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Abstract 

In this article, we derive maximum likelihood equations and find Fisher information 

matrix to construct asymptotic confidence ellipses for parameters of the inverse Gaussian 

distribution. We use the coverage probabilities to compare with the confidence coefficient of 

0.98. The investigation of the accuracy of the confidence ellipses are fulfilled via the Monte 

Carlo method.  Four cases of sample sizes n  (30, 100, 500, and 1,000) and six cases of   are 

investigated at parameter   which is set to be 1.  R (2.15.2) software is used for our 

simulation study with 10,000 iterations. The results are as follows. The coverage probabilities 

of confidence ellipses for parameters of the inverse Gaussian distribution increase when 

sample size n  is increased.  They are also close to the confidence coefficient of 0.98 for all 

values of both parameters. In addition, the various values of the parameter   when   is 1 of 

the inverse Gaussian distribution give high coverage probabilities when n  is large. 
 

Keywords: Maximum Likelihood Estimate; Simultaneous Confidence Interval; Skewed 

Distribution. 

 

1.   Introduction 
The inverse Gaussian distribution 

has been useful in statistics for a long time. 

Much progress has been made by a group of 

researchers, for instance, Erwin 

Schrodinger, Smoluchowski, Tweedie, 

Wald, Chhikara, Folk, Seshadri, etc. [1].   

The inverse Gaussian distribution has two 

parameters.  It is a continuous probability 

distribution. The probability density 

function of an inverse Gaussian distribution 

with parameters  and   (where   is the 

mean and   is the scale parameter) is given 

by [2]:, 
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 This distribution has been used in a 

wide range of applications, most of which  

are based on the idea of the first passage 

time of Brownian motion.  It is logical to 

use inverse Gaussian distribution as a 

lifetime model in studying life testing and 

reliability of a product or device [3].  The 

inverse Gaussian distribution is a useful 

statistical tool for biology, physics, 

engineering, finance and many other 

applications. For example, in tracer 

dynamics, emptiness of a dam, a purchase 

incidence model, the distribution of strike 

duration and many other [4].  Moreover, the 
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Inverse Gaussian is the most appropriate 

statistical distribution when skewed data 

analysis is needed.  Folks and Chhikara 

(1989) [5] explain that the application of the 

inverse Gaussian can meet part of the need 

for skewed data analysis [5].   

 There are two types of estimates for 

population parameters: point estimate and 

interval estimate. A point estimate calculate 

statistics from the sample data and can be 

considered a single number estimate of an 

unknown population parameter. A 

confidence interval estimate is a range of 

values for the population parameter with a 

predefined level of confidence that provides 

an upper and lower bound for a specific 

unknown population parameter [6].  

Moreover, in the past decade, we see an 

increase of interest in research concerning 

confidence intervals in one-dimensional 

space. In two dimensions the confidence 

intervals are called confidence ellipses. 

Consequently, in this research, we 

study the estimation for parameters of the 

inverse Gaussian distribution. We are going 

to construct confidence ellipses at 98 

percent confidence level. Next, we 

investigate the accuracy of the confidence 

ellipses by the Monte Carlo method. 

 

2. The Inverse Gaussian distribution       
   The classical parametrization of the 

inverse Gaussian distribution (  ,IG   ) is 

a two-parameter family of continuous 

probability distribution with support on (0, 

∞). According to Chhikara and Folks (1989) 

[5], the probability density function of an 

inverse Gaussian random variable X  is 
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where 0  and 0  . The parameter   

is the mean of the distribution, and   is a 

scale parameter. The characteristic function 

of an inverse Gaussian random variable X  

denoted by ( )XC t , is given by 

1
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The first four moments about zero are 
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3.    Theoretical Results
  

 3.1   Maximum Likelihood Method 
       For a random sample 

nXXX ,...,, 21  from an inverse Gaussian 

population  ,IG   , the likelihood 

function followed by Folks and Chhikara 

(1989) [5] is 
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Therefore, the maximum likelihood 

estimators (MLE) 
( )MLE and 

( )MLE  of 

and   are 

 ˆ X    , 
1

1 n

iX X
n

              
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3.2 The Fisher Information of 

Parameters for the Inverse Gaussian 

distribution 

Let a random variable X  be 

distributed as the  ,IG   . The Fisher 

information matrix of  , where 

( , )   , is a two-dimensional vector of 

parameters, denoted by  I  . We illustrate 

the Fisher information matrix about ,   as 
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Therefore, the Fisher information matrix 

follows: 
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where   is a two-dimensional parameter 

vector, and ( , )    . The Fisher 

information matrix for a sample size n  is 
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 3.3     The Covariance Matrix 
The covariance matrix which equals 

the inverse of the Fisher information matrix 

is denoted by
  1 .nI    That is, as 

n , 
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The inverse of the Fisher information matrix 

is computed as 
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3.4    Asymptotic Normal 

Distribution 
 We consider the sequence of random 

variables
( )MLE

n .  By the Delta method 

theorem, we can state that  
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where X  has the bivariate normal 

distribution, denoted by   1
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where 
d  denotes the convergence in 

distribution and
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From (1) and because the inverse of the 

Fisher information matrix equals the 

covariance matrix, we get 
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Therefore, 
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 1 2,Z Z Z   has the bivariate normal 

distribution  2 20,N I  as 
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and is distributed as a Chi-square 

distribution with two degrees of freedom, 

denoted by 
2

2 .
 

3.5 Confidence Region for 

Parameters of the Inverse Gaussian 

Distribution 

  The   1

2 0,N I 
 distribution 

assigns the probability 1   to the ellipse
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2   denotes the upper (100 ) -th 

percentile of the 
2

2  distribution. A 

 100 1 %  confidence region for 

parameters  ,     of a two-

dimensional normal distribution is the 
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Since the inverse of covariance matrix is 
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4.  Computational Results 

         The simulation study is conducted for 

asymptotic confidence ellipses constructed 

for parameters of the inverse Gaussian 

distribution. We compare the coverage 

probabilities for confidence ellipses of 

parameters for inverse Gaussian distribution 

with the confidence coefficient of 0.98 and 

present the results in Table 4.1 

The results of this study for 

different values of the parameters of the 

inverse Gaussian distribution and different 

sample sizes are shown only with high 

coverage probabilities for each sample size. 

 

4.1  Sample Size n = 30 

 For 30n  , the confidence ellipses 

for 1 15and    of the inverse 

Gaussian distribution are shown in Fig. 1.
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Fig.1.  Confidence ellipses for parameters of 

the inverse Gaussian distribution  

when 30n  .
 

 

 For 30n  , the maximum of the 

coverage probabilities is  0.9357  which 

occurs at 1 15and    as  presented 

in Table 4.1.  The coverage probabilities for 

30n  are lower than other coverage 

probabilities for the sample sizes 100n  ,

500n  ,and  1000n  .   

 4.2  Sample Size n = 100 

For 100n  , the confidence 

ellipses for 1 15and    of the 

inverse Gaussian distribution are shown in 

Fig. 2. 

 

 

 
 

Fig.2.   Confidence ellipses for parameters 

of the inverse Gaussian distribution  

when 100n  .
 

  

 For 100n  , the maximum of the 

coverage probabilities is  0.9675  which 

occurs at 1 15and    as  presented 

in Table 4.1.   

4.3  Sample Size n = 500 

 For 500n  , the confidence 

ellipses for 1 1and    of the 

inverse Gaussian distribution are shown in 

Fig. 3.
 

 

  

Fig.3.   Confidence ellipses for parameters 

of the inverse Gaussian distribution  

when 500n  .
 

 

For 500n  , the maximum of the 

coverage probabilities is  0.9781  which 

occurs at 1 1and    as  presented 

in Table 4.1. However, other values of the 

coverage probability  are close to the 

confidence coefficient of 0.98 for all values 

of parameter  . 

4.3   Sample Size n = 1000 

  For 1000n  , the confidence 

ellipses for 1 20and    of the 

inverse Gaussian distribution are shown in 

Fig. 4. 
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Fig.4.   Confidence ellipses for parameters 

of the inverse Gaussian distribution  

when 1000n  .
 

 

 For 1000n  , the maximum 

coverage probabilities is  0.9803  which 

occurs at 1 20and    as  

presented in Table 4.1. Other values of the 

coverage probability are closer to the 

confidence coefficient of 0.98 than other 

sample sizes for all values of parameter  . 
 

Table1. Maximum likelihood estimates of 

  and   and coverage probabilities for 

confidence ellipses at 98% confidence level.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

 

  

 

  

Maximum 

Likelihood 

Estimates 
 

Coverage 

Probabilities ˆMLE

n  ˆMLE

n  

30 1 

1 1.00097 1.115050 0.9316 

3 0.99970 3.338670 0.9345 

5 1.00063 5.552180 0.9322 

10 0.99962 11.12991 0.9355 

15 0.99980 16.68642 0.9357 

20 0.99916 22.23127 0.9341 

100 1 

1 1.00074 4.031880 0.9654 

3 0.99972 3.099740 0.9635 

5 0.99924 5.153420 0.9670 

10 0.99940 10.31810 0.9657 

15 0.99973 15.44892 0.9675 

20 1.00018 20.64193 0.9659 

500 

 

 

1 

 

 

 

1 0.99951 1.00536 0.9781 

3 1.00009 3.018610 0.9777 

5 1.00001 5.034990 0.9779 

10 1.00003 10.07004 0.9741 

15 0.9990 15.08658 0.9773 

20 1.00003 20.13996 0.9746 

1000 1 

1 1.00033 1.002680 0.9782 

3 1.00320 3.009740 0.9790 

5 1.00019 5.012180 0.9770 

10 1.00018 10.03262 0.9796 

15 1.00013 15.04985 0.9784 

20 1.00017 20.06536 0.9803 
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5.  Examples 

 The following maintenance data were 

reported on active repair times (hours) for 

an airborne communication transceiver 

(Von Alven, 1964, p.156 cited in [5]) with 

samples sizes equal 45: 
0.2     0.3     0.5     0.5     0.5     0.6     0.6     

0.7     0.7     0.7     0.8     0.8     1.0     1.0     

1.0     1.0     1.1     1.3     1.5     1.5     1.5     

1.5     2.0     2.0     2.2     2.5     2.7     3.0     

3.0     3.3     3.3     4.0     4.0     4.5     4.7     

5.0     5.4     5.4     7.0     7.5     8.8     9.0     

10.3   22.0   24.5 

The inverse Gaussian model was considered 

for these repair times and showed that it 

provides a good fit to the data. The observed 

values of the Kolmogorov-Smirnov test are 

0.053 for the inverse Gaussians, indicating 

that model provides equally good fits. 

 The Maximum Likelihood Estimate 

of   and   are given by 3.67556x   

and     ˆ 1.714833  .  The covariance 

matrix of the outbreaks data is
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Two pairs of the eigenvalue and eigenvector 

for  are 
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The joint confidence ellipse is plotted in 

Fig. 5. The center is at  4 , 2 ,   and 

the half-lengths of the major and minor axes 

are given by 

 2

1 2 0.02    2.358764eigen    

and 

 2

2 2 0.02 1.179382eigen   , 

respectively. The axes lie along 

 1 1 , 0eigene   and 

 2 0 , 1eigene    when these vectors are 

plotted with   as the origin. An indication 

of the elongation of the confidence ellipse is 

provided by the ratio of the lengths of the 

major and minor axes. This ratio is
 

 

 

 

2

1 2 1

2

2 2 2

2 0.02
2.

2 0.02

eigen eigen

eigen eigen

  

  
 

 

 

Confidence Ellipse of Parameters for 

the Inverse Gaussian distribution
 

 

  

 

Fig. 5.   A 98% confidence ellipse for   

and   based on active repair times. 

 

6.  Conclusions 

The coverage probabilities of 

confidence ellipses for parameters of the 
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inverse Gaussian distribution increase when 

the sample size  n  increases. In addition, 

the coverage probabilities for confidence 

ellipses of parameters for various values of 

parameters    are different only at the 

second or the third decimal place, and they 

are also close to the confidence coefficient 

of 0.98 for all values of parameters   when 

the sample size increases.  

 The distribution we considered here 

has two parameters, and hence for 

simultaneous confidence set estimation we 

use ellipses. It would be interesting to 

consider a three-parameter distribution and 

try to construct confidence ellipsoids.
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