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Abstract 

In this paper, a numerical study is presented for the fully developed two-dimensional 

flow of viscous incompressible fluid through a curved rectangular duct of aspect ratio 0.5 and 

curvature 0.1. The outer wall of the duct is heated while the inner wall cooled, the top and 

bottom walls being adiabatic. Numerical calculations are carried out by using the spectral 

method, and covering a wide range of the Dean number 100001000  Dn and the Grashof 

number100 2000Gr  . The main concern of the present study is to investigate the nonlinear 

behavior of the unsteady solutions i.e. whether the unsteady flow is steady-state, periodic, 

multi-periodic or chaotic, if Dn or Gr is increased. Time evolution calculations as well as their 

phase spaces show that the unsteady flow is steady-state for 6400Dn  and this region 

increases as Gr becomes large. It is found that the steady-state flow turns into chaotic flow 

through periodic and multi-periodic flows, if Dn is increased. Typical contours of secondary 

flow patterns and temperature profiles are also obtained, and it is found that the unsteady flow 

consists of asymmetric single-, two-, three- and four-vortex solutions. The present study 

shows that chaotic flow enhances heat transfer more significantly than the steady-state or 

periodic solutions due to many secondary vortices at the outer concave wall. 
 

Keywords: Curved rectangular duct; secondary flow; time-evolution; periodic solution; 

chaos 

 

1. Introduction 
Investigation of flow and heat 

transfer through curved ducts and channels 

has been and continues to be a paramount 

interest of many researchers because of the 

diversity of their practical applications in 

fluids engineering, such as in fluid 

transportation, refrigeration turbo-machinery, 

air conditioning systems, heat exchangers, 

rocket engines, internal combustion engines 
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and blade-to-blade passages in modern gas 

turbines. In a curved passage, centrifugal 

forces are developed in the flow due to 

channel curvature causing a counter rotating 

vortex motion applied on the axial flow 

through the curved channel. This creates 

characteristics spiraling fluid flow in the 

curved passage known as secondary flow. At 

a certain critical flow condition and beyond, 

additional pairs of counter rotating vortices 

appear on the outer concave wall of curved 

fluid passages. This flow condition is 

referred to as Dean’s hydrodynamic 

instability and the additional vortices are 

known as Dean vortices, in recognition of the 

pioneering work in this field by Dean [1]. 

After that, many theoretical and experimental 

investigations have been done by keeping 

this flow in mind; for instance, the articles by 

Berger et al. [2], Nandakumar and Masliyah 

[3] and Ito [4] may be referenced. 

Early analytical and experimental 

investigations, such as Baylis [5] and 

Humphrey et al. [6] concluded that Dean 

number was solely responsible for secondary 

flow and Dean instability in curved passages. 

However later studies with curved 

rectangular ducts by Cheng et al. [7], Ghia 

and Sokhey [8] and Sugiyama et al. [9] have 

shown that the Dean instability is also 

dependent on the aspect ratio and curvature 

ratio along with the Dean number. 

Chandratilleke and Nursubyakto [10] 

reported a 2-dimensional study to examine 

the effects of curvature ratio and aspect ratio 

as well as the wall heat flux. They used 

toroidal coordinates and utilized a stream 

function approach with dynamic similarity in 

axial direction. Yanase et al. [11] 

investigated flow in a curved rectangular 

duct of aspect ratio 2 and classified flow 

range into three different regimes; steady-

stable, periodic and chaotic. They used 

spectral method to see the field response 

against perturbation and discovered that 

while for low flow rate the system is 

confidently stable against perturbation, it will 

turn into periodic and even chaotic behaviors 

for higher flow rates. Norouzi et al. [12] 

investigated the inertial and creeping flow of 

a second-order fluid in a curved duct with 

square cross-section by using finite 

difference method. The effect of centrifugal 

force due to the curvature of the duct and the 

opposing effects of the first and second 

normal stress difference on the flow field 

were investigated in that study. 

Chandratilleke et al. [13] presented a 

numerical investigation to examine the 

secondary vortex motion and heat transfer 

process in fluid flow through curved 

rectangular ducts of aspect ratios 1 to 6. The 

study formulated an improved simulation 

model based on three-dimensional vortex 

structures for describing secondary flow and 

its thermal characteristics. Recently, an 

analytical solution for the incompressible 

viscous flow through curved ducts with 

rectangular cross-sections has been presented 

by Norouzi and Biglari [14] by using 

perturbation method. In that study, the effect 

of duct curvature and aspect ratio on flow 

field was investigated. Very recently, Kun et 

al. [15] performed an experimental 

investigation on laminar flows of pseudo-

plastic fluids in a square duct of strong 

curvature using an ultrasonic Doppler 

velocimetry and microphones, where 

streamwise velocity in the cross-section of 

the duct and the fluctuating pressure on the 

walls were measured for different flow rates. 

The velocity contours and their development 

along the duct were presented and compared 

with benchmark experiments by Taylor, 

Whitelaw and Yianneskis [16].  

Time dependent analysis of fully 

developed curved duct flows was initiated by 

Yanase and Nishiyama [17] for a rectangular 

cross section. In that study, they investigated 

unsteady solutions for the case where dual 

solutions exist. The time-dependent behavior 

of the flow in a curved rectangular duct of 

large aspect ratio was investigated, in detail, 

by Yanase et al. [18] numerically. They 

performed time-evolution calculations of the 

unsteady solutions with and without 
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symmetry condition and showed that 

periodic oscillations appear with symmetry 

condition while aperiodic time variation 

without symmetry condition. Wang and Liu 

[19] performed numerical as well as 

experimental investigations of periodic 

oscillations for the fully developed flow in a 

curved square duct. Flow visualization in the 

range of Dean numbers from 50 to 500 was 

conducted in their experiment. They showed, 

both experimentally and numerically, that a 

temporal oscillation takes place between 

symmetric/asymmetric 2-cell and 4-cell 

flows when there are no stable steady 

solutions. Yanase et al. [20] performed 

numerical investigation of isothermal and 

non-isothermal flows through a curved 

rectangular duct of aspect ratio 2 and 

addressed the time-dependent behavior of the 

unsteady solutions. Recently, Mondal et al. 

[21, 22] performed numerical prediction of 

the unsteady solutions by time-evolution 

calculations for the flow through a curved 

square duct and discussed the transitional 

behavior of the unsteady solutions. However, 

transient behavior of the unsteady solution is 

not yet resolved for the flow through a 

curved rectangular duct of small aspect ratio, 

which motivated the present study to fill up 

this gap. 

One of the most important 

applications of curved duct flow is to 

enhance thermal exchange between two 

sidewalls, because it is possible that the 

secondary flow may convey heat and then 

increases heat flux between two sidewalls. 

Chandratilleke and Nursubyakto [10] 

presented numerical calculations to describe 

secondary flow characteristics in the flow 

through curved ducts of aspect ratios ranging 

from 1 to 8 that were heated on the outer 

wall, where they studied for small Dean 

numbers and compared the numerical results 

with their experimental data. Yanase et al. 

[11, 20] studied time-dependent behavior of 

the unsteady solutions for curved rectangular 

duct flow and showed that secondary flows 

enhance heat transfer in the flow. Norouzi et 

al. [23] investigated fully developed flow and 

heat transfer of viscoelastic materials in 

curved square ducts under constant heat flux. 

Recently, Fellouah et al. [24] attempted to 

develop an elementary 3-dimensional (3D) 

simulation covering the duct aspect ratio 0.5 

to 12 with water and air as working fluids. 

Their model showed reasonable agreement 

with their own experiments that permitted 

visualization of vortex formation along 

channel locations for various Dean numbers. 

They presented a quantitative criterion for 

identifying the Dean instability in curved 

channels using the radial gradient of the axial 

velocity in the channel. Guo et al. [25] used a 

laminar incompressible 3D numerical model 

to explore the interactive effects of 

geometrical and flow characteristics on heat 

transfer and pressure drop. They applied 

entropy generation as a hydro-thermal 

criterion and reported the influence of the 

Reynolds number and curvature ratio on the 

flow profile and the Nusselt number. To the 

best of the authors' knowledge, however, 

there has not yet been done detailed 

investigation on the unsteady flow 

characteristics for the non-isothermal flow 

through a curved rectangular duct of aspect 

ratio 0.5 with large pressure gradient in the 

axial direction. But from the scientific as 

well as engineering point of view it is quite 

interesting to study the unsteady flow 

behavior in the presence of strong centrifugal 

and buoyancy forces for small aspect ratio 

duct, because this type of flow is often 

encountered in engineering applications such 

as in gas turbines, metallic industry and 
exhaustive pipes. The present paper 

investigates unsteady flow characteristics for 

the non-isothermal flow through a curved 

rectangular duct of small aspect ratio (aspect 

ratio 0.5) by using the spectral method, and 

covering a wide range of the Dean number 

and the Grashof number.  

 

2. Model Description and Governing 

Equations 
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Consider an incompressible viscous 

fluid streaming through a curved duct with 

rectangular cross section whose width and 

height are 2d and 2h, respectively. The 

coordinate system with the relevant notations 

are shown in Fig. 1. It is assumed that the 

outer wall of the duct is heated while the 

inner wall cooled, the top and bottom walls 

being adiabatic. The temperature of the outer 

wall is 
0

T T  and that of the inner wall is 

0T T  , where 0T  . The x , y  and z  

axes are taken to be in the horizontal, vertical 

and axial directions, respectively. It is 

assumed that the flow is uniform in the axial 

direction and that it is driven by a constant 

pressure gradient G  along the center-line of 

the duct, i.e. the main flow in the axial 

direction as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Coordinate system of the curved duct. 

 

The variables are non-dimensionalized by 

using the representative length d and the 

representative velocity 0U v d , where   is 

the kinematic viscosity. We introduce the 

non-dimensional variables defined as:                                                                 
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where u , v , and w  are the non-dimensional 

velocity components in the x , y  and z

directions, respectively; t  is the non-

dimensional time, P  the non-dimensional 

pressure,   the non-dimensional curvature, 

and temperature is non-dimensionalized by 

T . Henceforth, all the variables are non-

dimensionalized if not specified. The 

sectional stream function   is introduced as: 
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Then the basic equations for the axial 

velocity ,w  the stream function   
and 

temperature T are derived from the Navier-

Stokes equations and the energy equation 

under the Boussinesq approximation as             
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where,     
2 2

2
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     (5)                                                            

The Dean number Dn , the Grashof number

Gr and the Prandtl number Pr , which 

appear in Eqs. (2) to (4), are defined as 

3 3
2
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2
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where,  ,,,  and g  are the dynamic 

viscosity, the kinematic viscosity, the 

coefficient of thermal expansion, the 

coefficient of thermal diffusivity and the 

gravitational acceleration respectively.  

The rigid boundary conditions for w  and   

are used as    
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and the temperature T is assumed to be 

constant on the walls as 

xxTyTyT  )1,(,1),1(,1),1( .     (8) 

The present study is performed for the aspect 

ratio 5.0
d

h
 and the curvature .1.0

L

d
  

 

3. Numerical Calculations 
3.1 Method of Numerical 

Calculation 

        In order to solve the Eqs. (2) to (4) 

numerically, the spectral method is used 

(Gottlieb and Orazag [26]). By this method 

the variables are expanded in the functions 

consisting of the Chebyshev polynomials, i.e.   
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   (10)                                                                                  

where M and N  are the truncation numbers 

in the x  and y  directions respectively. The 

expansion coefficients mnmnw , and mnT are 

then substituted into the basic Eqs. (2) - (4) 

and the collocation method is applied. The 

collocation points are taken to be                                
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where 1,...,1  Mi  and 1,...,1  Nj . 
 

3.2 Numerical Accuracy  
       The accuracy of the numerical 

calculations is investigated for the truncation 

numbers M and N used in this study. To 

check the dependence of grid size, five types 

of grid sizes were taken, they are 16 10 , 

18 10 , 20 10 , 20 12  and 20 14.  The 

values of   and (0,0)w  are shown in Table 

1 for various values of M  and N, where  is 

the resistance coefficient and (0,0)w  is the 

axial velocity of the steady solution at 

( , ) (0,0)x y   for Dn = 8000, Gr = 1000, 

0.1   and aspect ratio 0.5. As seen in 

Table 1, M = 20 and N = 12 gives sufficient 

accuracy of the present numerical solutions. 
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Table1. The values of   and (0,0)w  for 

various values of M and N at Dn = 8000, Gr 

= 1000, 0.1   for the aspect ratio 0.5. 
 

M N   (0,0)w  

16 10 0.154182508 1300.6035547 

18 10 0.154195115 1300.6421001 

20 10 0.154199641 1300.6362118 

20 12 0.154583494 1300.6299397 

20 14 0.154369612 1300.6297474 

3.3. Time-evolution Calculation 

In order to calculate the unsteady 

solutions, we use the Crank-Nicolson and 

Adams-Bashforth methods together with the 

function expansion (10) and the collocation 

method. Details of this method are discussed 

in Mondal [27]. By applying the Crank-

Nicolson and the Adams-Bashforth methods 

to the non-dimensional basic equations (2)-

(4), and rearranging, we get 
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In the above formulations, ,P Q  and R  are 

the non-linear terms. Then applying the 

Adams-Bashforth method for the second 

term of R. H. S of Eqs. (12), (13) and (14) 

and simplifying we calculate )( ttw  , 

)( tt   and )( ttT   by numerical 

computation. 

 

3.4 Resistance Coefficient 

         The resistance coefficient   is used as 

the representative quantity of the flow state. 

It is also called the hydraulic resistance 

coefficient, and is generally used in fluids 

engineering, defined as  

    
1 21 2
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P P
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z d
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


 
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where quantities with an asterisk denote 

dimensional ones,  stands for the mean 

over the cross section of the duct and hd 
 is 

the hydraulic diameter. The mean axial 

velocity  w  is calculated by 
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d
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Since GzPP  
21 ,   is related to the 

mean non-dimensional axial velocity w  as 

                  
2

8 2
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where   wdw 2 . 
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4. Results 

          4.1 Time Evolution of the Unsteady 

Solutions 

        In order to investigate the non-linear 

behavior of the unsteady solutions, time-

evolution calculations for the resistance 

coefficient  are performed. It is observed 

that the unsteady flow is a steady-state 

solution for 6400Dn . As for example, time 

evolution of  for 5000Dn  is shown in 

Fig. 2(a), where we see that the flow is 

steady-state for any value of Gr  in the range

2000100 Gr . Then we obtain stream 

lines of secondary flows and isotherms of 

temperature distributions for Dn = 5000 and 

Gr =100, 500, 1000, 1500 and 2000 as 

shown in Fig. 2(b). To draw the contours of 

  and T, we use the increments 0.7 

and ∆T = 0.2, respectively. The same 

increments of   and T are used for all the 

figures in this study, unless specified. The 

right-hand side of each duct box of   and T 

is in the outside direction of the duct 

curvature. In the figures of the stream lines, 

solid lines ( 0 ) show that the secondary 

flow is in the counter clockwise direction 

while the dotted lines  0   in the 

clockwise direction. As seen in Fig. 2(b), the 

steady-state solution for Dn = 5000 is an 

asymmetric two-vortex solution. Since the 

flow is steady-state solution for 6400Dn , 

we calculate the unsteady solutions for

6400Dn  .  
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Fig.2. (a) Time evolution of  for Dn = 5000 

and100 2000Gr  , (b) Stream lines (top) 

and isotherms (bottom) for Dn = 5000 and 

Gr = 100, 500, 1000, 1500 and 2000, 

respectively at various time. 
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Fig.3. (a) Time evolution of  for Dn = 6500 
and 100 2000,Gr   (b) Phase space for Gr 

= 100 (c) Stream lines (top) and isotherms 

(bottom) for Gr = 100, (d) Stream lines (top) 

and isotherms (bottom) for Dn = 6500 and 

Gr = 500, 1000, 1500 and 2000.  
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Fig.4. Unsteady solutions for Dn = 7000 and 

100 2000Gr  , (a) Time evolution result, 

(b) Time evolution of  for 100,Gr   (c) 

Stream lines (top) and isotherms (bottom) for 

Dn = 7000 and Gr = 100.    
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Fig.5. (a) Time evolution of  Dn = 7000 and 

Gr = 500, (b) Time evolution of  for Dn = 

7000 and Gr = 1000, (c) Stream lines (top) 

and isotherms (bottom) for Dn = 7000 and 

Gr = 500, (d) Stream lines (top) and 

isotherms (bottom) for Dn = 7000 and Gr = 

1000. 
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Fig.6. (a) Time evolution of  for Dn = 7000 

and Gr = 1500, (b) Time evolution of   for 

Dn = 7000 and Gr = 2000, (c) Stream lines 

(top) and isotherms (bottom) for Dn = 7000 

and Gr = 1500, (d) Stream lines (left) and 

isotherms (right) for Dn = 7000 and Gr = 

2000. 
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We studied time evolution of  for 

Dn = 6500 as shown in Fig. 3(a). As seen in 

Fig. 3(a), the unsteady flow is multi-periodic 

for 100Gr   but steady-state for Gr = 500, 

1000, 1500 and 2000. In order to see the 

multi-periodic oscillation more clearly, a 

phase space of the time change of   for Gr 

= 100 is shown in Fig. 3(b) in the    

plane, where .dxdy    Figure 3(b) 

shows that the flow creates multiple orbits, 

which suggests that the flow is multi-

periodic. Typical contours of secondary flow 

patterns and temperature profiles are shown 

in Fig. 3(c), for a single period of oscillation 

at time 80.2880.27  t , and it is found 

that the flow oscillates between two- and 

three-vortex solutions. A single contour of 

each of the secondary flow and isotherms for 

the steady-state solutions at Gr = 500, 1000, 

1500 and 2000 are also shown in Fig. 3(d), 

where we observe that the unsteady flow is 

an asymmetric two-vortex solution for the 

steady-state solution at these values of Gr.  

         Then we investigated time evolutions 

of  for Dn = 7000 and 2000100  Gr  

which are shown in Fig. 4(a). Here we find 

that the unsteady flow is multi-periodic for 

Gr = 100, 500 and 1000, but periodic at 

1500Gr  and steady-state for 2000Gr  . 

The multi-periodic oscillation is explicitly 

shown in Fig. 4(b) for 100Gr  . To observe 

the pattern variation of secondary vortices 

and temperature distributions for the multi-

periodic oscillation, typical contours of 

stream lines and isotherms for 7000Dn  
and Gr = 100 are shown in Fig. 4(c), where 

we see that the flow is an asymmetric three-

vortex solution. In order to see the 

characteristics of the multi-periodic 

oscillations for 500Gr   and 1000Gr  , we 

show the unsteady solutions for 500Gr  in 
Fig. 5(a) and for 1000Gr   in Fig. 5(b). 

Typical contours of stream lines and 

isotherms are also shown in Fig. 5(c) and in 

Fig. 5(d) for Gr = 500 and 1000Gr  , 
respectively. As seen in Figs. 5(c) and 5(d), 

the multi-periodic oscillation for Gr = 500 is 

a slightly three-vortex solution, while that for 

Gr = 1000 two-vortex solution.  
Then we obtained time evolution 

results for Dn = 7000 at Gr = 1500 and

2000Gr  as shown in Figs. 6(a) and 6(b) 

respectively, where we see that the unsteady 

flow is periodic for Gr = 1500 but steady-

state for Gr = 2000. Thus we observe that the 

multi-periodic oscillation finally turns into 

steady-state solution as Gr increases. Typical 

contours of stream lines and isotherms are 

shown in Fig. 6(c) for the periodic solution at

1500,Gr   for one period of oscillation at 

time 25.30 25.80t  , and in Fig. 6(d) for 

the steady-state solution at Gr = 2000. It is 

found that the unsteady flow is an 

asymmetric two-vortex solution for both at 

Gr = 1500 and Gr = 2000. Then we 

investigated time evolution for Dn = 8000 

and 2000100 Gr . Figure 7(a) shows that 

the unsteady flow at 8000Dn  and 

100Gr   is a multi-periodic solution. In 

order to see the multi-periodic oscillation 

more clearly, a phase space of the time 

change of   for Dn = 8000 at 100Gr   is 

shown in Fig. 7(b). As seen in Fig. 7(b), the 

flow exhibits multiple orbits, which signifies 

that the unsteady flow presented in Fig. 7(a) 

for 100Gr   and 8000Dn  is multi-

periodic. Typical contours of stream lines 

and isotherms are also shown in Fig. 7(c) for 

the corresponding flow parameters and it is 

seen that the multi-periodic oscillation at

8000Dn  and Gr = 100 oscillates between 

asymmetric three- and four-vortex solution. 

We show the time evolution of  for Dn = 

8000 and Gr = 500 in Fig. 8(a) and 

corresponding phase space in Fig. 8(b). 

Figure 8(b) confirms that the unsteady flow 

presented in Fig. 8(a) is purely multi-

periodic. Then stream lines of secondary 

vortices and isotherms of temperature 

profiles for Dn = 8000 and Gr = 500 are 

shown in Fig. 8(c) for one period of 

oscillation at time 94.2549.25  t . As 

seen in Fig. 8(c), the unsteady flow is a four-

vortex solution for Dn = 8000 and Gr = 500. 
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It should be mentioned here that the 

oscillating pattern of multi-periodic solution 

as well as the Dean vortices generated at the 

outer wall of the duct for Dn = 8000 are 

different from those at Dn = 7000; at the 

beginning of the secondary vortices, we 

found developing asymmetric four-vortex 

solutions, and as time proceeds, we get 

completely three- and four- vortex solutions. 

In fact, the periodic oscillation, which is 

observed in the present study, is a traveling 

wave solution advancing in the downstream 

direction which is well justified in the recent 

investigation by Yanase et al. [28] for a 

three-dimensional (3D) travelling wave 

solutions as an appearance of 2D periodic 

oscillation. 

Time evolution of  for Dn = 8000 
and Gr = 1000 is then performed as shown in 

Fig. 9(a), which shows that the flow is multi-

periodic. Phase space of the multi-periodic 

oscillation at 1000Gr   is then obtained as 

depicted in Fig. 9(b). Figure 9(b) shows that 

the unsteady flow creates a single orbit, 

which means that the flow is periodic rather 

than multi-periodic. To observe the periodic 

change of the flow, typical contours of the 

stream lines and isotherms are shown in Fig. 

9(c) for Dn = 8000 and Gr = 1000 where we 

see that the periodic oscillating flow is a 

three- and four-vortex solution. Time 

evolutions of  for Dn = 8000 at Gr = 1500 
and Gr = 2000 are shown in Figs. 10(a) and 

10(b), respectively. It is seen that the flow 

oscillation is nearly the same and they are 

periodic. Then stream lines of secondary 

vortices and isotherms of temperature 

distributions are shown in Fig. 10(c) for Dn = 

8000 and Gr = 1500 and in Fig. 10(d) for Dn 

= 8000 and Gr = 2000. Figures 10(c) and 

10(d) show that the periodic oscillating flows 

at Gr = 1500 and Gr = 2000 are weakly 

three-vortex solutions.  

We then calculated time evolutions 

of  for Dn = 9000 and 2000100  Gr  as 

shown in Fig. 11(a), which shows that the 

unsteady flow is multi-periodic for all values 

of Gr in the range. In order to show the 

multi-periodic oscillation more clearly, we 

explicitly show a time evolution result for Dn 

= 9000 and Gr = 100 in Fig. 11(b). This 

multi-periodic oscillation is well justified by 

drawing a phase space of the time evolution 

result as shown in Fig. 11(c). Typical 

contours of stream lines and isotherms are 

then shown in Fig. 11(d) for Dn = 9000 and 

Gr = 100. It is seen that the multi-periodic 

oscillation at Dn = 9000 oscillates between 

asymmetric three- and four-vortex solutions. 

Time evolution of  for Gr = 500 and 

1000Gr   are shown in Figs. 12(a) and 

13(a), respectively. To well understand the 

flow evolution, we also show corresponding 

phase spaces in Fig. 12(b) for Gr = 500 and 

in Fig. 13(b) for Gr = 1000. It is found that 

the flow creates multiple orbits, which 

justifies the multi-periodicity of the unsteady 

flows for both the cases. Typical contours of 

stream lines of secondary flow patterns and 

isotherms of temperature profiles are shown 

in Fig. 12(c) for Gr = 500 and in Fig. 13(c) 

for Gr = 1000, where we see that the 

secondary flow is an asymmetric four-vortex 

solution for the multi-periodic oscillation.  
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Fig.7. Unsteady solutions for Dn = 8000 and 

Gr = 100, (a) Time evolution of , (c) Phase 

space, (d) Stream lines (top) and isotherms 

(bottom) for Dn = 8000 and Gr = 100.  
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Fig.8. Unsteady solutions for Dn = 8000 and

500,Gr  (a) Time evolution of , (b) Phase 

space, (c) Stream lines (top) and isotherms 

(bottom) for Dn = 8000 and 500.Gr   
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Fig.9. Unsteady solutions for Dn = 8000 and 

Gr = 1000, (a) Time evolution of , (b) 

Phase space, (c) Stream lines (top) and 

isotherms (bottom) for Dn = 8000 and Gr = 

1000. 
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Fig.10. (a) Time evolution of  for Dn = 

8000 and Gr = 1500, (b) Time evolution for 

Dn = 8000 and Gr = 2000, (c) Stream lines 

(top) and isotherms (bottom) for Dn = 8000 

and Gr = 1500, (d) Stream lines (top) and 

isotherms (bottom) for Dn = 8000 and Gr = 

2000. 
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Fig.11. Unsteady solutions for Dn = 9000 

and 100 2000,Gr   (a) Time evolution 

result, (b) Time evolution of  for Dn = 9000 
and Gr = 100, (c) Phase space for Dn = 9000 

and Gr = 100, (d) Stream lines and isotherms 

for Dn = 9000 and Gr = 100. 
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                        (c) 

Fig.12. Unsteady solutions for Dn = 9000 

and Gr = 500, (a) Time evolution of , (b) 

Phase space, (c) Stream lines (top) and 

isotherms (bottom) for Dn = 9000 and Gr = 

500. 
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Fig.13. Unsteady solutions for Dn = 9000 

and Gr = 1000, (a) Time evolution of , (b) 

Phase space, (c) Stream lines and isotherms 

for Dn = 9000 and Gr = 1000. 
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Fig.14. (a) Time evolution of  for Dn = 

10000 and Gr = 100, (b) Time evolution of  

for Dn = 10000 and Gr = 500, (c) Phase 

space for 10000Dn   and 500,Gr   (d) 

Stream lines (top) and isotherms (bottom) for 

Dn = 10000 and Gr = 100, (e) Stream lines 

and isotherms for Dn = 10000 and Gr = 500.  
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Fig.15. (a) Time evolution of  for Dn = 

10000 and 1000,Gr  (b) Time evolution of 

 for Dn = 10000 and Gr = 1500, (c) Phase 

space for 10000Dn   and 1500,Gr   (d) 

Stream lines and isotherms for Dn = 10000 
and Gr = 1000, (e) Stream lines and 

isotherms for Dn = 10000 and Gr = 1500.  
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Then we proceeded for the time 

evolution calculation of   for 10000Dn
and 2000100 Gr . Figures 14(a) and 14(b) 

show time evolutions of  for 100Gr  and 

500Gr  respectively, where it is found that 

the flow oscillates periodically for Gr = 100 

but multi-periodically for Gr = 500. The 

multi-periodic oscillation is well justified by 

obtaining the phase space as shown in Fig. 

14(c). To observe the formation of secondary 

vortices and temperature distributions for the 

periodic and multi-periodic oscillations, 

typical contours of stream lines and 

isotherms are presented in Figs. 14(d) and 

14(e) for Gr = 100 and Gr = 500 

respectively, where it is seen that the periodic 

flow oscillates between two and four-vortex 

solutions, while multi-periodic oscillation in 

the four-vortex solution only. Then we 

obtained time evolution of  for Gr = 1000 

and Gr = 1500 at Dn = 10000. Figures 15(a) 

and 15(b) show time evolution results for 

1000Gr   and 1500Gr   respectively, 

where it is seen that the flow oscillates multi-

periodically for both Gr = 1000 and Gr = 

1500. The multi-periodic oscillation for

1500Gr   is well justified by drawing the 

phase space as shown in Fig. 15(c), where we 

see that the flow exhibits multiple orbits, 

which confirms that the unsteady flow 

presented in Fig. 15(a) or in 15(b) is a multi-

periodic solution. To observe the change of 

the secondary vortices and temperature 

distributions, as time proceeds, typical 

contours of the stream lines and isotherms 

are drawn in Figs. 15(d) and 15(e) for 

1000Gr   and 1500Gr   respectively, and 

it is found that the multi-periodic oscillation 

for 1000Gr   consists of asymmetric two-

vortex solution, while that for 1500Gr   

asymmetric three- and four-vortex solution. 

Temperature distribution is observed to be 

consistent with secondary vortices. 
            Next, we calculated time evolution of 

the unsteady solutions for Gr = 2000 at Dn = 

10000. Figure 16(a) shows time evolution of 

 for Gr = 2000, where it is seen that the 

flow oscillates irregularly, that means the 

flow is chaotic. This type of flow is termed 

as transitional chaos (Mondal et al. [22]). 

The chaotic oscillation is well proved by 

drawing the phase space as presented in Fig. 

16(b). Figure 16(b) shows that the flow 

creates an irregular line spectrum, which 

implies that the flow presented in Fig. 16(a) 

is chaotic. Then to observe the formation of 

secondary vortices and temperature 

distributions for the chaotic oscillation at Gr 

= 2000 and Dn = 10000, typical contours of 

the stream lines and isotherms are presented 

in Fig. 16(c), where it is seen that the chaotic 

flow at Gr = 2000 and Dn = 10000 is a four-

vortex solution. In this study, it is found that 

the temperature distribution is well consistent 

with the secondary vortices, and convective 

heat transfer is significantly enhanced as the 

secondary vortices become stronger.  The 

present study also shows that there is a strong 

interaction between the heating-induced 

buoyancy force and the centrifugal instability 

in the curved passage that stimulates fluid 

mixing and consequently enhance heat 

transfer in the fluid. 

4.2 Phase Diagram of the Unsteady 

Solutions 

Finally, the complete unsteady 

solutions, obtained by the time evolution 

computations in the present study, is shown 

by a phase diagram in Fig. 17 in the Dean 

number vs. Grashof number plane (Dn-Gr 

plane) for 1000 10000Dn   and 

100 2000Gr   for the flow through a 

curved rectangular flow of aspect ratio 0.5. 

In this figure, the circles indicate steady-state 

solutions, crosses periodic solutions and 

triangles chaotic solutions. Figure 17 shows 

that the unsteady flow becomes steady-state 

for any value of Gr  when 6400Dn  ; for 

6400Dn  , however, the flow becomes 

periodic or multi-periodic first and then 

chaotic as Dn is increased.  
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Fig.16. (a) Time evolution of  for Dn = 

10000 and Gr = 2000, (b) Phase space for Dn 

= 10000 and Gr = 2000, (c) Stream lines 

(top) and isotherms (bottom) for Dn = 10000 

and Gr = 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17. Unsteady solutions at a glance in the 

Dn Gr plane for 2000 10000Dn   and 

100 2000Gr   for the curved rectangular 

duct of aspect ratio 0.5 and curvature 0.1. 
 

5. Discussion 

In this section, a brief discussion on 

the past and present study of time dependent 

solutions for curved duct flow as well as the 

plausibility of applying two-dimensional 

(2D) calculations for studying curved duct 

flows will be given. It has been shown by 

many experimental and numerical 

investigations that curved duct flows easily 

attain asymptotic fully developed 2D flow at 

most 270
0
 from the inlet (Wang and Yang 

[29]). Recently, Mondal et al. [21, 22] 

investigated detailed numerical study on the 

unsteady solutions through a curved square 

duct over a wide range of curvature and 

showed that steady flow turns into chaos via 

periodic or multi-periodic flows if Dn is 

increased no matter what the curvature is. 

Yanase et al. [11] investigated non-

isothermal flows with convective heat 

transfer through a curved rectangular duct of 

aspect ratio 2, where they classified the flow 

regions into three different regimes; steady-

stable, periodic and chaotic. They showed 

that for low flow rate the system is 

confidently stable while it turns into periodic 

and even chaotic for higher flow rates. Very 

recently, Mondal et al. [30] performed 

spectral numerical study to investigate 
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unsteady flow characteristics for flow 

through curved rectangular ducts of aspect 

ratios ranging 1 to 3, and showed that the 

steady-state flow turns into chaotic flow 

through various flow instabilities if the 

aspect ratio is increased. However, there is 

no known work studying the unsteady 

solutions with convective heat transfer 

through a curved rectangular duct of aspect 

ratio less than 1 (one). In this paper, we 

investigated detailed numerical study on 

unsteady solutions through a curved 

rectangular duct of aspect ratio 0.5, where it 

is found that the flow is steady-state up to a 

large value of Dn and this region increases as 

the Grashof number becomes large. The 

present study also shows that the existence of 

the chaotic solution is not found for

10000Dn   at 2000Gr  ; however, at large 

values of Gr and Dn, for example Dn = 

10000 and Gr = 2000, a chaotic solution is 

attained. 

         On the assumption of two-

dimensionality in curved duct flows, Wang 

and Yang [29] showed that for an oscillating 

flow, there exists a close similarity between 

the flow observation at 270
0
 and 2D 

calculation. There is some evidence showing 

that the occurrence of chaotic or turbulent 

flow may be predicted by 2D analysis. 

Yamamoto et al. [31] investigated helical 

pipe flows with respect to 2D perturbations 

and compared the results with their 

experimental data (Yamamoto et al. [32]). 

There was a good agreement between the 

numerical results and the experimental data, 

which shows that even the transition to 

turbulence can be predicted by 2D analysis to 

some extent. The transition to chaos of the 

periodic oscillation, obtained by the 2D 

calculation in the present study, may 

correspond to destabilization of travelling 

waves in the curved duct flows. Our present 

result, therefore, may contribute to the study 

of flows through a curved duct of small 

aspect ratio, and thus can give a firm 

framework for the three-dimensional study of 

curved duct flows.  

6. Conclusions 

In this paper, a comprehensive 

numerical study is presented for the unsteady 

solutions of the flow through a curved 

rectangular duct of aspect ratio 0.5 and 

curvature 0.1. Numerical calculations are 

carried out by using the spectral method, and 

covering a wide range of the Dean number,

1000 10000,Dn  and the Grashof number, 

100 2000Gr  .  

       Time evolution calculations as well 

as their phase spaces show that the flow is 

steady-state up to a large value of Dn and 

this region increases as Gr becomes large. It 

is found that the unsteady flow is a steady-

state solution for 6400Dn  for all values of 

Gr in the range 100 2000Gr   and also 

for Dn = 6500 when 500 2000Gr  , and 

for Dn = 7000 when Gr = 2000. However, 

the unsteady flow becomes periodic at Dn = 

7000 when Gr = 1500 and at 8000Dn   

when 1500 2000Gr  , but multi-periodic 

for 6500Dn   at 100Gr  ; for Dn = 7000 

and Dn = 8000 when 100 1000;Gr   for 

Dn = 9000 when 100 2000Gr   and at 

10000Dn   for 500 1500Gr  . In the 

present study, it is found that the existence of 

the chaotic solution was not found for 

10000Dn   if 2000Gr  ; however, at large 

values of Gr and Dn, for example Dn = 

10000 and Gr = 2000, the chaotic solution 

was obtained. We obtained stream lines of 

secondary flows and isotherms of 

temperature profiles for all types of 

solutions, and it is found that there exist an 

asymmetric two-vortex solution for the 

steady-state solution, while asymmetric two-, 

three-, and four-vortex solutions for the 

periodic and multi-periodic solutions. For 

chaotic solution, on the other hand, we obtain 

asymmetric four-vortex solutions only. The 

present study also shows that chaotic flow 

enhances heat transfer more effectively than 

the steady-state or periodic solutions as the 

secondary flow becomes stronger. 
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