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Abstract 

We study the performance of two adaptive elastic net estimation methods where the 

adaptive weights are constructed using elastic net and least squares estimators. Simulation 

studies show that two adaptive weights perform differently. When the elastic net estimator is 

used, the adaptive elastic net performs best in estimation accuracy and variable selection 

performance. If the least squares estimator is used, the adaptive elastic net has prediction 

performance better than using the other adaptive weight. 
 

Keywords: adaptive elastic net; elastic net; adaptive weight; L1-penalty; variable selection. 

 

1. Introduction 
 The elastic net proposed by Zou and 

Hastie [1] is a regularization technique to 

solve the regression problem in microarray 

genes expression data. The elastic net 

simultaneously performs automatic variable 

selection and continuous shrinkage. Consider 

a linear regression model 

 

                    ,                      (1) 

 

where   is an     vector of response 

variable,   is an     matrix of predictor 

variables,   is an     vector of parameter 

of regression coefficients,   is an     

vector of random errors,   is the number of 

predictors, and   is the number of 

observations. The errors are assumed to be 

independent identically normally distributed 

random variable with mean 0 and finite 

variance   . Without loss of generality, we 

assume the response is centered and the 

predictors are standardized, so the intercept 

is not included in the regression function. 

The elastic net is based on a combination of 

the ridge (L2) [2,3] and the lasso (L1) [4] 

penalties. The elastic net is defined in two 

stages. The naïve elastic net estimator is first 

found via 
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(2) 

 

where      and      are the penalty 

parameters,        , and   
  (     )⁄  where   (   ). The L1 part 

of the elastic net performs automatic variable 

selection, while the L2 part stabilizes the 

solution parts and, hence, improves the 

prediction. The final elastic net estimator is 

taken to be a rescaled version of the naïve 

estimator, 
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    ̂            = (    ) ̂                      (3) 

The scaling was introduced by Zou et al. [1] 

to reduce perceived overshrinkage of the 

naïve estimator. 

 The elastic net has good 

performance. However, it does not enjoy the 

oracle properties (consistency in variables 

selection and asymptotic normality). Zou and 

Zhang [5], and Ghosh [6] proposed two 

adaptive elastic net estimators which have 

the oracle property. These two adaptive 

elastic net estimators are different.  

 Zou and Zhang [5] proposed the 

adaptive elastic net using the elastic net 

estimator to construct the adaptive weight 

(AENET2009). This adaptive elastic net has 

the oracle property and outperforms the 

elastic net. The naïve adaptive elastic net 

estimator AENET2009 is defined as follows: 

 
 ̂          
 

=        [‖    ‖ 
     ‖ ‖ 

    ∑  ̂ |  |
 
   ]. 

     

 (4) 

   

Let   be a positive constant, the adaptive 

weight  ̂  (| ̂ (           )|)
  

,   

     . 

 Ghosh [6] proposed the adaptive 

elastic net using the least squares estimator to 

construct the adaptive weight (AENET2011). 

This method has good performance on 

grouped selection and model complexity than 

the elastic net. The naïve adaptive elastic net 

estimator AENET2011 is defined as follows: 
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For some    , the adaptive weight vector 

 ̂    | ̂            |
 

⁄ . The adaptive elastic 

net proposed by Ghosh [6] has good 

performance on grouped selection and model 

complexity than the elastic net. There is no 

any comparative study between two adaptive 

elastic net methods. 

 In this research, we study the 

performance of two adaptive elastic net 

methods where the adaptive weights are 

constructed using elastic net and least 

squares estimators. We limit our attention to 

full rank model (   ). This article is 

organized as follows. Section 2 describes the 

simulation method, adaptive weights used in 

this comparative study, and decision 

criterion. Section 3 presents the results and 

discussion. In Section 4, we illustrate our 

study using a real dataset. Conclusion is in 

Section 5. 

 

2. Methods  
2.1 Simulation data 

The datasets are simulated by the 

simulation method proposed by Zou and 

Zhang [5]. This simulation method sets the 

number of parameters ( ) depend on the 

sample size ( ). 

Let      [  
  ⁄ ]    for n = 

100, 200, 400. The data is generated from the 

linear regression model 
 

        , 
 

where   is an     vector of response 

variable,    is an     vector of parameter 

of regression coefficients, and   is an     

vector of random errors,     (     ), 
where   = 6. 

 Let   [          ]
 

;    is an 

    vector of the jth predictor variables.   

follows a p-dim multivariate normal 

distribution with zero mean and covariance 

 ,      (   ), where the covariance matrix 

  has the entry      = corr(   )   |   |  

       . In this research, we set   = 0.5 

and   = 0.75.  

 Let    denotes a     vector of 1’s, 

and       denotes a (    )    vector of 

0’s.  

 Let the true coefficients are  
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   (                    )
 

 

and   [   ⁄ ]. Let   {           

       }. The size of   is the number of 

non-zero coefficients which are used to 

generate the response variable of the model. 

For this simulation method, the size of   is 

denoted by | |    . There are six cases for 

combination of n = 100, 200, 400 and   = 

0.5, 0.75. The simulation method is repeated 

100 times. 

 2.2 Adaptive weight 

In this research, there are two types 

of estimators which are used to construct the 

adaptive weight: elastic net and least squares 

estimators. For elastic net estimator, we use 

rescaled version of the elastic net and the 

relationship between the shrinkage 

parameters is     (     )⁄  where 

  (   ), so we set rescaled elastic net 

estimator with   = 0.1, 0.5, 0.9 to be three 

estimators. Hence, we study four adaptive 

weights (w): 

- adaptive weight is constructed 

using ordinary least squares 

estimator (OLS), 

- adaptive weight is constructed 

using elastic net estimator with   = 

0.1  (RENET01), 

- adaptive weight is constructed 

using elastic net estimator with   = 

0.5 (RENET05), and  

- adaptive weight is constructed 

using elastic net estimator with   = 

0.9 (RENET09). 

To construct the adaptive weight, we 

choose   
  

   
 where       

    

    
   as 

suggested by Zou and Zhang [5]. Thus, the 

value     is used for fitting the adaptive 

elastic net of this simulation data. The naïve 

adaptive elastic net estimators are fitted using 

the same shrinkage values (   and   ) of the 

naïve elastic net method with   = 0.5. The 

elastic net method is implemented using 

lasso command of MATLAB2012a software 

[7,8]. The 10-fold cross-validation (CV) 

method for tuning the penalty parameters (   

and   ) is CV random partition using 

MATLAB2012a software. The value of   

estimated by 10-fold CV method is the   

with minimum mean prediction squared error 

as calculated by CV. The adaptive elastic net 

method is implemented using the gcdnet R 

package [9-11]. Both the lasso command of 

MATLAB2012a software and the gcdnet R 

package solve the elastic net based on the 

cyclical coordinate descent algorithms 

proposed by Friedman, Hastie, and 

Tibshirani [12]. 

 2.3 Decision criterion 

 The decision criterions are as 

follows. 

 1. For each estimator  ̂, its 

estimation accuracy is measured by the mean 

square error (   ( ̂)) defined as  

 [(   ̂)
 
(   ̂)]. 

 2. The variable selection 

performance is gauged by (    ), where   is 

the number of zero coefficients that are 

correctly estimated by zero and    is the 

number of nonzero coefficients that are 

incorrectly estimated by zero. 

 3. The prediction accuracy is 

measured by the prediction error (  ) 

defined as   (   ̂)  where  ̂    ̂. 

 

3. Results and Discussion 

Table 1 – Table 3 show the model 

selection and fitting results of naïve adaptive 

elastic net estimators with different adaptive 

weights for six cases of simulation data. The 

average of    ( ̂),   ,  , and    are 

computed based on 100 datasets. The 

numbers in parenthesis are the corresponding 

standard errors of    ( ̂) and    estimated 

using the bootstrap with B = 500 resampling 

from the 100    ( ̂)’s, and 100   ’s, 

respectively. The results are as follows. 

 3.1 Estimation accuracy 
 The AENET2009 performs the 

estimation accuracy better than the 

AENET2011 and elastic net do. 

 3.2 Variable selection performance 
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 The AENET2009 performs the 

variable selection performance better than 

the elastic net and AENET2011 do. 

 3.3 Prediction performance 

 The AENET2011 performs the 

prediction performance better than the 

AENET2009 does.  For the AENET2009, the 

adaptive weight RENET09 has the prediction 

performance better than the other adaptive 

weights. 

The least squares method is the 

parameter estimation, whereas the classical 

elastic net method [1] performs both 

parameter estimation and variable selection. 

Thus, the adaptive weight derived from the 

elastic net estimator makes the adaptive 

elastic net has the parameter estimation and 

variable selection performance better than 

the weight derived from least squares 

estimator. The different shrinkage values of 

  affect the parameter estimation and 

variable selection performance of the 

adaptive elastic net. The AENET2009 with 

adaptive weight RENET01 has the parameter 

estimation and variable selection 

performance better than the other adaptive 

weights do, but it performs worse in 

prediction accuracy. 

 

4. Real data example 
 The data in this example is the 

diabetes dataset [13]. The response variable 

is a quantitative measure of disease 

progression one year after baseline for 442 

diabetes patients. The dataset contains 10 

baseline predictor variables: age, sex, body 

mass index (bmi), average blood pressure 

(bp), and six blood serum measurements (tc, 

ldl, hdl, tch, ltg, glu). Table 4 shows the 

result of the naïve elastic net estimators with 

  = 0.1, 0.5, 0.9. The 10-fold CV method for 

tuning the penalty parameters (   and   ) is 

CV random partition. This causes the 

different values of    and    at each value of 

 . The rescaled elastic net estimators which 

are used to construct the adaptive weights are 

computed by (3). For diabetes dataset, the 

value       is used for computing the 

adaptive weights of the adaptive elastic net 

estimators. 

Table 5 shows the results of the 

naïve adaptive elastic net estimators with 

different adaptive weights for diabetes 

dataset. The naïve adaptive elastic net 

estimators are fitted using the same shrinkage 

values (   and   ) of the naïve elastic net 

method with   = 0.5 (   = 0.0736,    = 

0.0736). The result reveals that the 

AENET2011 performs the prediction 

performance better than the AENET2009 

does. For the AENET2009, the adaptive 

weight RENET09 has the prediction 

performance better than the other adaptive 

weights. The AENET2009 is more 

parsimonious than the elastic net and 

AENET2011 do. 

 

5. Conclusion 

 The adaptive elastic net estimators 

incorporate the adaptive weight in the L1 

penalty of the naïve elastic net estimator. The 

L1 penalty is responsible for the sparsity of 

the estimator. When the elastic net estimator 

is used to construct the adaptive weight, the 

adaptive elastic net performs best in 

estimation accuracy and variable selection 

performance. If the least squares estimator is 

used to construct the adaptive weight, the 

adaptive elastic net has the prediction 

performance better than using the other 

adaptive weights. The adaptive elastic net 

does both parameter estimation and variable 

selection, so the elastic net estimator is more 

suitable to construct the adaptive weight than 

the least squares estimator. Using the elastic 

net estimator with      to construct the 

adaptive weight (e.g. RENET09), the adaptive 

elastic net has the prediction performance 

better than using the adaptive weight with 

   . 
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Table 1. Model selection and fitting results of naïve adaptive elastic net estimators for   = 100, 

   = 35. 
 

  = 100,      = 35 

  
Truth 

Model    ( ̂)         
     

0.5 26 0 

Elastic net 0.2649  (0.0113) 8.82 0 28.6017  (0.5310) 

AENET2011  

w = OLS 
0.3286  (0.0183) 15.24 0.08 27.8393  (0.5022) 

AENET2009  

w = RENET01 
0.1847  (0.0127) 23.53 0.02 31.4825  (0.5548) 

AENET2009  

w = RENET05 
0.2115  (0.0125) 21.12 0 30.0953  (0.5515) 

AENET2009  

w = RENET09 
0.2434  (0.0121) 18.46 0 28.9537  (0.5193) 

0.75 26 0 

Elastic net 0.2239  (0.0158) 11.98 0 29.8884  (0.5297) 

AENET2011  

w = OLS 
0.4387  (0.0287) 13.71 0.28 28.0819  (0.4469) 

AENET2009  

w = RENET01 
0.1778  (0.0180) 24.50 0.09 32.1040  (0.4735) 

AENET2009  

w = RENET05 
0.1891  (0.0183) 22.45 0.02 30.9953  (0.5119) 

AENET2009  

w = RENET09 
0.2191  (0.0165) 19.95 0 29.9943  (0.4850) 

 

 

Table 2. Model selection and fitting results of naïve adaptive elastic net estimators for   = 200,        

   = 51. 
 

  = 200,      = 51 

  
Truth 

Model    ( ̂)         
     

0.5 36 0 

Elastic net 0.1451  (0.0042) 11.68 0 29.4533  (0.3756) 

AENET2011  

w = OLS 
0.1272  (0.0043) 26.70 0 30.0657  (0.3534) 

AENET2009  

w = RENET01 
0.0823  (0.0031) 34.39 0 32.4601  (0.3442) 

AENET2009  

w = RENET05 
0.0940  (0.0036) 31.90 0 31.5969  (0.3397) 

AENET2009  

w = RENET09 
0.1069  (0.0039) 29.47 0 30.8325  (0.3555) 

0.75 36 0 

Elastic net 0.1310  (0.0058) 17.33 0 31.4804  (0.3823) 

AENET2011  

w = OLS 
0.1802  (0.0099) 24.05 0.05 30.8438  (0.3566) 

AENET2009  

w = RENET01 
0.0866  (0.0051) 35.07 0 33.7111  (0.3689) 

AENET2009  

w = RENET05 
0.0929  (0.0056) 33.33 0 33.1468  (0.3616) 

AENET2009  

w = RENET09 
0.1071  (0.0057) 30.82 0 32.4236  (0.3521) 
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Table 3. Model selection and fitting results of naïve adaptive elastic net estimators for   = 400,         

   = 75. 
 

  = 400,      = 75 

  
Truth 

Model    ( ̂)         
     

0.5 51 0 

Elastic net 0.0811  (0.0021) 15.57 0 30.6452  (0.2618) 

AENET2011  

w = OLS 
0.0536  (0.0016) 44.15 0 32.2205  (0.2482) 

AENET2009  

w = RENET01 
0.0412  (0.0012) 49.99 0 33.4250  (0.2473) 

AENET2009   

w = RENET05 
0.0447  (0.0014) 48.16 0 32.9821  (0.2616) 

AENET2009 

w = RENET09 
0.0490  (0.0015) 46.04 0 32.5572  (0.2693) 

0.75 51 0 

Elastic net 0.0807  (0.0022) 24.68 0 32.3491  (0.2344) 

AENET2011  

w = OLS 
0.0782  (0.0027) 41.00 0 32.6870  (0.2333) 

AENET2009  

w = RENET01 
0.0512  (0.0017) 50.48 0 34.4035  (0.2207) 

AENET2009  

w = RENET05 
0.0530  (0.0018) 49.33 0 34.1404  (0.2268) 

AENET2009  

w = RENET09 
0.0572  (0.0018) 47.01 0 33.7126  (0.2264) 

 

 

Table 4. Naïve elastic net estimators for diabetes dataset with   = 0.1, 0.5, 0.9. 
 

The naïve elastic net estimators ( ̂) with different   values 

        

Predictor variables Degree 

of 

freedom 
   

AGE BMI BP S1 S2 S3 S4 S5 S6 SEX 

0.9 0.0537 0.0059 -0.0080 5.4561 1.0692 -0.1798 -0.0654 -0.6519 4.1757 43.6550 0.3303 -20.9670 10 2880.171 

0.5 0.0736 0.0736 0 5.3747 1.0506 -0.1382 -0.0907 -0.6865 4.0241 41.9670 0.3391 -20.1910 9 2885.256 

0.1 0.0633 0.5699 0 5.3863 1.0217 -0.1136 -0.0648 -0.7369 2.5814 42.2340 0.3026 -18.7210 9 2890.408 

 

 

Table 5. Naïve adaptive elastic net estimators with different adaptive weights for diabetes 

dataset. 
 

Model 

Predictor variables Degree 

of 

freedom 

   

AGE BMI BP S1 S2 S3 S4 S5 S6 SEX 

Elastic net 

  = 0.5 
0 5.3747 1.0506 -0.1382 -0.0907 -0.6865 4.0241 41.9670 0.3391 -20.1910 9 2885.256 

AENET2011 

w = OLS 
0 5.4247 1.0721 -0.0695 -0.1616 -0.7442 4.7600 36.9364 0.3702 -20.5848 9 2892.505 

AENET2009 

w = RENET09 
0 5.4230 0.9997 0 -0.2038 -0.8348 3.6166 38.4832 0.3577 -20.0363 8 2892.913 

AENET2009 

w = RENET05 
0 5.4379 0.9784 0 -0.2038 -0.8333 3.5934 38.6564 0.3620 -19.9281 8 2893.479 

AENET2009 

w = RENET01 
0 5.4578 0.9560 0 -0.2044 -0.8295 3.6287 38.6405 0.3685 -19.8173 8 2894.476 
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