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Abstract 

The present paper analyzes the Soret and Dufour effects along with viscoelastic effects 

on a two dimensional steady free convective MHD flow of  a slow and slowly varying 

viscoelastic incompressible fluid between a long vertical wavy wall and a parallel flat wall. A 

uniform magnetic field is assumed to be applied perpendicular to the flat wall. The governing 

equations of the fluid and the heat transfer are solved subject to relevant boundary conditions. 

It is assumed that the fluid consists of two parts: a mean part and a perturbed part. To obtain 

the perturbed part of the solution, we perform a long wave approximation. The perturbed part 

of the solution is the contribution from the waviness of the wall. Expressions for the zeroth-

order and first-order velocity, temperature, skin friction and heat transfer at the wall are 

obtained. The profiles of the velocity components are presented graphically for different 

combinations of parameters involved in the problem to observe the effects of the viscoelastic 

parameter on the governing flow taking into considerations of Soret and Dufour effects. 
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1.   Introduction 
The problem of viscous fluid flow 

over a wavy wall is of interest because of its 

application in different areas such as cooling 

of re-entry vehicles and rocket boosters, 

cross-hatching on ablative surfaces and film 

vaporization in combustion chambers. 

Benjamin [1] was probably the first to 

consider the problem of the flow over a 

wavy wall. His analysis was based on the 

assumption of parallel flow in absence of 

waviness. The steady streaming generated 

by an oscillatory viscous flow over a wavy 

wall under the assumption that the 

amplitude of the wave is smaller than the 

Stokes boundary layer thickness was studied 

by Lyne [2]. Lekoudis, Nayfeh and Saric [3] 

made a linear analysis of compressible 

boundary layer flows over a wavy wall. 

Sankar and Sinha [4] studied in detail the 

Rayleigh problem for a wavy wall. They 

found that at low Reynolds number, the 

waviness of the wall quickly ceases to be of 

importance as the liquid is dragged along by 

the wall, while at large Reynolds number 

the effects of viscosity are confined to a thin 

layer close to the wall. The effect of small 

amplitude wall   waviness   upon the 

stability of the boundary layer was studied 

by Lessen and Gangwani [5]. An analysis of 

the free convective heat transfer in a viscous 

incompressible fluid between a long vertical 
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wavy wall and a parallel flat wall was made 

by Vajravelu and Sastri [6]. Das and Ahmed 

[7] have extended this problem by including 

the effects of transverse magnetic field. 

Choudhury and Das [8] studied the problem 

for non-Newtonian fluid.  Aziz et al. [9] 

analyzed the effects of suction and injection 

on the free convective steady flow and heat 

transfer in a viscous incompressible fluid 

confined between a long vertical wavy wall 

and a parallel flat wall of equal 

transpiration. The free convection of a 

viscous incompressible fluid in porous 

medium between two long vertical wavy 

walls was investigated by Patidar and 

Purohit [10].  

Energy flux can be generated by a 

temperature gradient and a concentration 

gradient when heat and mass transfer occur 

simultaneously. The Soret effect (thermal 

diffusion) is an occurrence of a diffusion 

flux due to a temperature gradient while the 

Dufour effect (diffusion-thermo) is an 

occurrence of a heat flux due to a 

concentration gradient. These effects are 

very significant when temperature and 

concentration gradients are very large. In 

many studies, the thermal diffusion 

(Dufour) and the diffusion-thermo (Soret) 

effects are of a smaller order of' magnitude 

than the effects described by Fourier's or 

Fick's laws and are often neglected in heat 

and mass-transfer processes. The effects of 

diffusion-thermo and thermal-diffusion on 

the transport of heat and mass were 

developed from the kinetic theory of gases 

by Chapman and Cowling [11] in 1952. 

Eckert and Drake [12] found that the 

diffusion-thermo effect cannot be neglected 

in concerning isotope separation and in 

mixtures between gases with very light 

molecular weight (H2, He) and for medium 

molecular weight (N2, air).  

Alamet al. [13] investigated the Dufour and 

Soret effects on steady combined free-

forced convective and mass transfer flow 

past a semi-infinite vertical flat plate in the 

presence of a uniform transverse magnetic 

field.  

The problem of thermal diffusion 

and diffusion-thermo in non-Newtonian 

fluid have great importance in engineering 

applications like the thermal design of 

industrial equipment dealing with molten 

plastics,  polymeric liquids, foodstuffs, or 

slurries. Several authors [14]-[17] have 

studied this problem.  

The viscoelastic parameter can 

affect the flow and consequently the 

properties and quality of the final product. 

This fact motivates the present study to 

provide an investigation of the effects of 

viscoelastic parameter taking into account 

the Soret and Dufour effects. In the present 

study, free convective MHD flow, heat and 

mass transfer of a slow and slowly varying 

viscous incompressible non-Newtonian 

second-order fluid through a channel 

bounded by a long vertical wavy wall and a 

flat wall is considered. 
 

2. Basic equations and Formulations 

Consider the problem of steady 

two-dimensional laminar free convective 

MHD flow of a viscoelastic fluid along a 

vertical channel with a chemical reaction, 

taking into account the Soret and Dufour 

effects. The x -axis is taken vertically 

upwards and parallel to the flat wall while 

the y -axis is taken perpendicularly to it. 

The wavy and the flat walls are represented 

by xky cos* and ,dy  respectively. 

The wavy and flat walls are maintained at 

constant temperatures of wT  and 

1T respectively. 
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Fig.(i). Flow configuration of the physical problem.
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The constitutive equation for the 

incompressible second-order fluid is 
 

2

132211 )(AAApIS  
         

(1) 

 

where S  is the stress tensor, p is the 

hydrostatic pressure, 2,1, nAn  are the 

kinematic Rivlin-Ericksen tensors, 

and 321 ,,  are the material co-efficients 

describing the viscosity, visco-elasticity and 

cross-viscosity respectively, where 
1  and 

3  are positive and 2 is negative (Coleman 

and Markovitz [18]). Equation (2) was 

derived by Coleman and Noll [19] from that 

of simple fluids by assuming that the stress 

is more sensitive to the recent deformation 

than to the deformation that occurred in 

some distant past. The expressions for 

1A and 2A are given by 

ijjiij vvA ,,)1(   

jm
m

iijjiij vvaaA ,,,,)2( 2  

 

where iv and ia are the i th component of 

the velocity and acceleration vectors 

respectively and a comma denotes co-

variant differentiation with respect to the 

symbol following it. 

The following assumptions are made: 

(i) All the fluid properties except the 

density in the buoyancy force are 

constant. 

(ii) The viscous and magnetic dissipative 

effects can be neglected in the energy 

equation. 

(iii) The volumetric heat source /sink term 

in the energy equation is constant. 

(iv) The magnetic Reynolds number is 

small so that the induced magnetic 

field can be neglected. 

(v) The wavelength of the wavy wall is 

large such that k is small. 

Under the above assumptions, the equations 

governing the steady flow and heat transfer 

problem are the momentum equations 
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and the species continuity equation 
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The boundary conditions relevant to the 

problem are: 

ww CCTTvu  ,,0  

on xky cos*  

11,,0 CCTTvu  on dy    (7) 

where u , v  are the velocity components in 

the directions of x and y ,
respectively, 

*p the fluid pressure,   the fluid density, 

g the acceleration due to gravity,          

the electrical conductivity, B strength of the 

applied  magnetic field,  pC  the specific 

heat at constant pressure, k  the thermal 

conductivity, Q  the constant heat 

addition/absorption,  D the coefficient of 

mass diffusion, K the thermal diffusion 

ratio,  T  the fluid temperature, 1T  the 

temperature of the flat wall, mT the  mean 

fluid temperature, wT  the temperature of 

the wavy wall, C  the species concentration, 

wC the species concentration at the wavy 

wall, 1C  the species concentration at the 

flat wall, and 
*  a small amplitude 

parameter. 

We introduce the following non 

dimensional quantities: 
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where rP  the Prandtl number, uD  the 

Dufor number, cS  the Schmidt number, rS  

the Soret number, rG  the Grashof number 

for heat transfer, mG Grashof number for 

mass transfer, M  the Hartmann number 

and the subscript s  denotes quantities in the 

static fluid condition.  

With the help of non-dimensional quantities 

introduced, we rewrite the equations (2)-(6) 

and the boundary conditions (7) as 
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With boundary conditions 

1,1,0,0  Cvu   on xy  cos  

nCmvu  ,,0,0  on 1y       (13) 
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Then, we use the well knownBoussinesq 

approximation   ss TT   1   in 

Equation (8) in the static fluid condition and 

adopt the perturbation scheme  
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The zeroth-order equations are 

,0002

0
2

CGGMu
dy

ud
mr                 (15) 

,
2

0
2

2

0
2





dy

Cd
DP

dy

d
ur                    (16) 

,
2

0
2

2

0
2





dy

d
SS

dy

Cd
cr   and            (17) 
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and 
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(22) 

The boundary conditions (13) can be split 

into the following two parts: 

1,1,0 000  Cu  on 0y

nCmu  000 ,,0  on ,1y       (23)                          

and 

   ,Re,0,Re 01101
xixi eveuu     

 xieCC 
01 Re        on 0y  

0,0,0,0 1111  Cvu  on 1y       (24) 

where the prime denotes differentiation with 

respect to .y  

 

3. Solution of the problem 

The solutions for the zeroth-order 

velocity  0u , the zeroth-order 

temperature  0 , and the zeroth-order 

concentration )( 0C in Equations (15), (16), 

and (17) subject to the boundary conditions 

(23) are given by 
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In order to solve Equations (18) to (22) for 

the first-order quantities, it is convenient to 

introduce the stream function ,1  defined 

by 

., 1
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1
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x
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y
u


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
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Further, eliminating 1p from (18) and (19) 

and assuming 
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)(),(,)(),( 11 yteyxyeyx xixi    and

),(),(1 yeyxC xi                          (28) 

 
We get the ordinary differential equations: 
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If we consider only small values of , (or 

)1k  then substituting 
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Equations (29), (30) and (31) give, to order 

of ,2 the following sets of differential 

equations 
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The corresponding boundary conditions are 
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The equations (32) to (40) are solved 

subject to the boundary conditions (41), but 

are not presented here for the sake of 

brevity. 

 

4. Skin friction at the walls 

The shear stress xy at any point in 

non-dimensional form is given 

by
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                (42) 

 

At the wavy wall xy  cos and at the 

flat wall xyy ,1 becomes, respectively, 
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where )1(),0( 0
0
10

0
0





 uu   are the 

zeroth-order skin frictions at the walls, and 

)(1 yu and )(1 yv  are given by  

).(),(,)(),( 1111 yveyxvyueyxu xixi   

 

5. Heat transfer and mass transfer 

coefficient 
 The non-dimensional heat transfer 

coefficient in terms of Nusselt number uN  

is given by 
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At the wavy wall xy  cos  and the flat 

wall uNy ,1 takes the form 
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The mass transfer coefficient in terms of 

Sherwood number Sh  is given by 
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At the wavy wall xy  cos  and the flat 

wall Shy ,1  takes the form 
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respectively, where 
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6. Results and Discussions 

The purpose of this study is to bring 

out the Soret and Dufour effects on the 

governing flow with the combination of the 

viscoelastic parameter. Here the real parts of 

the results are considered throughout for 

numerical validation. 

To examine the nature of variation 

of various physical quantities associated 

with the problem under consideration, a 

particular case characterized by the 

following values of parameters involved in 

the analysis is presented. 
.01.0,001.0,1,4,2,1,3   nmGP r   

The non-dimensional velocity u against 

y is plotted in Fig 1-4. It is evident from the 

figures that velocity profile is parabolic in 

nature and attains a distinctive maximum in 

the vicinity of the middle of the channel. 

This phenomenon is noticed in both 

Newtonian )0( 1  and viscoelastic fluid 

flows )1.0,05.0( 1  .  The velocity 
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increases with the increasing values of 

,,, mur GDS whereas the velocity 

decreases with the increasing strength of the 

magnetic field for both Newtonian 

)0( 1  and viscoelastic fluid 

flows )1.0,05.0( 1  . Also, velocity 

decreases with the increasing values of the 

viscoelastic parameter )( 1 in comparison to 

the Newtonian fluid for all the cases. 

Figures 5 and 6 exhibit the nature of 

skin friction at both the wavy wall and the 

flat wall. From the figures, it is observed 

that the magnitude of shear stress decreases 

with the increasing values of the viscoelastic 

parameter. 

The Nusselt number and Sherwood 

number are not affected significantly during 

the changes made in viscoelasticity of the 

fluid flow. 
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Fig.1.Variation of velocity against y  for 
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Fig.2.Variation of velocity against y  for 
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Fig.4.Variation of velocity against y  for 
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7. Conclusions 
In this paper, the Soret and Dufour 

effects along with the viscoelastic effects on 

a two dimensional steady free convective 

MHD flow of viscoelastic incompressible 

fluid between a long vertical wavy wall and 

a parallel flat wall are studied. The second 

order fluid model for a viscoelastic fluid 

flow is assumed. The following 

observations are noted through the graphs 

(i) The fluid motion retarded with 

the increasing values of the 

viscoelastic parameter.   

(ii) The fluid motion is accelerated 

due to thermal diffusion and 

diffusion thermo effects and 

retarded under the application 

of the transverse magnetic field 

for both Newtonian and 

viscoelastic fluid flow. 

(iii) Magnitudes of the viscous drag 

at the wavy wall and at the flat 

wall increase due to thermal 

diffusion and diffusion thermo 

effects for both Newtonian and 

viscoelastic fluid flow. 

 

Nomenclature 

g  Acceleration due to gravity 

yx,  Cartesian coordinates 

D  Coefficient of mass diffusion 

Q  Constant heat addition/absorption 

d  Distance between two walls 

uD  Dufour number 

*p  Fluid pressure 

T  Fluid temperature 

sT  Fluid temperature in static condition 

rG  Grashof number for heat transfer 

mG  Grashof number for mass transfer 

M        Hartmann number 

mT  Mean fluid temperature 

rP Prandtl number 

*
sp  Pressure of the fluid in static 

condition 

21, AA  RivlinEricksen tensors 

C  Species concentration 

wC  Species concentration at the wavy 

wall 

1C  Species concentration at the flat 

wall 

pC  Specific heat at constant pressure 

B  Strength of the applied magnetic 

field  

rS  Soret number 

cS  Schmidt number 

1T  Temperature of the flat wall 

wT  Temperature of the wavy wall 

k  Thermal conductivity 

K  Thermal diffusion ratio 

u , v  Velocity components in the 

directions of x and y  respectively  

n  Wall concentration ratio 

m  Wall temperature ratio 

 

Greek symbols 

*  Amplitude parameter 

c  Coefficient of expansion with 

concentration 
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  Coefficient of volume expansion for 

heat transfer 

  Co-efficient of viscosity 

s  Density of the fluid in static 

condition 

   Electrical conductivity 

  Fluid density 

  Frequency parameter 

  Heat source/sink parameter 

1  Kinematic viscosity 

321 ,,   Material co-efficients describing 

the viscosity, visco-elasticity and cross- 

viscosity respectively 
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