Research Article

Weighted Likelihood Estimator of Scale
Parameter for the Two-parameter
Weibull Distribution with a
Contamination

Kanlaya Boonlha*, Kamon Budsaba and Andrei Volodin
Department of Mathematics and Statistics, Faculty of Science and Technology,
Thammasat University Rangsit Campus, Khlong Nueng, Khlong Luang,
Pathum Thani 12120, Thailand

Abstract

In this article, we propose weighted likelihood estimator (WLE) that assigns zero
weights to observations with small likelihood. We also examine the robustness properties of
the maximum likelihood estimator (MLE) and WLE for the scale parameter of the two-
parameter Weibull distribution when the data set has a contamination. We investigated the
performance of the WLE as compared to the MLE and found that the WLE outperforms the
MLE with respect to the relative bias and quadratic risk values.
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1. Introduction

The Weibull distribution is widely
used in reliability and life data analysis due
to its usefulness in many fields including
engineering [1], biomedical sciences [2], and
ecology [3]. This distribution is useful in
describing wear-out or fatigue failures [4].
Other practical applications of the two-
parameter Weibull distribution include wind
energy assessment, estimation of rainfall
amount, and analysis of lifetime of materials.
Depending on the values of the parameters,
the Weibull distribution can be used to model
many of life behaviors. For the values of the
shape parameter and the scale parameter
affect the distribution characteristics such as
the shape of the probability density function,
the reliability and the failure rate. The shape
parameter is significant for applocatuons of
the Weibull distribution because it identifies
the shape of the probability density function

plot of the Weibull distribution. For the
Weibull  distribution  with g <1, the
probability decreases exponentially from
infinity. In terms of the failure rate, data that
fit this distribution have many initial failures
which decrease over time as the incomplete
items are removed from the sample. At f =1,

the Weibull distribution reduces to the
exponential  distribution.  Forf>1, the
probability density function is unimodal and
is skewed to the right. For the Weibull
distribution with 1</ <2, this distribution
rises to the top quickly, then falls over time.
The failure rate increases overall, with the
most rapid increase occurring initially. This
shape is demonstrative of early were-out
failures. When f =2, the Weibull distribution
models is a linearly increasing failure rate,
where the risk of were-out failure increasea
steadily over the product of lifetimes. When
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3< <4, the probability density function has

a roughly bell shape simialr to that of the
normal distribution. This form of the Weibull
distribution models quick wearing out
failures during the final period of product
life,which is when most failures happen.
Moreover, a change in the scale parameter is
the same as a change of the abscissa scale, a
change of the unit or data. If the scale
parameter increases while the shape is fitted,
the value of scale has an effect of spreading
out the distribution to the right, and its height
decreases while the value of scale has no
effect on the shape of the distribution. If the
scale parameter decreases while the shape is
fitted, the values of scale has an effect of
pushing in the distribution to the left and its
height increases while the value of scale has
no effect on the shape of the distribution.
Additionally, the scale parameter has the
same units as the variable x, such as hours,
miles and cycles. An assumption of a shape
parameter is appropriate for many real
lifetime analysis problems. For example, in
engineering applicarions, we often assume
that the shape parameter is one and get an
exponential distribution [5]. Therefore, we
would like to study the two-parameter
Weibull distribution assuming that the shape
parameter is known. As we mentioned above,
Weibull distribution plays a central role in
lifetime models. If a dataset is contaminated
with outliers, the maximum likelihood
estimator (MLE) can be very unreliable [6].
The problem of estimating the parameters of
the Weibull distribution when a proportion of
the observations are outliers is quite
important in reliability applications. The
weighted likelihood estimator (WLE) was
proposed for a robust estimation of the
exponential distribution parameters by [7].
The WLE was introduced by [8] and it has
been applied to a problem of robust
estimation of parameters. The weighted
likelihood method was introduced as a
generalization of the local likelihood method,
and it can be global, as demonstrated in [9].

10

The weighted likelihood method from [7]
yields o-trimmed mean type estimators of
the parameter of interest. We continue this
investigation by applying this technique to
the Weibull distribution in order to obtain a
robust estimation of the scale parameter. We
assume that the shape parameter is known
and that a dataset shows a contamination.
This method assigns zero weights to
observations with small likelihood. We also
examine the robustness properties of the
MLE and WLE for the parameters of the
Weibull distribution with contamination. In
addition, the values of the shape parameter
have a marked effect on the failure rate of the
Weibull distribution, and inferences can be
drawn about a population of failure
characteristics just by considering whether
the values of the shape parameter is less than,
equal to, or greater than one. Whenfi< 1, a

failure rate that decreases with time is also
known as infantile or early—life failures. The
Weibull distributions with f= 1 have a

constant failure rate, a property indicative of
useful life or random failures. For f> 1, the

Weibull distributions have failure rates that
increase with time that is also known as
wearing out failures. The simulation studies
are extended to compare the MLE and WLE
based on the relative bias and the quadratic
risk values. In this study, we > 1. The rest

of this paper is organized as follows. In
section 2 we define the WLE for the Weibull
distribution. We investigate the robustness of
this estimator in Section 3. In section 4, we
compare the WLE and MLE in terms of
relative bias and quadratic risk. The last
section concludes the paper.

2. Proposed Weighted Likelihood
Estimator

The distribution function for the two-
parameter Weibull distribution is

—(x/5Y°

F(x;0,p8)=1-¢ iXx>0,6>0,6>0,
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and the probability density function is
B
tco,p) = LBt (X19)
5P
where ¢ is the scale parameter and 2 is the
shape parameter of the distribution.
Let x™-x.X.....x,} be sample
values from a distribution with a density
function f(x;0,6). The weighted likelihood

estimators (WLE) of {J,/} are obtained by
maximizing the weighted likelihood function

LG, A1X) = D) In((4:6. 8)),

where w, (x”), 1<i<n are the weights which

depend on the sample. If all the weights are

equal to one, then the resulting estimator is

the maximum likelihood estimator (MLE).
Our goal is to estimate the scale

parameter 0 of the Weibull distribution. We
assume that the shape parameter [ is

known. Following the idea presented in [7],
we set the weight w, that corresponds to the

i"  observation to 1 if its estimated

likelihood is sufficiently large and set it to O
elsewhere. To be more precise, we let

" :{1 it f(x;5,8)>C
0

otherwise,
where Sis the MLE of the parameter o.
(Recall that S is assumed to be known.) This

means that we delete all improbable
observations from the sample and reject only
extreme order statistics. Now, we need to
choose C. Following the ideas of [7], we
suggest that C not be considered as a
constant. Rather, assume that C is chosen
from the condition of a small probability of
rejection of an observation when we sample
from the non-contamination  Weibull
distribution with a cumulative distribution
function, F(x;0,0). Hence, we define C by

the given pre-assigned small probability «
as

;Xx>0,0>0,4>0,

11

P[f [maxxi;é,ﬂ]<c]:a.

Cza—/?. Let the weighted

S0 we get,
no

likelihood estimator & of the parameter § be
defined as the solution to the equation

> (x,:6.)

00
X0 X e X

0,

the

observations in the sample after applying our
procedure (vvikzl). The WLE of ¢ is

1
 (1en V)
5—(Ezkzlxif\) .

where are remaining

3. Robustness Properties of the WLE

Assume that the sample (x,X,,...,X,) IS

taken from a population that follows a
distribution with the distribution function
G, (x) to be defined now. We define the &—

contamination model as

G, (X)=(1-&)F(x0,8)+eFR (X6, )
where F(x;8, ) isthe Weibull distribution
with parameters (8, ), a contamination
F (x;0,, B,) is the Weibull distribution with
parameters (¢, 4,) , where
5, =6(1+A), B, = BA+A), AA>0;
¢ denotes the contamination proportion, and

0<&<1. Under the ¢—contamination model

we assume that S is known. Let
1

S:GZLXFJ'B be the MLE of the scale

parameter 0 . We assume that

55=5((1—5)F[1+£J+g(1+A)F(1+ ! B
B B1+A4)

By the strong law of large numbers,
limd=5. The estimate & converges in

n—oo
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probability to some value 5, which can be
calculated as a limit of the expected values

. s
truncated at the point A= —5S(In%] of the

distribution G, (x) = g(,)a(\) where 0<x<A.
So we get

= o

S, = @((1—5)I61+5(1+A)IGZ)
where

IG, =r[%+1)P[%+1AJ,
IG, =F(ﬂ%+1jp(ﬁil+l'p”j’
SRR

G(A) :1—e'[§ —ele

n
87 In—

A=—% A=

n
5% In—
(24

5/7 é‘lﬂl

{

3B

{30
1
fran
P(i+1,mj=ﬂl—.
A F£1+1J
By

Therefore, an exact calculation of the
gain in the bias and the reduction of the risk
of the proposed estimator in comparison with
the MLE is impossible. Indeed, these
integrals cannot be evaluated in the closed
form.  Furthermore, the solution is
cumbersome. Thus, we cannot easily

compare the relative bias of 5 with the

relative bias of 5. A relevant conclusion
may not be possible concerning the gain in
bias using these precise formulas even if we

expand 5, in powers of . We shall confine

, and

12

ourselves to asymptotic analysis. Hence, the
probability of rejecting an observation in the
contamination model is asymptotically equal
to

P[X, > A]=1-P[X, < A]=1-G(A) ~ %

The asymptotic distribution of & is
equal to the distribution of the «o-
generalized trimmed sample mean where we
defined
mean as

Y ( L
n(l-a)

of the random sample of size n(1-«) from
the distribution concentrated on the interval
(0,A). The probability density of this
distribution is positive only in the interval
(0, A) and has the form

f,06.8) = (6.00) = S

CG(A)
In classical

1
n(l-a) B
v |

k=1

0<x<A

robustness studies under the
assumption that the sample is taken from the
distribution G_(x) with fixed &, one would

find the limits in the probability of the
estimates according to the WLE and MLE
for all sample close to 1, and compare their
biases. We will also compare the quadratic
risks of these estimates. The quadratic risk of
an estimator is the expected squared distance
between the estimator and the parameter
being the quadratic risk is an omnibus
measure of the performance of an estimator.
The quadratic risk of an estimator takes into
consideration the bias and the precision of
the estimator.

Result 1

The Weibull distribution contamination has a
relative bias of the maximum likelihood

estimator (5) that can be described as

(1- g)l"[l+%j +e(1+ A)I“(l+ ’%]—1.

1

o —generalized trimmed sample (10)
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Also, the Weibull distribution contamination
has a relative bias of the weighted likelihood

estimator (5) that can be described as
Gi((l—g)lG1 +¢£(1+A)IG,)-1

a

where

IG, :F(%HJP(%H,AJJ,
IG, =F(ﬂ%+1} (FH /-\]

n
5 In—
[24

a
, ~l-—,
n

shin
. 04

5!3

E+1 A

1

p[_
B

+1,AVJ=

Result 2
The Weibull distribution contamination has a

quadratic risk of the maximum likelihood
©
52
7(E2—E12+(1—E1)2).
Also, the contamination is the Weibull
distribution has a quadratic risk of the

weighted likelihood estimator (5) that can
be described as

estimator that can be described as

5°((1-£)1G, +£(1+A)1G,) &
n(l-a)G, n(l-a)
26%((1-&)IG, +£(1+ A)IG,)
- n(l-a)G,

where

13

E = (1—5)F[1+%J+5(1+ A)F[1+

IG, = F(%+1JP(%+1,AJJ ,

E, = (1—3)F[1+%]+g(1+ A)ZF(1+

|
J

1
LL+A)

2
B(L+A)

IG, :r(’%ﬂjp(’%ﬂ,a]
6/’In shm?
Gazl—g A = A = 5ﬂl“,
G, r[ N M)
G, r( ] ( M],
(+1 Ajj
[ +1, AJJ
)
B
1
3]
P[i+1’p\/]:ﬂl—,
! F(1+1J
B
2
(3
{%ﬂ,ﬁh]: p , and

4. Results and Discussion

We generated data sets of size n= 25,
50, 100 from the ¢-—contamination model.
The central distribution is the Weibull
distribution with the scale parameter =1
and the shape parameter f= 2.5, 5, 10. The
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contamination has the Weibull distribution
with the scale parameter o, = 5(1+A) and the

shape parameter g = fp(1+A) where A= 1,

3, 5, the contamination proportion &= 0.01
0.05, 0.10 and the values of «=0.01, 0.03,
0.05, 0.07, 0.10. All of the following
simulation results are based on 10,000
replicates by using programs written in the R
statistical programming language [10]. A
simulation study was carried out to analyze
the performance of the MLE and WLE for
the Weibull distribution contamination based
on the simulated and asymptotic relative bias
and the quadratic risk of the estimation for
the scale parameter ¢ . The simulated and the
asymptotic relative bias and the quadratic
risk of the MLE do not depend on o for any
of the sample sizes. The WLE seems to yield
the best performance in the term of the
relative bias and the quadratic risk for the
estimation of the ¢ for all cases.
Additionally, when A gets large, the relative
bias and the quadratic risk of the WLE is
smaller than those of the MLE when «
increases.. In most of the cases, the simulated
and the asymptotic relative biases and the
quadratic risks of the MLE and the WLE
decrease as the sample sizes increase. The
simulated relative bias of the MLE is greater
than that of the WLE when A increases. The
simulated and the asymptotic relative bias of
the MLE are greater than those of the WLE
for all values of . On the other hand, the
simulated and the asymptotic relative bias of
the MLE and WLE are smallestat A =1, and
A does not affect the changes in the shape
parameter. The simulated and the asymptotic
relative bias and the quadratic risk of the
MLE increase as S increases. While the
asymptotic relative bias of the WLE
decreases as f increases. The simulated
quadratic risk of the MLE is close to that of
the WLE when A=1and ¢ issmall. AtA=3
and 5, the simulated quadratic risk of the
MLEis greater than that of the WLE for all
values of «. Additionally, the asymptotic

14

quadratic risk of the MLE is also greater than
that of the WLE for small . Hence, the
WLE outperforms the MLE in terms of the
relative bias and the quadratic risk for the
estimation of 6. The results are summarized
numerically in Tables 1 — 3.

The two-parameter Weibull
distribution function has been used widely in
many fields such as wind energy assessment,
estimation of rainfall amount, and analysis of
lifetime of materials. We also apply the MLE
and the WLE to the data set on the system
data for the scenario lifetime time (years)
data. This data is taken from [11]. The
lifetimes are 30.20, 36.55, 25.11, 39.35,
27.57, 25.91, 31.50, 29.24, 18.39, 16.65,
21.85, 24.88, 31.61, 18.74, 19.63, 28.98,
11.10, 21.66, 26.04, 25.07, 23.48, 28.21,
25.21, 25.12, 27.76, 23.47, 23.51, 24.39,
21.93, 37.63, 20.32, 28.17, 24.66, 30.13,
2142, 17.21, 19.98, 33.09, 16.04, 17.96,
19.57, 22.91, 25.69, 23.47, 16.91, 27.20, and
27.23. We use the MLE method to fit this
data set. We fit the data set for the Weibull
distribution using the function fitdist in the R
package. The MLE of the scale and the shape
parameter are 27.007 and 4.579 with the
standard error of 0.911 and 0.493,
respectively. Then we create 5% of the
contamination in the data set with the
Weibull distribution using the shape
parameter 27.007(1+3) and the shape
parameter 4.579(1+3). We change the last
two of the observations 27.20, 27.23 to
100.2, 107.6, respectively. Then, we apply
the MLE and WLE to the new data set,
assuming that the shape parameter is 4.579.
The MLE of the scale parameter is 52.782
with the standard error of 4.930, but the
WLE of the scale parameter is 26.741 with
the standard error of 0.774. The results from
the WLE are close to those from the MLE
obtained from the data set without any
outlier. Therefore, the WLE outperforms the
MLE when the contamination is present in
this data set.
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Tablel. The simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of the MLE
and WLE for W(L,2.5) + eW (1(1+ A), 2.5(1+ A)).

relative bias quadratic risk
n A a & =0.01 & =0.05 & =0.10 & =0.01 & =0.05 &£ =0.10
sim asy sim asy sim asy sim asy sim asy sim asy

25 1 MLE | 0.014 | -0.103 | 0.014 | -0.065 | 0.015 | -0.018 | 0.008 | 0.007 | 0.007 | 0.008 | 0.007 | 0.009
0.01 | 0.013 | -0.110 | 0.012 | -0.089 | 0.013 | -0.057 | 0.008 | 0.007 | 0.007 | 0.007 | 0.008 | 0.007
0.03 | 0.010 | -0.116 | 0.009 | -0.103 | 0.010 | -0.081 | 0.008 | 0.007 | 0.007 | 0.007 | 0.008 | 0.007
0.05 | 0.008 | -0.120 | 0.007 | -0.111 | 0.008 | -0.094 | 0.008 | 0.008 | 0.007 | 0.008 | 0.008 | 0.008
0.07 | 0.006 | -0.123 | 0.005 | -0.117 | 0.006 | -0.104 | 0.008 | 0.008 | 0.007 | 0.008 | 0.008 | 0.008
0.09 | 0.004 | -0.126 | 0.003 | -0.122 | 0.005 | -0.112 | 0.008 | 0.009 | 0.007 | 0.009 | 0.008 | 0.009

3 MLE | 0.085 | -0.084 | 0.086 | 0.033 | 0.083 | 0.179 | 0.041 | 0.009 | 0.041 | 0.022 | 0.040 | 0.038
0.01 | 0.003 | -0.123 | 0.005 | -0.157 | 0.005 | -0.200 | 0.009 | 0.007 | 0.008 | 0.007 | 0.008 | 0.007
0.03 | 0.000 | -0.126 | 0.001 | -0.159 | 0.001 | -0.201 | 0.008 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007
0.05 | -0.002 | -0.129 | -0.001 | -0.160 | 0.000 | -0.202 | 0.007 | 0.008 | 0.007 | 0.008 | 0.007 | 0.008
0.07 | -0.003 | -0.131 | -0.002 | -0.162 | -0.002 | -0.203 | 0.007 | 0.009 | 0.007 | 0.009 | 0.007 | 0.009
0.09 | -0.004 | -0.133 | -0.003 | -0.163 | -0.003 | -0.204 | 0.007 | 0.010 | 0.007 | 0.010 | 0.007 | 0.010

5 MLE | 0.184 | -0.064 | 0.185 | 0.133 | 0.187 | 0.378 | 0.168 | 0.015 | 0.168 | 0.052 | 0.169 | 0.098
0.01 | 0.003 | -0.123 | 0.001 | -0.157 | 0.003 | -0.202 | 0.010 | 0.007 | 0.011 | 0.007 | 0.009 | 0.007
0.03 | -0.001 | -0.126 | -0.002 | -0.158 | 0.000 | -0.202 | 0.007 | 0.007 | 0.008 | 0.007 | 0.007 | 0.008
0.05 | -0.002 | -0.128 | -0.003 | -0.159 | -0.001 | -0.202 | 0.007 | 0.008 | 0.008 | 0.008 | 0.007 | 0.008
0.07 | -0.003 | -0.130 | -0.004 | -0.160 | -0.002 | -0.202 | 0.007 | 0.009 | 0.007 | 0.009 | 0.007 | 0.009
0.09 | -0.004 | -0.132 | -0.005 | -0.161 | -0.004 | -0.202 | 0.007 | 0.010 | 0.007 | 0.010 | 0.007 | 0.010

50 1 MLE | 0.018 | -0.103 | 0.018 | -0.065 | 0.017 | -0.018 | 0.004 | 0.003 | 0.004 | 0.004 | 0.004 | 0.005
0.01 | 0.016 | -0.108 | 0.016 | -0.083 | 0.015 | -0.046 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003
0.03 | 0.014 | -0.112 | 0.013 | -0.094 | 0.013 | -0.065 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004
0.05 | 0.012 | -0.115 | 0.011 | -0.100 | 0.011 | -0.076 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004
0.07 | 0.011 | -0.117 | 0.010 | -0.105 | 0.010 | -0.085 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004
0.09 | 0.010 | -0.119 | 0.009 | -0.109 | 0.009 | -0.091 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004

3 MLE | 0.097 | -0.084 | 0.096 | 0.033 | 0.094 | 0.179 | 0.029 | 0.005 | 0.028 | 0.011 | 0.028 | 0.019
0.01 | 0.005 | -0.122 | 0.004 | -0.157 | 0.003 | -0.199 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003
0.03 | 0.003 | -0.124 | 0.002 | -0.158 | 0.002 | -0.201 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004
0.05 | 0.002 | -0.125 | 0.001 | -0.159 | 0.001 | -0.201 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004
0.07 | 0.001 | -0.127 | 0.001 | -0.159 | 0.000 | -0.202 | 0.003 | 0.005 | 0.003 | 0.005 | 0.003 | 0.005
0.09 | 0.001 | -0.128 | 0.000 | -0.160 | 0.000 | -0.202 | 0.003 | 0.005 | 0.003 | 0.005 | 0.003 | 0.005

5 MLE | 0.215 | -0.064 | 0.219 | 0.133 | 0.213 | 0.378 | 0.131 | 0.008 | 0.133 | 0.026 | 0.129 | 0.049
0.01 | 0.001 | -0.122 | 0.002 | -0.157 | 0.003 | -0.201 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 | 0.003
0.03 | 0.001 | -0.124 | 0.001 | -0.158 | 0.002 | -0.202 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004
0.05 | 0.000 | -0.125 | 0.000 | -0.158 | 0.001 | -0.202 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004
0.07 | 0.000 | -0.126 | 0.000 | -0.158 | 0.001 | -0.202 | 0.003 | 0.005 | 0.003 | 0.005 | 0.003 | 0.005
0.09 | -0.001 | -0.127 | -0.001 | -0.159 | 0.000 | -0.202 | 0.003 | 0.005 | 0.003 | 0.005 | 0.003 | 0.005

100 1 MLE | 0.018 | -0.103 | 0.018 | -0.065 | 0.019 | -0.018 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.01 | 0.017 | -0.107 | 0.016 | -0.078 | 0.018 | -0.038 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.03 | 0.015 | -0.109 | 0.014 | -0.087 | 0.016 | -0.053 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.05 | 0.014 | -0.111 | 0.013 | -0.092 | 0.015 | -0.062 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.07 | 0.013 | -0.113 | 0.012 | -0.096 | 0.014 | -0.068 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.09 | 0.012 | -0.114 | 0.011 | -0.099 | 0.013 | -0.074 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002

3 MLE | 0.099 | -0.084 | 0.100 | 0.033 | 0.101 | 0.179 | 0.020 | 0.002 | 0.020 | 0.006 | 0.021 | 0.009
0.01 | 0.004 | -0.122 | 0.005 | -0.156 | 0.004 | -0.198 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.03 | 0.003 | -0.123 | 0.004 | -0.157 | 0.003 | -0.200 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.05 | 0.002 | -0.124 | 0.004 | -0.158 | 0.003 | -0.200 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.07 | 0.002 | -0.124 | 0.003 | -0.158 | 0.002 | -0.201 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.09 | 0.002 | -0.125 | 0.003 | -0.158 | 0.002 | -0.201 | 0.002 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003

5 MLE | 0.238 | -0.064 | 0.240 | 0.133 | 0.240 | 0.378 | 0.105 | 0.004 | 0.107 | 0.013 | 0.107 | 0.025
0.01 | 0.003 | -0.122 | 0.002 | -0.157 | 0.002 | -0.201 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.03 | 0.003 | -0.123 | 0.002 | -0.157 | 0.002 | -0.201 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.05 | 0.003 | -0.123 | 0.002 | -0.158 | 0.002 | -0.202 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.07 | 0.002 | -0.124 | 0.002 | -0.158 | 0.001 | -0.202 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.09 | 0.002 | -0.125 | 0.002 | -0.158 | 0.001 | -0.202 | 0.002 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003
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Table2. The simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of the MLE
and WLE for W(L,5) + eW (1(1+A),5(1+ A)).

relative bias quadratic risk
n A a &£ =001 & =0.05 & =0.10 & =0.01 & =0.05 & =0.10
sim asy sim asy sim asy sim asy sim asy sim asy

25 1 MLE | 0.035 | -0.072 | 0.035 | -0.033 | 0.036 | 0.017 | 0.008 | 0.002 | 0.009 | 0.004 | 0.009 | 0.005
0.01 | 0.002 | -0.091 | 0.002 | -0.125 | 0.002 | -0.166 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
0.03 | 0.001 | -0.093 | 0.000 | -0.127 | 0.001 | -0.169 | 0.002 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003
0.05 | 0.000 | -0.095 | -0.001 | -0.129 | -0.001 | -0.171 | 0.002 | 0.004 | 0.002 | 0.004 | 0.002 | 0.004
0.07 | -0.001 | -0.097 | -0.002 | -0.130 | -0.001 | -0.173 | 0.002 | 0.005 | 0.002 | 0.005 | 0.002 | 0.005
0.09 | -0.002 | -0.098 | -0.002 | -0.132 | -0.002 | -0.174 | 0.002 | 0.006 | 0.002 | 0.006 | 0.002 | 0.006

3 MLE | 0.247 | -0.052 | 0.247 | 0.067 | 0.240 | 0.216 | 0.279 | 0.005 | 0.278 | 0.019 | 0.269 | 0.036
0.01 | 0.002 | -0.092 | 0.003 | -0.128 | 0.002 | -0.174 | 0.005 | 0.002 | 0.006 | 0.002 | 0.004 | 0.002
0.03 | 0.000 | -0.094 | 0.001 | -0.129 | 0.000 | -0.174 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003
0.05 | -0.001 | -0.095 | 0.000 | -0.130 | -0.001 | -0.174 | 0.003 | 0.004 | 0.003 | 0.004 | 0.002 | 0.004
0.07 | -0.002 | -0.096 | -0.001 | -0.130 | -0.002 | -0.175 | 0.003 | 0.005 | 0.003 | 0.005 | 0.002 | 0.005
0.09 | -0.002 | -0.098 | -0.002 | -0.131 | -0.002 | -0.175 | 0.003 | 0.006 | 0.002 | 0.006 | 0.002 | 0.006

5 MLE | 0.479 | -0.032 | 0.482 | 0.167 | 0.482 | 0.415 | 1.044 | 0.012 | 1.048 | 0.050 | 1.049 | 0.098
0.01 | 0.004 | -0.092 | 0.003 | -0.128 | 0.003 | -0.174 | 0.012 | 0.002 | 0.014 | 0.002 | 0.010 | 0.002
0.03 | 0.000 | -0.093 | 0.000 | -0.128 | 0.000 | -0.174 | 0.005 | 0.003 | 0.007 | 0.003 | 0.005 | 0.003
0.05 | -0.001 | -0.095 | -0.001 | -0.129 | -0.001 | -0.174 | 0.004 | 0.004 | 0.005 | 0.004 | 0.003 | 0.004
0.07 | -0.002 | -0.096 | -0.003 | -0.129 | -0.002 | -0.174 | 0.003 | 0.005 | 0.003 | 0.005 | 0.003 | 0.005
0.09 | -0.003 | -0.097 | -0.003 | -0.130 | -0.003 | -0.174 | 0.003 | 0.006 | 0.003 | 0.006 | 0.002 | 0.006

50 1 MLE | 0.042 | -0.072 | 0.042 | -0.033 | 0.042 | 0.017 | 0.006 | 0.001 | 0.006 | 0.002 | 0.006 | 0.003
0.01 | 0.003 | -0.091 | 0.003 | -0.124 | 0.003 | -0.164 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.03 | 0.002 | -0.092 | 0.002 | -0.126 | 0.002 | -0.167 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.05 | 0.001 | -0.093 | 0.002 | -0.127 | 0.001 | -0.169 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.07 | 0.001 | -0.094 | 0.001 | -0.128 | 0.001 | -0.170 | 0.001 | 0.003 | 0.001 | 0.002 | 0.001 | 0.002
0.09 | 0.000 | -0.095 | 0.001 | -0.129 | 0.001 | -0.171 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003

3 MLE | 0.341 | -0.052 | 0.345 | 0.067 | 0.336 | 0.216 | 0.305 | 0.003 | 0.309 | 0.009 | 0.299 | 0.018
0.01 | 0.002 | -0.091 | 0.001 | -0.128 | 0.001 | -0.174 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.03 | 0.001 | -0.092 | 0.001 | -0.128 | 0.000 | -0.174 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.05 | 0.000 | -0.093 | 0.000 | -0.129 | 0.000 | -0.174 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.07 | 0.000 | -0.094 | 0.000 | -0.129 | 0.000 | -0.174 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003
0.09 | 0.000 | -0.095 | 0.000 | -0.129 | -0.001 | -0.174 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003

5 MLE | 0.697 | -0.032 | 0.717 | 0.167 | 0.720 | 0.415 | 1.273 | 0.006 | 1.311 | 0.025 | 1.317 | 0.049
0.01 | 0.000 | -0.091 | 0.001 | -0.128 | 0.001 | -0.174 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001
0.03 | 0.000 | -0.092 | 0.000 | -0.128 | 0.001 | -0.174 | 0.001 | 0.002 | 0.001 | 0.002 | 0.002 | 0.002
0.05 | 0.000 | -0.093 | 0.000 | -0.128 | 0.000 | -0.174 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.07 | 0.000 | -0.094 | 0.000 | -0.128 | 0.000 | -0.174 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003
0.09 | -0.001 | -0.094 | -0.001 | -0.129 | -0.001 | -0.174 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003

100 1 MLE | 0.047 | -0.072 | 0.046 | -0.033 | 0.047 | 0.017 | 0.005 | 0.001 | 0.005 | 0.001 | 0.005 | 0.001
0.01 | 0.004 | -0.090 | 0.004 | -0.123 | 0.004 | -0.162 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.03 | 0.003 | -0.091 | 0.003 | -0.124 | 0.003 | -0.165 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.05 | 0.002 | -0.092 | 0.002 | -0.125 | 0.002 | -0.167 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.002 | -0.092 | 0.002 | -0.126 | 0.002 | -0.167 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.09 | 0.002 | -0.093 | 0.002 | -0.126 | 0.002 | -0.168 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001

3 MLE | 0.442 | -0.052 | 0.440 | 0.067 | 0.448 | 0.216 | 0.327 | 0.001 | 0.325 | 0.005 | 0.330 | 0.009
0.01 | 0.002 | -0.091 | 0.002 | -0.128 | 0.001 | -0.174 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.03 | 0.001 | -0.092 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.05 | 0.001 | -0.092 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.001 | -0.093 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.09 | 0.001 | -0.093 | 0.001 | -0.129 | 0.001 | -0.174 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.001

5 MLE | 0972 | -0.032 | 0.997 | 0.167 | 0.973 | 0.415 | 1.529 | 0.003 | 1.566 | 0.012 | 1.529 | 0.024
0.01 | 0.002 | -0.091 | 0.001 | -0.128 | 0.001 | -0.174 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001
0.03 | 0.002 | -0.092 | 0.001 | -0.128 | 0.001 | -0.174 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001
0.05 | 0.001 | -0.092 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.001 | -0.092 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.09 | 0.001 | -0.093 | 0.001 | -0.128 | 0.001 | -0.174 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.001
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Table3. The simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of the MLE
and WLE for W (1,10) + W (1(1+ A),10(L+ A)).

relative bias quadratic risk
n A a &£ =001 & =0.05 &£ =0.10 &£ =001 & =0.05 & =0.10
sim asy sim asy sim asy sim asy sim asy sim asy

25 1 MLE | 0.093 | -0.039 | 0.097 | 0.001 | 0.093 | -0.039 | 0.043 | 0.001 | 0.044 | 0.002 | 0.043 | 0.001
0.01 | 0.003 | -0.059 | 0.003 | -0.097 | 0.003 | -0.059 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001
0.03 | 0.001 | -0.060 | 0.002 | -0.098 | 0.001 | -0.060 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.05 | 0.001 | -0.061 | 0.001 | -0.099 | 0.001 | -0.061 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003
0.07 | 0.000 | -0.062 | 0.000 | -0.099 | 0.000 | -0.062 | 0.001 | 0.004 | 0.001 | 0.004 | 0.001 | 0.004
0.09 | 0.000 | -0.063 | 0.000 | -0.100 | 0.000 | -0.063 | 0.001 | 0.005 | 0.001 | 0.005 | 0.001 | 0.005

3 MLE | 0413 | -0.019 | 0.427 | 0.101 | 0.413 | -0.019 | 0.782 | 0.004 | 0.810 | 0.018 | 0.782 | 0.004
0.01 | 0.006 | -0.059 | 0.006 | -0.096 | 0.006 | -0.059 | 0.012 | 0.001 | 0.013 | 0.001 | 0.012 | 0.001
0.03 | 0.002 | -0.060 | 0.003 | -0.097 | 0.002 | -0.060 | 0.006 | 0.002 | 0.007 | 0.002 | 0.006 | 0.002
0.05 | 0.001 | -0.061 | 0.001 | -0.097 | 0.001 | -0.061 | 0.003 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003
0.07 | 0.000 | -0.062 | 0.000 | -0.098 | 0.000 | -0.062 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004
0.09 | -0.001 | -0.063 | 0.000 | -0.099 | -0.001 | -0.063 | 0.002 | 0.005 | 0.003 | 0.005 | 0.002 | 0.005

5 MLE | 0.735 | 0.001 | 0.729 | 0.201 | 0.735 | 0.001 | 2.467 | 0.010 | 2.447 | 0.050 | 2.467 | 0.010
0.01 | 0.005 | -0.059 | 0.004 | -0.096 | 0.005 | -0.059 | 0.020 | 0.001 | 0.018 | 0.001 | 0.020 | 0.001
0.03 | 0.001 | -0.060 | 0.001 | -0.097 | 0.001 | -0.060 | 0.008 | 0.002 | 0.006 | 0.002 | 0.008 | 0.002
0.05 | 0.000 | -0.061 | 0.000 | -0.097 | 0.000 | -0.061 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004 | 0.003
0.07 | -0.001 | -0.061 | -0.001 | -0.097 | -0.001 | -0.061 | 0.002 | 0.004 | 0.003 | 0.004 | 0.002 | 0.004
0.09 | -0.001 | -0.062 | -0.001 | -0.098 | -0.001 | -0.062 | 0.002 | 0.005 | 0.002 | 0.005 | 0.002 | 0.005

50 1 MLE | 0.140 | -0.039 | 0.138 | 0.001 | 0.140 | -0.039 | 0.052 | 0.000 | 0.051 | 0.001 | 0.052 | 0.000
0.01 | 0.003 | -0.059 | 0.003 | -0.096 | 0.003 | -0.059 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.03 | 0.002 | -0.059 | 0.002 | -0.097 | 0.002 | -0.059 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.05 | 0.001 | -0.060 | 0.002 | -0.097 | 0.001 | -0.060 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.001 | -0.060 | 0.001 | -0.098 | 0.001 | -0.060 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002
0.09 | 0.001 | -0.061 | 0.001 | -0.098 | 0.001 | -0.061 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002

3 MLE | 0.668 | -0.019 | 0.680 | 0.101 | 0.668 | -0.019 | 1.152 | 0.002 | 1.171 | 0.009 | 1.152 | 0.002
0.01 | 0.003 | -0.058 | 0.002 | -0.096 | 0.003 | -0.058 | 0.004 | 0.001 | 0.004 | 0.001 | 0.004 | 0.001
0.03 | 0.001 | -0.059 | 0.001 | -0.097 | 0.001 | -0.059 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001
0.05 | 0.000 | -0.060 | 0.001 | -0.097 | 0.000 | -0.060 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.07 | 0.000 | -0.060 | 0.000 | -0.097 | 0.000 | -0.060 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002
0.09 | 0.000 | -0.061 | 0.000 | -0.097 | 0.000 | -0.061 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002

5 MLE | 1.226 | 0.001 | 1.230 | 0.201 | 1.226 | 0.001 | 3.801 | 0.005 | 3.817 | 0.025 | 3.801 | 0.005
0.01 | 0.003 | -0.058 | 0.001 | -0.096 | 0.003 | -0.058 | 0.007 | 0.001 | 0.004 | 0.001 | 0.007 | 0.001
0.03 | 0.001 | -0.059 | 0.000 | -0.096 | 0.001 | -0.059 | 0.004 | 0.001 | 0.000 | 0.001 | 0.004 | 0.001
0.05 | 0.000 | -0.059 | 0.000 | -0.097 | 0.000 | -0.059 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.000 | -0.060 | 0.000 | -0.097 | 0.000 | -0.060 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002
0.09 | 0.000 | -0.060 | 0.000 | -0.097 | 0.000 | -0.060 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002

100 1 MLE | 0.185 | -0.039 | 0.183 | 0.001 | 0.185 | -0.039 | 0.058 | 0.000 | 0.057 | 0.001 | 0.058 | 0.000
0.01 | 0.002 | -0.058 | 0.002 | -0.096 | 0.002 | -0.058 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.03 | 0.002 | -0.059 | 0.002 | -0.097 | 0.002 | -0.059 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.05 | 0.002 | -0.059 | 0.001 | -0.097 | 0.002 | -0.059 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.07 | 0.001 | -0.059 | 0.001 | -0.097 | 0.001 | -0.059 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
0.09 | 0.001 | -0.060 | 0.001 | -0.097 | 0.001 | -0.060 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001

3 MLE | 1.002 | -0.019 | 1.005 | 0.101 | 1.002 | -0.019 | 1.596 | 0.001 | 1.604 | 0.004 | 1.596 | 0.001
0.01 | 0.001 | -0.058 | 0.002 | -0.096 | 0.001 | -0.058 | 0.001 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000
0.03 | 0.001 | -0.059 | 0.002 | -0.096 | 0.001 | -0.059 | 0.001 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000
0.05 | 0.001 | -0.059 | 0.002 | -0.096 | 0.001 | -0.059 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001
0.07 | 0.001 | -0.059 | 0.002 | -0.097 | 0.001 | -0.059 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001
0.09 | 0.001 | -0.059 | 0.001 | -0.097 | 0.001 | -0.059 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001

5 MLE | 1.828 | 0.001 | 1.842 | 0.201 | 1.828 | 0.001 | 5.305 | 0.003 | 5.343 | 0.012 | 5.305 | 0.003
0.01 | 0.001 | -0.058 | 0.001 | -0.096 | 0.001 | -0.058 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000
0.03 | 0.001 | -0.059 | 0.001 | -0.096 | 0.001 | -0.059 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000
0.05 | 0.001 | -0.059 | 0.001 | -0.096 | 0.001 | -0.059 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.07 | 0.001 | -0.059 | 0.001 | -0.096 | 0.001 | -0.059 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
0.09 | 0.000 | -0.059 | 0.001 | -0.096 | 0.000 | -0.059 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001
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5. Conclusion

The Weibull distribution plays a central
role in lifetime models. When data are
contaminated with outliers, the MLE can be
very unreliable. In this study, the WLE is
applied to the Weibull distribution for the
more robust estimation of the scale
parameter, assuming that the shape parameter
is known, and when the data set shows the
Weibull contamination that is the presence of
the outliers. To examine the performance of
the WLE in comparison with the MLE, we
found that the WLE outperforms the MLE
based on the relative bias and that quadratic
risk values. In most of the cases, the relative
bias and the quadratic risk of the WLE
decrease as the sample size increases. This is
expected because most estimators in
statistical theory perform better when the
sample size increases. The gain in terms of
the relative bias and the quadratic risk of the
WLE decreases as « increases.

For the future work, we note that the
WLE can be extended to some further
modifications of the Weibull distribution. In
addition, in this study, we considered only
an estimator of the scale parameter of the
Weibull distribution and assumed that the
shape parameter was known. The WLE can
be extended to estimate the two-parameter
Weibull distribution when we assume both of
the scale and shape parameter are unknown.
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8. Appendixes

Proof of Result 1
Proof. Prove of the asymptotic bias for the
MLE, by definition the relative bias is
bias(s) _ E[5]-5
o o

= (1—5)F[1+%j +e(1+ A)F(1+’%] -1.

1

For the asymptotic bias of estimator &, we
have

E[5]~ E[Y]
= IOAfo(x;,5,ﬁ)dx

= Gi((l_g) IG, +&(1+A) IGZ),

a

where IG, = F[i +1J P(i +1, A, J
B B

1 1
and IG, F[ﬁl +1JP(IB1 +1,AV].
So we have relative bias as
bias(5) _ E[6]-&

s 6

Gi((l-g) IG, +£(1+A)IG,)-1.
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Proof of Result 2
Proof. By the definition of the quadratic risk
of MLE, we have

32

_52 1 2 2 5_55
_?(E(E[X 1-E[X]) )+( 5

From the obstructing model
A
P X
G,(x) = (1—5){1—6(5] }g 1-e [‘51] ,
we get

oE

11

E[X]= (1—8)5r[1+%}—5511“£1+i]

1
where

E = ((1—5)P[1+%]+5(1+A)F(1+ !
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The asymptotic quadratic risk of & is
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The asymptotic distribution of & equals the
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sample mean of the random sample of size
n(l-«) from the distribution concentrated
on the interval (0, A). The probability density

of this distribution is positive and has the
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Therefore, the quadratic risk is
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