 

there are two minimal distinct prime ideals P 

and Q of L such that LQP  . Thus 

QP1 . Then by Theorem 2.3, there is a 

prime ideal M containing QP . This shows 

that L is not a normal lattice, a contradiction. 

Hence L is a comaximal lattice. 
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