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Abstract

The present paper analyzes the Soret and Dufour effects along with viscoelastic effects
on a two dimensional steady free convective MHD flow of a slow and slowly varying
viscoelastic incompressible fluid between a long vertical wavy wall and a parallel flat wall. A
uniform magnetic field is assumed to be applied perpendicular to the flat wall. The governing
equations of the fluid and the heat transfer are solved subject to relevant boundary conditions.
It is assumed that the fluid consists of two parts: a mean part and a perturbed part. To obtain
the perturbed part of the solution, we perform a long wave approximation. The perturbed part
of the solution is the contribution from the waviness of the wall. Expressions for the zeroth-
order and first-order velocity, temperature, skin friction and heat transfer at the wall are
obtained. The profiles of the velocity components are presented graphically for different
combinations of parameters involved in the problem to observe the effects of the viscoelastic
parameter on the governing flow taking into considerations of Soret and Dufour effects.
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by Lyne [2]. Lekoudis, Nayfeh and Saric [3]
made a linear analysis of compressible

1. Introduction
The problem of viscous fluid flow

over a wavy wall is of interest because of its
application in different areas such as cooling
of re-entry vehicles and rocket boosters,
cross-hatching on ablative surfaces and film
vaporization in combustion chambers.
Benjamin [1] was probably the first to
consider the problem of the flow over a
wavy wall. His analysis was based on the
assumption of parallel flow in absence of
waviness. The steady streaming generated
by an oscillatory viscous flow over a wavy
wall under the assumption that the
amplitude of the wave is smaller than the
Stokes boundary layer thickness was studied

boundary layer flows over a wavy wall.
Sankar and Sinha [4] studied in detail the
Rayleigh problem for a wavy wall. They
found that at low Reynolds number, the
waviness of the wall quickly ceases to be of
importance as the liquid is dragged along by
the wall, while at large Reynolds number
the effects of viscosity are confined to a thin
layer close to the wall. The effect of small
amplitude wall waviness upon the
stability of the boundary layer was studied
by Lessen and Gangwani [5]. An analysis of
the free convective heat transfer in a viscous
incompressible fluid between a long vertical
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wavy wall and a parallel flat wall was made
by Vajravelu and Sastri [6]. Das and Ahmed
[7] have extended this problem by including
the effects of transverse magnetic field.
Choudhury and Das [8] studied the problem
for non-Newtonian fluid. Aziz et al. [9]
analyzed the effects of suction and injection
on the free convective steady flow and heat
transfer in a viscous incompressible fluid
confined between a long vertical wavy wall
and a parallel flat wall of equal
transpiration. The free convection of a
viscous incompressible fluid in porous
medium between two long vertical wavy
walls was investigated by Patidar and
Purohit [10].

Energy flux can be generated by a
temperature gradient and a concentration
gradient when heat and mass transfer occur
simultaneously. The Soret effect (thermal
diffusion) is an occurrence of a diffusion
flux due to a temperature gradient while the
Dufour effect (diffusion-thermo) is an
occurrence of a heat flux due to a
concentration gradient. These effects are
very significant when temperature and
concentration gradients are very large. In
many studies, the thermal diffusion
(Dufour) and the diffusion-thermo (Soret)
effects are of a smaller order of' magnitude
than the effects described by Fourier's or
Fick's laws and are often neglected in heat
and mass-transfer processes. The effects of
diffusion-thermo and thermal-diffusion on
the transport of heat and mass were
developed from the kinetic theory of gases
by Chapman and Cowling [11] in 1952.
Eckert and Drake [12] found that the
diffusion-thermo effect cannot be neglected
in concerning isotope separation and in
mixtures between gases with very light
molecular weight (H,, He) and for medium
molecular weight (N, air).

Alamet al. [13] investigated the Dufour and
Soret effects on steady combined free-
forced convective and mass transfer flow
past a semi-infinite vertical flat plate in the

10

presence of a uniform transverse magnetic
field.

The problem of thermal diffusion
and diffusion-thermo in non-Newtonian
fluid have great importance in engineering
applications like the thermal design of
industrial equipment dealing with molten
plastics, polymeric liquids, foodstuffs, or
slurries. Several authors [14]-[17] have
studied this problem.

The viscoelastic parameter can
affect the flow and consequently the
properties and quality of the final product.
This fact motivates the present study to
provide an investigation of the effects of
viscoelastic parameter taking into account
the Soret and Dufour effects. In the present
study, free convective MHD flow, heat and
mass transfer of a slow and slowly varying
viscous incompressible  non-Newtonian
second-order fluid through a channel
bounded by a long vertical wavy wall and a
flat wall is considered.

2. Basic equations and Formulations

Consider the problem of steady
two-dimensional laminar free convective
MHD flow of a viscoelastic fluid along a
vertical channel with a chemical reaction,
taking into account the Soret and Dufour
effects. The X-axis is taken vertically
upwards and parallel to the flat wall while
the Y -axis is taken perpendicularly to it.

The wavy and the flat walls are represented
by y=¢& coskxand ¥ =d,respectively.
The wavy and flat walls are maintained at
constant  temperatures of T and

w

T, respectively.
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Fig.(i). Flow configuration of the physical problem.
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The constitutive equation for the
incompressible second-order fluid is

S=—pl+uA+ A+ (A Q)
whereS is the stress tensor, pis the

hydrostatic pressure, A, ,n=12 are the
kinematic Rivlin-Ericksen tensors,
and z4, 1, , pgare the material co-efficients
describing the viscosity, visco-elasticity and
cross-viscosity respectively, where x, and

M are positive and z, is negative (Coleman

and Markovitz [18]). Equation (2) was
derived by Coleman and Noll [19] from that
of simple fluids by assuming that the stress
is more sensitive to the recent deformation
than to the deformation that occurred in
some distant past. The expressions for

Ajand Ay are given by
Awij = Vi j Vi,

m
A2)ij =ai,j +aji + 2V iV, |

wherev;and @a;are the ith component of

the wvelocity and acceleration vectors
respectively and a comma denotes co-
variant differentiation with respect to the
symbol following it.

The following assumptions are made:

(i)  All the fluid properties except the
density in the buoyancy force are
constant.

The viscous and magnetic dissipative
effects can be neglected in the energy
equation.

The volumetric heat source /sink term
in the energy equation is constant.
The magnetic Reynolds number is
small so that the induced magnetic
field can be neglected.

The wavelength of the wavy wall is
large such that k is small.

(i)

(i)
(iv)

(v)
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Under the above assumptions, the equations
governing the steady flow and heat transfer
problem are the momentum equations
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the continuity equation
8—qu@=0 , 4
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the energy equation
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and the species continuity equation
0°C 9°C| DK[&’T o7

D—+—|+—| —F5+—5|
&2 oy?

T  ox? WZ
(6)
The boundary conditions relevant to the
problem are:

u=v=0,T=T,,C=C,

_ac
0—+
oX

_oC
V— =
oy

ony =g coskx
U=v=0,T=T,C=Ciony=d (7)

where U,V are the velocity components in
the directions of Xandy respectively,

p the fluid pressure, p the fluid density,
g the acceleration due to gravity, o
the electrical conductivity, B strength of the
applied magnetic field, Cp the specific
heat at constant pressure, k the thermal
conductivity, Q the constant heat

addition/absorption, D the coefficient of
mass diffusion, K the thermal diffusion

ratio, T the fluid temperature, 'ITl the
temperature of the flat wall, T, the mean

fluid temperature, 'FW the temperature of

the wavy wall, C the species concentration,
C,ythe species concentration at the wavy

wall, C; the species concentration at the

flat wall, and g* a small amplitude
parameter.

We introduce the following non

dimensional quantities:
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X y ud vd T-T,
X:—,y:—’u:i, =—, = — —,
d d v, v T, T,
_ pd? “d?
pzp 5 ,ﬂu—kd,ps—IO =
PU PL
__Qd* _T-T
kT, -T)  T,-T,
n—c_:_l_c_:_s, :E__S,g_g—*,
b ~ mCyp _ DK(Cy -Cy)
U o'B%d’
SC__’ = 2 ’
D pU;
o _ DK(y-Ty)
r — =~ \'
U T Cw —Cs
o _ 9B -T)
r — 2 ’
b1
G _dggﬂc(c_:w_c_:s)
m — 2 .
U1

where P, the Prandtl number, D, the
Dufor number, S, the Schmidt number, S,
the Soret number, G, the Grashof number

for heat transfer, Gy, Grashof number for

mass transfer, M the Hartmann number
and the subscript S denotes quantities in the
static fluid condition.

With the help of non-dimensional quantities
introduced, we rewrite the equations (2)-(6)
and the boundary conditions (7) as

2 ~3 ~3 ~3

o

ou ou dp ou 0% o°u o-u o°u
UV ==t o b oy U FV VU 3
ox oy X x° @y xS Xy oxdy
ou d’u  ouod’u _o*aéu du o%u
+3— +t——+3—5—+13——
oy oxoy  ox oy OX° oy OX OX
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du du 8V82 +82u@
ay oxoy ax o2 OX0y OX
Lo *vou +G,0+G,C —Mu, (8)
6x2
I A ool
U—+V—=-— —2+ ytaU— V5 +V—;
x oy oy x o oy
+u o
oxoy?
o 0%y avav ava2 ava2
+ —+ 13
6x8x8y 8yax
auav+auauj avav
oy oxy oy’ oy
+@ 0%v au a u 8_
OX OXoy 6yay axayay
2
a uov
= J ©)
8y OX
@+@:O, (10)
oX oy
%0 0% a’c é%c 0 80
ax—zwu—2 PrDu[2+ay2J=Pr[ = VEJ
(11)

(12)
With boundary conditions
u=0,v=0, #=1C =1o0ny=gcosAX

u=0,v=0,=mC=nony=1 (13)
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where

2y
d2 ! 'Bl d2
Then, we use the well knownBoussinesq
approximation p = p.[l— p(T -T,)] in

Equation (8) in the static fluid condition and
adopt the perturbation scheme

a =

u(x, y) =up(y) + e (X, y),v(x,y) = evi (X, y),

P = po(X) +&p (X, ¥), (%, y) = 6 (y) + 01 (X, Y),

C(x,y) =Co(y) +£Cr(x,Y). (14)
The zeroth-order equations are
2
d 20— Mug = -Gy -~ GnCo. (15)
dy
2 2
d ‘920 P.D, d 20 o (16)
dy dy
2 2
9o +5,S¢ 970 =—q, and (17)
dy2 dy2

The first-order equations are

[ o, auo
oy Uy — YV ——
o’ oy’

ax aXZ éyZ
8 ul 3%_azul +%82U0
axay oy oxoy  ox oy’
2 2
+38\21% ‘B du, 07U, +6\218u0
ox° oy oy oxoy ox° oy

ou, oy

O@X+18y

+G, 4 +GyCp — Muy, (18)
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2 2 3 3 2
uo% —%+a—\g+a—\?+al O(z"; LA S%auz
x oy o oy oy ox gy
au, 0%, 4 400 2%, %azuoj
oy oxay oy oy oy oy
d%u, ou, ov, d°u
+ﬂ1(8 U20%+ 21 0 41 20
oy* oy oy" oy Ox oy
2
L 9™ | (19)
OXoy oy
%+%=o, (20)
X
0%0 %0 0’c, o°C 00, 06
ywuywu PrDu[a)(zl+63/21}_Pr(u05+v ayoj’
(21)
and
1[2G,2%G) o [20 20, & %
Srl ax?  oy? x> oy OX oy
(22)

The boundary conditions (13) can be split
into the following two parts:

Up =0, (90 21,C0 =1ony=0

up =0, 6 =m,Cy=nony=1  (23)
and

Up=— Re(u{)e"b‘ ) vi=0,6= —Re(H(')eW),

C :-Re(q)e'“) ony=0
=0, v =0 6=0C=00ny=1 (24)

where the prime denotes differentiation with
respect to Y.

3. Solution of the problem

The solutions for the zeroth-order
velocity(uo), the zeroth-order

15

temperature(@o), and the zeroth-order

concentration (Cg) in Equations (15), (16),

and (17) subject to the boundary conditions
(23) are given by

490_1+[m 1- Aijy+pzi 2 (25)

Co=1+5,S; +{n+(m-1)5;S. ~1}y-S,ScTo,  (26)

Up = A7e\/ﬁy + Age’my —% y—% y2 — Ay (27)

Where
¥ A=-G, -G,
A=pDyss1 2 T om
A3:_Gr(m_A1_lj+Gm(n_1)+GerSCA1,
2 2
A4:%((-:"m8rsc—(3r),
L, 2
o= i)
Ag =— (A2+A3+A4+%“4J
NP AgeM
7 M —N’
pse M — g
o er—e_r

In order to solve Equations (18) to (22) for
the first-order quantities, it is convenient to

introduce the stream function y,, defined
by

Further, eliminating p,from (18) and (19)
and assuming



Thammasat International Journal of Science and Technology

Vol.19, No.2, April-June 2014

7 (xy) =y (y), 6,(xy) =e™t(y)and
Cr(x,y) =e*4(y), (28)

We get the ordinary differential equations:
wlV —y/”(M +24% + iAug —u0)+ y/(uoﬂz + 4
+ i/luoﬁ + iuo/ls) + ial(uoit// Vo 2u, By
—uyY Ay +up 1//) =G t'+Gpd,  (29)

{2 + Piug |+ PO (g~ 2p)= Priayy
(30)

¢ - 2+ 368,07 + 226)= 35 lup + 4o )
(31)

If we consider only small values of A, (or
k <<1) then substituting

2 2
vy) =2 Ay W) = AN,
i=0 j=0

2
P(h,y)= 2 2idj -
j=0

Equations (29), (30) and (31) give, to order

of Zz,the following sets of differential
equations

wo’ ~Myg =Gty +Gngo (32)
to+ P.Dydp =0, (33)
do + ScSyt =0. (34)

IV " . 1 . " ’ 1
y;° —Myy =iugyo —iug wo +Grty +CGndy

+ ial(u(IJV wo —Uowd’ ) (35)
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tl = Pr (il,loto + ito Vo — Du¢_||_l), (36)

& =Sclivod +iveCo-Sett). (D)

wy ~My, =2pq +itgyy —iug w1 +Gity
" IV [\
+Gm¢2 +Ia1(u0 1 —Upgy1 ), (38)

t2" =P (Uotl + '[O"//l)Jr to+ R Dy (¢O - ¢2)
(39)

# = 5¢S6 th —ts J+ iS¢ luos +v1Co )+ o,
(40)

The corresponding boundary conditions are

wo =Up, wo=0,tg =~ .dy=-Coony=0

wo =0,w9=0,1g=0,4 =0  on y=1
w1 =0, y1=0,4,=0,4=0  on y=0
w1 =0,p1=0,5=0,4=0 ony=1
Wo =0, yp=0,6,=0,4p=0 on y=0
Wo =0,y =0,1,=0,4=0  on y=1

(41)

The equations (32) to (40) are solved
subject to the boundary conditions (41), but
are not presented here for the sake of
brevity.

4. Skin friction at the walls
The shear stress Tyy at any point in

non-dimensional form is given
X d?7y
Y Txy = 2
A1

ou [P L iy . x_ !
= Eoﬂe'“ul (y) +i266"; (y) + ayelidug (y)e ™y (y)

+e7 (y)ug (y)
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—upA2e' P (y) + 2026t () o (Y)uh ()]
(42)
At the wavy wall y =gcosAxand at the

flat wall y =1, Tyy becomes, respectively,
T, =10 +€ Re[ e“"‘uon 0)+ e”xﬂll (0)} + alg[/luo (0)cos /1xz//i” (0)

+ g (O)y, (0)sin Ax+24ug (O)y; (0)cos Ax

+24u, O)p, (0)sin sz (43)

and

7 =0 + Re[e Pt (1]

+ e[ Aug ;i (@) cos Ax + Aug Wy, (1) sin Ax

+ 220, WU, (1)cos Ax + 22U, Wy, Q)sin ﬂx]
(44)

0 ’ 0 '

wherezy =Uq (0),7; =ug (1) are the

zeroth-order skin frictions at the walls, and

Uy (y)andvy (y) are given by

Uy (%, y) = 2 2G,

m(y), vi(x, y) =

v (y).
5. Heat transfer and mass transfer
coefficient

The non-dimensional heat transfer
coefficient in terms of Nusselt number N,

is given by
_ 60 _ ! iAXr 45
Nu—g—(?o(y)ﬂe t'(y). (45)

At the wavy wall y = g£cos Ax and the flat
wall y =1, N, takes the form

Nu,, = Nug + g(cos /1x6'0" (0) +ei’1xt’(0)) (46)
and
(47)

Nuj = Nuf + o)

respectively, where

Nud =65 (0), Nuf =6 (1)

The mass transfer coefficient in terms of
Sherwood number Sh is given by

Sh= (2;3 =Co(Y) +888Cy>1 = Co(y) + &g (y).

At the wavy wall y = gcosAx and the flat
wall y =1, sh takes the form

Shy, = ShY + g(cos AXCo(0) + ei’b‘¢’(0)) (48)

and

Shy = sh? + &'#¢'() (49)

respectively, where
shd =Cg, Sh? =Co @)

6. Results and Discussions

The purpose of this study is to bring
out the Soret and Dufour effects on the
governing flow with the combination of the
viscoelastic parameter. Here the real parts of
the results are considered throughout for
numerical validation.

To examine the nature of variation
of various physical quantities associated
with the problem under consideration, a
particular case characterized by the
following values of parameters involved in
the analysis is presented.
P=3a=1G,=2,m=4,n=1,1=0.001 ¢ =0.01.
The non-dimensional velocity U against
y is plotted in Fig 1-4. It is evident from the

figures that velocity profile is parabolic in
nature and attains a distinctive maximum in
the vicinity of the middle of the channel.
This phenomenon is noticed in both

Newtonian (e =0)and viscoelastic fluid
flows (g =—0.05,—0.1).  The velocity

17
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increases with the increasing values of
S¢, Dy Gy, whereas the velocity

decreases with the increasing strength of the
magnetic field for both Newtonian

(ep =0)and viscoelastic fluid

flows (g =—0.05,—0.1). Also, velocity
decreases with the increasing values of the
viscoelastic parameter (¢1) in comparison to

the Newtonian fluid for all the cases.

Figures 5 and 6 exhibit the nature of
skin friction at both the wavy wall and the
flat wall. From the figures, it is observed
that the magnitude of shear stress decreases
with the increasing values of the viscoelastic
parameter.

The Nusselt number and Sherwood
number are not affected significantly during
the changes made in viscoelasticity of the
fluid flow.

o,=0
29 S,=3 (112—0.05
o,=—0.10
1.6
I 1.2 4
>
0.8 1
041 s=1
0 T T T T
0 0.2 0.4 0.6 0.8

y —

Fig.1.Variation of velocity against y for
D,=02G,=2 M=05.

o,=0
1.6 1 D,=2
u a,=—0.05
141 0,=—0.10
1.2 1
[
> 0.8 A
0.6 1
D=0
0.4 A
0.2
0 T T T T
0 0.2 0.4 0.6 0.8

y ——

Fig.2.Variation of velocity against y for
Sy =1L, Gy =2, M =05.
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Fig.3.Variation of velocity against y for
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Fig.4.Variation of velocity against y for
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Fig.6. Variation of skin friction 7 against
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7. Conclusions

In this paper, the Soret and Dufour
effects along with the viscoelastic effects on
a two dimensional steady free convective
MHD flow of viscoelastic incompressible
fluid between a long vertical wavy wall and
a parallel flat wall are studied. The second
order fluid model for a viscoelastic fluid
flow is assumed. The following
observations are noted through the graphs

(i) The fluid motion retarded with

the increasing values of the
viscoelastic parameter.

(i)  The fluid motion is accelerated
due to thermal diffusion and
diffusion thermo effects and
retarded under the application
of the transverse magnetic field
for both  Newtonian and
viscoelastic fluid flow.
Magnitudes of the viscous drag
at the wavy wall and at the flat
wall increase due to thermal
diffusion and diffusion thermo
effects for both Newtonian and
viscoelastic fluid flow.

(iii)

Nomenclature
g Acceleration due to gravity

X,y  Cartesian coordinates

D Coefficient of mass diffusion

Q Constant heat addition/absorption
d Distance between two walls

D,  Dufour number

p* Fluid pressure

T Fluid temperature

T Fluid temperature in static condition
Gy Grashof number for heat transfer
Gy, Grashof number for mass transfer
M Hartmann number

Tm Mean fluid temperature

Py Prandtl number

*

Ps Pressure of the fluid

condition
, Ay RivlinEricksen tensors

in static

O] >

Species concentration

Species concentration at the wavy
wall

Species concentration at the flat
wall

Specific heat at constant pressure

o O
=g

O
-

o]

Strength of the applied magnetic
field

Soret number

-

Schmidt number

(@]

Temperature of the flat wall
Temperature of the wavy wall

Thermal conductivity

Thermal diffusion ratio

Velocity components in  the
directions of Xxandy respectively
Wall concentration ratio

Wall temperature ratio

C|7<7\—E—||l:|| w wn
<

3 5

Greek symbols

Py Amplitude parameter
Be Coefficient of expansion
concentration

with

19
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p Coefficient of volume expansion for
heat transfer

Y7, Co-efficient of viscosity

Ps Density of the fluid in static
condition

o' Electrical conductivity

P Fluid density

A Frequency parameter

a Heat source/sink parameter

vy Kinematic viscosity

My, 1y, 11, Material co-efficients describing

the viscosity, visco-elasticity and cross-
viscosity respectively
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