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Abstract 

A traffic light is one of the most important traffic signs for drivers to drive smoothly 

and safely. However, drivers may fail to pay attention to it by some chance. Automatic traffic 

light detection may be a great help to cover driver’s carelessness. This paper presents an 

automated traffic light detection method that works robustly under varying lighting 

conditions. We focus on the detection of red and yellow traffic lights because those signs are 

more crucial than green traffic lights for avoiding traffic accidents. The proposed method 

utilizes solely the color information in the CIELab color model, excluding the intensity 

information. The method is based on a simplified fast radial symmetry transform (FRST). The 

FRST is a fast implementation of the circular Hough transform. We also introduce a shape 

descriptor called solidity to reduce false traffic light detections. Simulation results show that 

the proposed method can significantly improve the precision and recall (sensitivity), that is, 

79.19% and 87.5%, respectively, compared with conventional approaches. 
 

Keywords: Traffic light detection; Fast Radial Symmetry; Computer Vision. 

 

1. Introduction 
Traffic light detection (TLD) is one 

of the most important issues in the advanced 

driver assistance systems (ADAS) that help 

to improve the safety of the car and 

passengers. In TLD, image processing and 

computer vision techniques are applied to 

digital images acquired by a digital camera 

installed in the vehicle. The TLD is generally 

based on some properties of traffic lights 

(TLs) such as their circular shape, colors, 

sizes, and the locations within the images. It 

is relevant to note that there are two 

structures of TLs; vertical and horizontal 

arrangements. In the vertical arrangement, 

the red light is located at the top, the yellow 

light in the middle, and the green light at the 

bottom as shown in Fig. 1(a). In the 

horizontal arrangement, on the other hand, 

the position of each color of a TL depends on 

the country where the TL is used. The red 

light is located at the right in the countries 

where cars are driven on the left side of the 

road as shown in Fig. 1(b). Conversely, the 

red light is located at the left end in the 

countries where cars are driven on the right 

side of the road as shown in Fig. 1(c).  

The detection of a green TL is 

considered less important as the driver needs 

no warning signal. Thus, the proposed 

method focuses on the detection of red and 

yellow TLs. The proposed method utilizes 

solely the color information in the CIELab 

color model, excluding the intensity 

information. The method is based on a 

simplified fast radial symmetry transform 

(FRST). The FRST is a fast version of the 

circular Hough transform. We also introduce 

a shape descriptor called solidity to reduce 

falsely detecting non-circular objects and 

also circular objects with a hole. Simulation 

results show that the proposed method 
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performs TLD robustly in various lighting 

conditions (both day and night times). 

 

2. Related Work 
As the advanced driver assistance 

systems (ADAS) have become more popular 

for several years, the researches on it are 

becoming more active. Let us briefly 

describe related works, especially on traffic 

light detection (TLD). It is common to use 

color information for TLD. There are a 

variety of color models. Normalized RGB 

signals are used for alleviating a negative 

impact on TLD from 

 

 

Fig.1.Different arrangements of traffic lights. 

(a) Vertical arrangement, (b) horizontal 

arrangement with the red light at the right 

end, and (c) horizontal arrangement with the 

red light at the left end. 
 

varying lighting conditions, combined with a 

modified circular Hough transform in [1]. 

Normalized RGB signals are also used 

together with the dark surrounding structure 

of a TL to restrict regions of interest (ROI) 

further [2]. However, color and intensity 

information are not perfectly separated in the 

normalized RGB signals. As a result, their 

TLD performances are still dependent on 

changing lighting conditions. To cope with 

varying lighting conditions more robustly, 

other color models are utilized. For example, 

the Cb and Cr channels in YCbCr color 

model are used in [3], even though they 

tested their method only on the images taken 

in the daytime. The CIELab and HSV color 

models also can be used for TLD since they 

essentially decouple color and intensity 

information. The CIELab model can be used 

for solving the blooming effect, that is, 

irregular intensity distribution on TL [4]. The 

HSV color model is used in [5], [6], and [7] 

where a Gaussian filter is used to emphasize 

TLs [5]. A database collected by [6] is used 

for classification by a support vector machine 

(SVM). The CAMSHIFT algorithm is used 

to track TLs in [7]. Ref. [8] describes a TLD 

technique that does not rely on color 

information. It uses the top-hat transform and 

the template matching technique with the 

correlation as the similarity metric. 

Most researchers are concerned with 

only simple or general conditions about TLs. 

However, there are not many researchers 

who employ more specific features of TLs. 

There are some more research works that 

have been conducted, such as using an SVM 

for detecting TLs in night vision in [9], and 

an arrow-shaped TL using the Gabor wavelet 

transform and 2D independent component 

analysis (ICA) in [10]. 

3. Methodology 
In the proposed research, we use the 

CIELab color model (as shown in Fig. 2) that 

was introduced by [11] and the fast radial 

symmetry transform (FRST) technique 

described in [4]. For detecting TLs, local 

maximum and minimum are used for 

detecting circular red and green TLs, 

respectively. For their extraction part, they 

use Eq. (1) from the CIELab color model. 

 )( ** baLab   (1) 

where L is the luminance and a* and b* are 

the color components in the CIELab color 

respectively. As shown in Eq. (1), it is still 

sensitive to lighting conditions because L is 

involved in the equation. This can lower 

recall (sensitivity) and precision of the 

system under varying illuminations. 

(a) (b) 

(c) 
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Fig.3. Flowchart of the proposed method. 
 

To improve the research work from [4], we 

have modified some parts of their work and 

added a step for checking the shape of a 

detected object. We limit our target to only 

red and yellow TLs. This is because it is 

unnecessary to give a warning signal to a 

driver when the TL is green. As shown in 

Fig. 3, the proposed method comprises three 

steps. The first step is concerned with TL 

extraction using color information. The 

details of this step are described in Section 

3.1. The second step, FRST, is implemented 

for detecting circular objects in an image. 

The procedure of this step is explained in 

Section 3.2. The third step is designed for 

varifying TL extraction results using a shape 

descriptor. More details are given in Section 

3.3. Since TLs are generally located at the 

upper half of the frame, we search for TLs 

only in the upper 55% of the image. In other 

words, the upper 55% of the image is our 

initial region-of-interest (ROI). The 

percentage, 55%, has been determined 

through experiments. 

3.1. Traffic Light Extraction 

In this step, we use only the a* and 

b* components of the CIELab color model 

for lighting conditions, not depending on the 

system. For extraction, red and yellow TLs 

should have high intensity in both a* and b* 

channels. In some cases, there is the 

blooming effect occurring in a red TL as 

shown in Fig. 4(a). To solve the problem, we 

propose to combine a* channel (Fig. 4(b)) 

and b* channel (Fig. 4(c)) to extract both of 

red and yellow TL in one channel by using 

Eq. (2). Then, the blooming effect can be 

removed as demonstrated in Fig. 4(d). 
 

Fig.4. Blooming effect of a TL in (a) RGB 

image. (b) a* channel, (c) b* channel, and (d) 

ab* image.  

  

*)*,max(* baab   

 

      (2) 

 

Fig.2. CIELab color model. 

Input Image 

1. Traffic light 

Color extraction 

2. FRST 

3. Verification 

Output 

image (a) (b) 

(d) (c) 
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a. b.

c. d.

a. b.

c. d.
(a) (b) 

Fig.5. Traffic light extraction result. (a) Input 

image, and (b) ab* image. 

Fig. 5(a) shows an input traffic image, while 

Fig. 5(b) shows the a-b channels of the input 

image. As shown in Fig. 5(b), a red TL has a 

high intensity in an input image. However, 

there are other objects with red or yellow 

color that also have high intensities. We next 

explain how to filter out those false targets. 
 

 

3.2. Fast Radial Symmetry 

Transform 

The fast radial symmetry transform 

(FRST) was proposed in [12]. It is used for 

detecting either bright or dark circular 

objects based on a given radius (r). Since our 

target is circular TLs, we can use this 

technique to filter out the false targets 

detected in the preceding step. 

 This transform uses both directions 

(GD) and magnitudes (GM) of gradient 

vectors of an image. Every pixel in the image 

has its own gradient vector. We define a 

vector that points from a dark pixel to a 

brighter pixel as positive and otherwise 

negative. As shown in Fig. 6, we show 

positive vectors in blue and negative vectors 

in red. Those vectors can be computed using 

Eqs. (3) and (4). 
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   (4)                 

 

where xp , yp and xn , yn are the coordinates in 

positive and negative directions, respectively. 

x, y  are the coordinates of an input image 

and g(x,y) is the gradient of each pixel of the 

input image. With this gradient, we derive 

the orientation (Or) and the magnitude matrix 

(Mr) for each radius (r). They are initially 

zero matrices that have the same size as the 

input image. They are then updated using 

Eqs. (5) and (6). Then we can get the 

symmetry transform matrix (Sr) by Eq. (7), 

where α is the radial strictness parameter. 
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(6) 
 

 

  

(7) 

where and Ar = 2-D Gaussian. 

Eqs. (5), (6), and (7) are applied to 

every pixel in an image. Each pixel produces 

an array of vectors where those vectors are 

radially converged or diverged from the 

pixel.  

The magnitude of Sr depends on the GM (Eq. 

(7)). For a circular object of radius r, both 

positive and negative vectors are presented 

radially from the center of the circle. Since 

we ignore regions with gradients of zero, 

these vectors appear only along the circle. 

Depending on the GD, either positive or 

negative, we accumulate a score positively or 

rrr AFS 

rrr MOF 


Fig.6. Positive (blue) and negative (red) gradient 

vectors on dark and bright circles. 
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Fig.7. Result of MFRST. (a) Input image, (b) 

ab* image, (c) 3D plot of symmetry transform 

matrix S, and (d) detected using MFRST. 

(a

) 
(b

) 

(c

) 
(d

) 

negatively, resulting in positive and negative 

peaks in Sr (Eqs. (5), (6)). 

Since the proposed method is 

concerned with the detection of only red and 

yellow TLs, the FRST can be modified by 

ignoring Eq. (6) to be a modified FRST 

(MFRST). Using the MFRST can reduce the 

computation time for this step. From input 

image (Fig. 7(a)) and ab
*
image (Fig.7 (b)), it 

can be seen that red/yellow will have high 

height in the 3D-plot of MFRST as shown in 

Fig. 7(c) then exhibits the responses of the 

FRST, plotted in 3D. It is clear that the 

traffic light produces a prominent peak, from 

which the TL is detected as shown in Fig. 

7(d). In addition, this technique can detect 

more than one radius at once by using Eq. 

(8), where N is the number of radii used. In 

the proposed method, we vary the radius 

from 1 to 15 pixels. The parameter space of 

the circular Hough transform is three 

dimensional which is spanned by x, y, and r. 

Then, we perform maximum intensity 

projection The parameter space of the 

circular Hough transform is three 

dimensional which is spanned by x, y, and r. 

Then, we perform maximum intensity 

projection (MIP) vertically, namely, along 

the r axis, resulting in the 2D array, S. The 

MIP step is expressed in Eq. (8) and Fig. 7(c) 

shows a 3D plot of an S. 

Meanwhile, we generate another 2D 

array, R, which shows the radius r of each 

entry of an S. For instance, if the first entry 

of S comes from Sr1, the first entry of new 

array R is Sr1. With the combination of S and 

R, we can locate circular objects with various 

radii in an input image as shown in Fig. 7(d). 

 

3.3. Verification 

 The MFRST tends to detect non-

TLs as TLs, resulting in excessive false 

positives (FPs). This is because the technique 

cannot distinguish circular objects from ring-

shaped objects. Round-shaped numbers and 

characters on a sign board are also often 

detected as TLs. To reduce those FPs, we 

introduce ‘solidity’ that is described in [13]. 

Solidity describes the extent to which the 

shape of a pattern is convex or concave. It is 

defined by 

 
  

CA
ASolidity   

 

     (9) 

 

 

where A is area of the pattern and CA is the 

area of the convex hull of the pattern. 

 

To demonstrate how the solidity 

works, Table 1 shows 3 patterns together 

with their convex hull areas and values of 

solidity. A circular pattern and its convex 

hull are similar to each other, namely, A=CA 

or A  CA, resulting in the solidity equal to 

or close to 1 (2nd column). Meanwhile, a 

donut-shaped pattern produces the solidity 

below 1 owing to the hole within the pattern 

(3rd column). A non-circular pattern also 

produces the solidity below 1 because of its 

irregularity in shape. In this manner, we may 

distinguish circular patterns from others. 
 

 

 

 

 

 

  
        (8) ),...,,max( 21 rNrr SSSS 
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Table1.Examples of patterns with their 

convex hull area and solidity. 
 

 

4. Results and Discussion 

In this paper, we attempt to increase 

the precision and recall of the proposed 

method compared with those in [4]. In this 

section, we discuss about the proposed 

method based on simulation results. 

4.1 Orientation simulation test  

To find orientation or degree of TLs 

that can be detected, we create a circular 

object by using the ellipse equation in Eq. 

(10) 
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where xc and yc are the center of the circular 

object in x and y coordinate. In addition, ‘a’ 

and ‘b’ are major and minor axes, 

respectively. 

We fix the value of ‘a’ to be 10 and 

vary ‘b’ in terms of the rate to ‘a’, namely, 

b/a, from 100 to 70% as shown in Table 2. 

The right-most column in Table 2 plots the 

peak height of each input pattern when the 

MFRST is applied. In the proposed method, 

we set the maximum peak threshold for 

detecting TLs to be 65. Table 2 shows that 

circular objects with the minor axis that is 

more than 80% of the major axis are still 

detectable. Therefore, the limitation of the 

orientation is 70 % of the major axis. 

 

 

 

 

 

 

Table2. Orientation simulation result. 

Rate b/a Input image Maximum 

Peak 

100 % 

 

129.9 

90 % 

 

127.72 

80 % 

 

68.11 

70 % 

 

33.56 

4.2 Lighting conditions simulation 

test 

  To evaluate the robustness of the 

proposed method to varying lighting 

conditions, we vary the intensities of an 

image in four levels as tabulated in Table 3. 

The pattern is a red circle of the fixed radius 

10. Table 3 shows that the peak heights 

under the four different intensity levels are 

nearly constant. This indicates that the 

proposed method is robust to the changes in 

lighting conditions.  

4.3. Evaluation 

 We evaluate the performance of the 

proposed method using the statistical 

measures, precision, recall, and F1 score. 

When a traffic light (TL) is successfully 

detected, it is a true positive (TP). When a 

non-TL pattern is detected as a TL, it is a 

false positive (FP). When a TL is missed, it 

is a false negative (FN). Using these, the 

following statistics can be defined. 

          Precision = 100
FPTP

TP



           (11) 

               Recall = 100
FNTP

TP



             (12) 

Pattern 

 

  

Convex 

hull 

area 

 

 

 

Solidity 1.00 0.74 0.82 
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F1-score = 
RecallPrecision

RecallPrecision2




      (13) 

We use 100 street images that 

contain 200 TLs in total. We set the 

threshold to FRST at 65. The range of the 

radius is from 1 to 15 pixels. The threshold to 

the solidity is set at 0.85. The confusion 

tables and summaries of them are shown in 

Tables 4, 5 and 6. 

 

Table3.Lighting conditions simulation result. 

Intensity Picture Maximum 

Peak 

1 

 

129.9 

0.8 

 

129.1 

0.6 

 

129.91 

0.4 

 

120.15 

 

Table4. Confusion table for the traditional 

method. 

Real \ Detect as Traffic 

lights 

Non- Traffic 

lights 

Traffic lights TP = 118 FN = 82 

Non- Traffic 

lights 

FP = 118  

 

Table5. Confusion table for the proposed 

method. 

Real \ Detect as Traffic 

lights 

Non- Traffic 

lights 

Traffic lights TP = 175 FN = 25 

Non- Traffic  

lights 

FP = 46  

 

 

Table 6 shows the percentage of the 

precision, recall, and F1 score in day time 

and at night by both traditional and proposed 

methods. It shows that the proposed method 

has higher scores in both daytime and night 

time, about a 30 % increase on average. As 

shown in Table 6, night time, which is 30% 

of our database, has a lower percentage than 

day time, especially for precision. It means 

that it has a lot of false positive at night. 

Therefore, this method has high successful 

rate in the day time. 

Figs. 8 and 9 show successful TLD 

results by the proposed method. Fig. 8(a) 

shows TLD in a dark situation. There are two 

TLs in the input image, which are indicated 

by the two dashed-line rectangle boxes, A 

and B. They produce prominent peaks in the 

parameter space of the FRST as shown in 

Fig. 8(b). After thresholding to these peaks, 

the two TLs are detected successfully as 

shown in Fig. 8(c) and 8(d). Fig. 9 

demonstrates that falsely detected TLs, i.e., 

false positives (FPs), are successfully 

rejected by the solidity. There is one TL in 

the input image in Fig. 9(a), which is 

encompassed by the dashed-line rectangle 

box A. There are numerous faulty peaks in 

the parameter space as shown in Fig. 9(b). 

These faulty peaks are rejected by the 

solidity, and only the TL is detected as 

shown in Fig. 9(c).  

 

Figs. 10 and 11 show unsuccessful 

TLD results by the proposed method. Fig. 

10(a) shows an input image at night, while 

Fig. 10(b) shows the 3D plot of the 

parameter space of the FRST. The region A 

in Fig. 10(a) contains a TL, which is 

correctly detected as shown in Fig. 10(c). 

Meanwhile, the region B in Fig. 10(a) has 

both TL and non-TL bright spots. For this 

particular case, the combination of the 

circular Hough transform and the solidity fail 

to distinguish non-TLs from true TLs as 

shown in Fig. 10(d). This shows an example 

of false positive (FP), which lowers the 

precision (Eq. (10)). Fig. 11(a) shows  
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another input image, while Fig. 11(b) 

illustrates the 3D plot of the parameter space 

of the FRST. The TL in box A in Fig. 11(a) 

is successfully detected as shown in Fig. 

11(c). However, another TL located below 

box A is missed because of the region of 

interest (ROI) set earlier (Fig. 11(d)). This is 

an example of false negative (FN) that 

lowers the recall (Eq. (11)).  

4.4. Time Consumption 

 The proposed method is tested on an 

Intel Core i5 (2.8 GHz) processor with 8GB 

RAM. The resolution of an input full color 

image is the so-called QVGA, i.e., 240 by 

320 pixels with 8-bit quantization levels for 

each of red, green, and blue colors. The 

proposed method is implemented using 

MATLAB R2009. For the time consumption, 

we compare the time consumption of the 

biggest part of this project, which is FRST, 

with traditional and proposed methods. The 

result is shown in Table 7. 

 

Table7. Time complexity comparison. 

 

FRST 

method 

Traditional 

method (sec) 

Proposed 

method 

(sec) 

Mean 2.88  1.63  

SD 0.24 0.10 

 

Table 7 shows that the proposed 

method spends less computational time than 

the traditional [4], method because the 

proposed method has simplified the FRST by 

detecting bright spot (red and yellow TLs) 

only. Time consumption is reduced by about 

55.82% of the traditional method. In 

addition, the proposed method has a more 

stable time because it has lower standard 

deviations. 

 

5. Conclusion and Future work 

 This paper presents a novel traffic 

light detection method that is robust to 

varying lighting conditions. The proposed 

method employs the CIELab color model. 

Unlike conventional methods, we make use 

of only the color information, namely, the a* 

and b* components in the model. Since the L 

component, that is, brightness, is excluded, 

the proposed method works regardless of the 

varying brightness of the scene. In addition, 

we have simplified the fast radial symmetry 

transform (FRST) by computing only in the 

positive gradient direction. Consequently, the 

computation of the proposed method is 

highly efficient.  

As future work, we will work on the 

improvement of the precision of the proposed 

method by further reducing false positives 

(FPs), often caused by brake lamps. We also 

plan to test the method on real video 

sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluation Traditional method [4] Proposed method 

Day Night Total Day Night Total 

Precision 54.91% 36.51% 50.00% 85.55% 56.25% 79.19% 

Recall 56.21% 74.19% 59.00% 87.57% 87.10% 87.50% 

F1 score 55.56% 48.94% 54.13% 86.55% 68.35% 83.14% 

Table6. Result of precision, recall, and F1-score. 
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(a) (b) 

(c) 
Fig.9. Traffic light detection with many false positives. (a) Input image and result, (b) FRST 3D 

plot of (a), (c) cropped and enlarged region 'A' in (a). 

(a) (b) 

(c) (d) 

Fig.8. Traffic light detection in a dim environment. (a) Input image and result, (b) FRST 3D 

plot of (a), (c) cropped and enlarged region 'A' in (a), and (d) cropped and enlarged 

region 'B' in (a). 
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       (a) (b)

(c) (d)

Fig.10. Detected TLs in a night scene. (a) Input image and result, (b) FRST 3D plot of (a), (c) 

cropped and enlarged region 'A' in (a), and (d) cropped and enlarged region ‘B’ in (a).

        (a) 

       (c) 

(b) 

(d) 

 

 
Fig. 11. Missed traffic light outside of the ROI. (a) Input image and result, (b) FRST 3D 

plot of (a), (c) cropped and enlarged region 'A' in (a), and (d) cropped and enlarged region 

'B' in (a). 
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