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Abstract 

The simulation of slip effect for 4:1 contraction problem with rounded corner geometry 

for Newtonian fluid is determined to study kinematic behaviors from streamline path, shear 

stress values and vortex size by a model of Navier-Stokes equation. Two-dimensional planar 

isothermal incompressible creeping flow with slip and no slip condition is considered with a 

semi-implicit Taylor-Galerkin pressure-correction based on the finite element method. The 

streamline-Upwind/Petrov-Galerkin and velocity gradient recovery schemes are employed to 

stabilize the converged solution. The slip velocity is computed after each time step and the 

modification of slip coefficient is adjusted to proper slip velocity in order to reduce the vortex 

size and stress along the channel wall. Finally, the best mesh is selected to run for the final 

solution and the slip condition of Phan-Thien slip rule on the channel wall is done to get the 

result to be in better agreement with experiment. 
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1. Introduction 
The research focuses on the slip 

effect of 4:1 contraction flows for Newtonian 

fluids upon a semi-implicit Taylor-Galerkin 

pressure-correction finite element method 

(STGFEM) for two-dimensional planar 

system. To investigate kinematic behaviors 

of strong elongation and violent shear stress 

abrupt contraction, a fluid passes a sudden 

change in geometry. The slip effect is used to 

study in rounded corner 4:1 contraction 

domains in order to reduce the shear stress at 

sharp corners. 

For the experimental work, Walters 

and Rawlinson [1] implemented the 

apparatus of planar contraction flows for 

Boger fluid. In1987, Boger [2] compared the 

numerical solution and the experimental 

result of circular contraction for both 

Newtonian and Non-Newtonian fluids. 

To avoid complex analytic solution 

of viscoelastic problems, the simulation of 

the mathematical model for the non-linear 

partial differential equations that are derived 

from conservation of mass and momentum is 

set up to solve problems. The numerical 

techniques are employed to calculate an 

approximate solution. There are a variety of 

numerical methods such as finite element 

method (FEM), finite volume method (FVM) 

and finite difference method (FDM). In 1999, 

Phillips and Williams [3] solved a 4:1 planar 
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contraction of Oldroyd-B fluids for creeping 

and inertial flows by a semi-Lagrangian 

FVM. After that, they [4] expanded the 

coordinate system to axisymmetric flows. 

Eulerian methods were used to fix the grids. 

Aboubacar et al. [5, 6] stated that a cell-

vertex hybrid finite volume/element method 

is appropriate for computing Oldroyd-B and 

Phan-Thien/Tanner (PTT) fluids with both 

rounded and sharp corner contraction flows. 

Alves et al. [7] computed the creeping PTT 

flow past planar abrupt contractions via FVM 

and showed that Deborah numbers and 

contraction ratios influence the flow 

behavior. In 2001, Ngamaramvaranggul and 

Webster [8] applied the FEM to solve the 

Oldroyd-B problem for stick-slip flows and 

they adjusted the boundary after die exit 

using the free surface method for die-swell 

flows. They showed that the swelling ratio 

depended on a function of relaxation time.  

Consequently, they [9] solved a problem of 

pressure-tooling wire-coating flows with 

Phan-Thien/Tanner fluid using standard FEM 

including the streamline-upwind 

Petrov/Galerkin (SUPG) method that 

stabilized the converged solution. 

Experimental and numerical data in 

studies of fluid flows through solid walls 

have shown that the slip velocity appears on 

solid surfaces. In addition, a number of 

studies have applied various numerical 

methods to estimate the slip velocity at the 

walls. Silliman and Scriven [10] illustrated 

the slip effect for free surfaces. Ramamurthy 

[11] concentrated on the surface melt fracture 

of HDPE and LLDPE results from slip in die. 

Phan-Thien [12] studied the slip at solid 

walls by setting the slip velocity as a function 

of wall shear stress while the critical shear 

stress is less than wall shear stress. In 2000, 

Ngamaramvaranggul and Webster [13] 

compared the solution of various slip effect 

schemes for free surfaces in tube-tooling and 

pressure-tooling die problems. 

In this study, the slip condition is 

employed in the problem of 4:1 contraction 

for Newtonian fluids under the two-

dimensional planar  isothermal  

incompressible flows. A semi-implicit 

Taylor-Galerkin pressure-correction finite 

element method separates the Navier-Stokes 

equation into a system of simple linear 

equations, and all solutions have been 

stabilized by means of the streamline-upwind 

Petrov/Galerkin and velocity gradient 

recovery techniques. The solutions for slip 

and no-slip conditions are compared after the 

optimum value of the slip coefficient with 

rounded corner geometries is found. 

2. Governing Equations 

The conservations of mass and 

momentum for incompressible viscoelastic 

flow under non-gravity conditions are 

preserved in the Navier-Stokes equations 

with unit component while many other 

studies have been presented in non-

dimensional systems. Thus,  the  

normalization of unit is proposed. As a result 

of standard comparison, the derivative 

equations of continuity equation (1) and 

kinematic equation (2) is transformed into a 

dimensionless system as 

0  U                                                   (1) 

Re Re P
t


     



U
T U U          (2)  

where U  is velocity vector, T is the extra-

stress tensor 22 T D ,   is the 

polymeric component of T, the deformation 

tensor rate is 
2

)( t
UU

D


 , and P  is 

pressure.  

The Reynolds number is denoted by

0

Re


VL
 . Here,   is the density, V is the 

characteristic velocity, and L is the 
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characteristic length.
 0  is the zero-shear 

viscosity, and 0 1 2   
 
where

 1  
is the 

polymeric viscosity and 2 is the solvent 

viscosity. In order to compare our results 

with those of [5,6] at the same condition, we 

definded the non-dimensional parameters as 

Re = 0 , 0.88
0

1 



, and 12.0

0

2 



. 

3. Numerical Scheme 
Non-linear differential equations are 

often solved using the numerical methods 

employed in this peper, namely the basic 

FEM. The convected equation (2) is 

computed by STGFEM that has three time 

stages each of which is discretized into a 

system of linear equations. 

3.1 Semi-implicit Taylor-Galerkin 

pressure- correction finite element method 

The factional time steps and FEM 

are employed to split the non-dimensional 

Navier Stokes equation (2) into three stages 

per time step. This convenient technique is 

known as the semi-implicit Taylor-Galerkin 

pressure-correction finite element method 

and is shown below. 
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Step 3 :  

   1 12Re n n n
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  
   
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The partial differential equations (1)-(2) are 

separated by FDM and FEM. The derivative 

term of time is determined with the Taylor 

series, and the spatial terms are considered 

with the weight residual of the Galerkin 

finite element method. Then the equations of 

stages (3)-(6) are converted into a system of 

linear equations. Finally, the steps 1 and 3 are 

solved with Jacobi iterative method whilst 

step 2 is approximated using the Cholesky 

decomposition algorithm. 

3.2 Phan-Thien slip rule 

To fit the slip velocity, Phan-Thien 

[12] demonstrated the concept of slip 

velocity as a function of wall shear stress that 

is close to an experimental solution. This 

scheme is helpful to reduce shear stress for 

an abrupt contraction, and consequently the 

slip velocity is calculated when the wall 

shear stress becomes greater than a critical 

shear stress. 

1 exp( )w
slip mean

crit
V V


 

  



    (7) 

where slipV is the slip velocity, meanV  is the 

mean velocity of the flowrate for a no-slip 

case,  is the slip coefficient, w  is the wall 

shear stress, and crit  is the critical shear 

stress. 

4. Problem Specification 

In industrial processes, especially for  

4:1 contraction problems, there are many 

obstacles when fluid passes through a part of 

an abrupt contraction. Thus, the geometrical 

domain of this problem for sharp corners 

[14] is changed to rounded corners as shown 

in Figure 1. The downstream half channel 

width of planar 4:1 contraction at entry and 

exit sections are 27.5L  and 49L , 

respectively. At the inlet entry, fluid flow is 

set to be the Poiseuille flow in a channel 

length that is long enough for developing a 
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parabolic flow at the exit section. At the 

channel wall, the slip condition is added to 

compute the slip velocity that appear in real 

problems. 

23
( ) (16 )

128
u y y                                    (8)  

0v                                                           (9)                       
2

12xx
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y
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                               (10) 

0yy 
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u

y
 





                                            (12) 

where velocity u in x-direction depends on 

the y-component, and velocity v in the y-

direction vanishes. The normal stress xx  

depends on the shear rate xy while the 

normal stress yy  is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Schematic of 4:1 contraction flow for 

rounded corners. 

 

The rounded geometry is generated by 

Aboubacar et al. [6,7] with a curve segment 

at contraction to reduce the severe stress. 

There are three different meshes labelled as 

mesh1, mesh2 and mesh3 for coarse, 

medium, and fine meshes, respectively, as 

shown in Figure 2. The mesh pattern of all 

types as declared in Table 1 is generated as a 

bias triangular element. The tiny elements 

( minh ) are set up near rounded corners. 

Table 1. Mesh characteristics of rounded 

corners. 

Meshes Elements Nodes 

Degree 

of 

freedom 
minh  

mesh1 1626 3433 18069 0.017 

mesh2 2693 5652 29740 0.010 

mesh3 4751 9790 51470 0.006 

 

 

 

 

 

 

 

 

 

 

(a)  mesh1 

 

 

 

 

 

 

 

 

 

(b)  mesh2 

 

 

 

 

 

 

 

 

 

(c) mesh3 

Fig.2. Rounded mesh pattern of 4:1 

contraction flow. 

5. Results 
To  f i n d  t h e  p r o p e r  m e s h  f o r 
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displaying final solution, we compared  

solutions for all mesh types  in order to 

reduce computing time. After the best mesh 

was chosen, it was applied to operate in the 

Newtonian problem under the no-slip and 

slip conditions. 

 

Table 2. The peak values of Newtonian 

fluids on the bottom downstream wall with 

noslip for rounded corner meshes. 

 

Meshes xx  xy  yy    

mesh1 7.177 3.542 0.261 3.734 

mesh2 7.447 3.698 0.265 3.888 

mesh3 7.955 3.905 0.252 4.034 

A stick or no-slip problem is studied by 

collecting the stresses and the shear rate. The 

highest values of the normal stress, the shear 

stress and the shear rate   on the bottom 

downstream wall are shown in Table 2. We 

found that the peak values of all of the 

meshes were similar and depended on the 

element sizes. The tendency of the highest 

values for the stresses and the shear rate 

versus the mesh acuteness in Table 2 are 

similar except for the value of yy for mesh3 

which is less than that of mesh1 and that of 

mesh2. The results of mesh2 and mesh3 are 

close. The program used the computing time 

to access mesh2 less than that of mesh3 as 

comparison in previous work [15]. Thus, 

mesh2 is chosen as a model for the final 

solution.The trend of the second invariant 

(II) and the shear rate ( ) are similar as 

depicted in Figure 3. Now, the slip condition 

is initiated to compute the slip velocity from 

critical II to find the optimal slip coefficient 

( ) by assuming the values of the slip 

coefficient. Under a complete slip, we first 

set   to 1 in order to choose the critical II 

then various choices of II between 2.3 and 

3.6 is determined as depicted in Figure 4. We 

found that the critical value of II was 2.3,  

which made the peak of the shear rate grow 

to 3.857, which is the lowest value when 

compared with the other peak values of II  as 

shown in Figure 5. Using the critical II  to 

decide the optimum , the minimum shear 

rate is displayed by 0.1  as illustrated in 

Figure 6. Additionally, the shear rates of   

at 0.1, 0.2, 0.4 and 1.0 widely oscillated. We 

found that the values for the shear rate are 

high when the second invariant value 

increases along with the slip coefficient 

value. 

 

Fig.3. II and  along downstream wall with 

no slip, Newtonian fluid. 

 

Fig.4.   
with variation of II  at 1.0 , 

Newtonian fluid. 
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Fig.5. The peak of  with variation of II at 

1.0 , Newtonian fluid. 

 

Fig.6. The peak of  with variation of  at 

II 2.3 , Newtonian fluid. 

The streamline contours of Newtonian fluids 

for the no-slip and the slip cases at 0.1  

and II 2.3  are shown in Figures 7(a) and 

7(b), respectively. The simple observation of 

the vortex around the corner contraction for 

the no-slip velocity looks more acute than the 

figure shown for the slip case. 

 

 

 

 

 

 

 

 

 

 

 

(a) No slip 

 

 

 

 

 

 

 

(b) Slip 

Fig.7. Streamline contour of Newtonian 

fluid. 

As stated above for the reason why II = 2.3 is 

used to display final solution, Figure 8 

depicts the line contours under the slip 

condition for 𝛼 = 0.1. This behavior can be 

explained as follows. Figure 8(a) displays the 

horizontal velocity 𝑢𝑥 of the parabolic line 

shape, which shows the maximum value at 

the symmetry line and the vortex appears at 
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the corner while Figure 8(b) shows the line 

contour of the vertical velocity 𝑣𝑦 with the 

maximum value being near the location of 

the sharp corner contraction where the fluid 

pass through the sudden change in geometry 

from 4 unit reduce to 1 unit. Figure 8(c) 

represents the line contour of pressure p that 

shows the maximum value at the inlet 

boundary then gradually declines along a 

path of the abrupt change in geometry. 

 

(a) 𝑢𝑥 

 

(b) 𝑣𝑦 

 

(c) p 

Fig.8. Line contour with slip at 𝛼=0.1, 

II=3.3. 

 

6. Conclusion 
For steady-state viscoelastic flows in 

4:1 contraction rounded geometry through 

planar isothermal Newtonian fluids, the 

semi-implicit Taylor-Galerkin pressure-

correction finite element scheme is employed 

to solve the nonlinear partial differential 

equation for stick before the Phan-Thien slip 

rule is added to calculate the velocity at the 

channel wall. After critical II was adjusted, 

the slip coefficient of Newtonian fluids with 

rounded corner meshes is determined to have 

an optimum value of 0.1. In the case of the 

right selection for the second invariant, this 

proper slip coefficient reduces the peak of the 

shear rate and the vortex size since the 

velocity at the wall forces the fluids to follow 

a smooth path and yield a more stable 

outcome. In addition, the higher values for 

 and II  cause stronger oscillations akin to 

the phenomenon of shark skins. 
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