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Abstract 

A direct method of solution of fifth order ordinary differential equations (odes) is 

proposed in this paper. Collocation of the differential system is taken at selected grid points to 

reduce the number of functions to be evaluated per iteration. A number of predictors of the 

same order of accuracy with the main method for the estimation of y -functions and their 

derivatives in the main method are generated. The symmetric implicit multiderivative 

algorithm [SIMA] is suitable for numerical integration of non-stiff and mildly-stiff fifth order 

equations. Test examples are solved with the method to confirm its efficiency. 
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1. Introduction 
In this article, a direct solution of 

fifth order ordinary differential equations 

(odes) of the form (1) 
(5) 4( , , ,..., ),   [ , ]      (1)y f x y y y x a b   

together with initial conditions 
( ) ( ) ,  0(1)4,i

iy a y i   

is explored. This class of problems has a lot 

of applications in applied sciences, 

mechanical, civil and aerospace engineering 

especially where vibration of structures due 

to passage of moving loads under damping 

forces are of paramount importance. 

Akbar and Siddique [1] investigated 

the analytical solution of fifth order weakly 

nonlinear oscillatory systems of type (1). In 

practice, the numerical integration process 

of problem (1) involves a reduction to 

systems of first order equations which may 

then be solved with any known methods for 

first order equations. This approach has its 

inherent setbacks, Awoyemi [2]. Different  

authors have proposed methods for direct 

solution of higher order problems. Awoyemi 

[2], Parand and Hojjati[3], Saravai and 

Mirrajei [4], Golbabai and Arabshahi [5], 

Kayode[6], [7], all considered second order 

equations using different step-lengths and 

step-numbers to obtain methods of various 

order of accuracy. Kayode and Adeyeye [8] 

and Kayode and Obarhua [9]  also 

developed numerical hybrid methods for 

direct solution of general second order 

differential equations by using different 

basis functions to generate collocation and 

interpolation equations,. In their work, 

Awoyemi and Idowu [10] considered direct 

numerical solution of third order equations. 

Awoyemi [11] and Kayode [12] 

investigated the direct solution of fourth 

order differential equations. However, all 

these methods are not suitable to solve fifth 

order problems of type (1) without reduction 

to lower order problems. Kayode and 

Awoyemi [13] proposed a 5-step 
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multiderivative collocation method in a 

predictor-corrector mode for problem (1). 

The method is non-symmetric and may not 

be suitable for oscillatory problems. Kayode 

[14] proposed an explicit method for solving 

(1) directly.  The aim of this article is to 

propose a symmetric implicit 

multiderivative algorithm [SIMA] with 

increased stepnumber as well as increased 

order of accuracy (p) for the approximate 

solution of (1) directly. 

2. Methodology 
The basis function for the 

approximate solution of problem (1) is taken 

to be the partial sum of power series of a 

single variable x in the form 
2

0

( )
k

j

j

j

y x x




   (2) 

 
where 

, ( , ) ( ).m

j R y C a b P x   
 

The fifth derivative of (2) substituted in (1) 

is given as 

 
2

5 (1) (2) (3) (4)

0

( 1)( 2)( 3)( 4) ( , , , , , )
k

j

j

j

j j j j j x f x y y y y y






    

(3) 

Collocating (3) at , 0(1) 1n jx x j k    

and interpolating (2) at , 0(3)n jx x j k   

yield the following collocation and 

interpolation matrix 

 

AX B                             (4) 

where 
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T
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T is the matrix transpose, 

 

( , , , , , ), 0,1, 2, ...,iv

n r n r n r n r n r n r n rf f x  y  y y y y   r            
   

( ).n i n iy y x   

Solving the matrix (4) for 
'

j s and using 

5nx x
t

h


  in (3) yielded, after 

simplification, the continuous method 
1 4

3 3

0 0

( ) ( ) ( ) .
k k

k j n j j n j

j j

y t t y t f 
 

 

 

     (5) 

The continuous coefficients ( )j t  and 

( )j t  in (5), when k is taken to be 6, are 

found to be: 
2 3 4 5 6 7 8

0

1
( ) [3600 9108 8456 3521 560 28 16 ],

25200
t t t t t t t t t        

 
2 3 4 5 6 7 8

1

1
( ) [2340 6798 7196 3311 560 28 16 ],

5040
t t t t t t t t t


       

 
2 3 4 5 6 7 8

2

1
( ) [240 3228 5516 3101 560 28 16 ],

2520
t t t t t t t t t        

 
2 3 4 5 6 7 8

3

1
( ) [3960 2862 3416 2891 560 28 16 ],

2520
t t t t t t t t t        

 
2 3 4 5 6 7 8

4

1
( ) [16560 12732 896 2681 560 28 16 ],

5040
t t t t t t t t t


       

 
2 3 4 5 6 7 8

5

1
( ) [25200 48900 27642 2044 2471 560 28 16 ],

25200
t t t t t t t t t         
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2 3 4 5 6 7 8

0

1
( ) [29520 73044 66668 27923 4760 154 148 13 ],

2721600
t t t t t t t t t


       

 
2 3 4 5 6 7 8

3

1
( ) [43920 98964 78736 27265 3430 224 86 5 ],

136080
t t t t t t t t t        

 
2 3 4 5 6 7 8

6

1
( ) [5040 13068 13132 6769 1960 322 28 ].

544320
t t t t t t t t t        

 

A discrete implicit multiderivative form and 

its derivatives arising from (5), when 1t  , 

are obtained to be 

 
5

6 5 4 2 1 6 3

2
4 5 5 4 [ 25 ]

27
n n n n n n n n n

h
y y y y y y f f f             

 

(6) 

p  = 7 and 2pc   is 0.40277; 

 

6 5 4 3 2 1

4

6 3

1
[1632 2175 2440 6360 4440 1063 ]

420

          [761 16730 707 ],
3780

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

 

      

  

 

(7) 

p  = 7,  2 0.400297619pc    ; 

 

6 5 4 3 2 12

3

6 3

1 452 5429 4526 9291 13267 585
[ ]
403 1260 193 271 630 122

120601
         [29531 527756 ],

68040 5

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

 

      

  

 

(8) 

p  = 7, 2 0.442890211pc   ; 

 

6 5 4 3 2 13

3

6 3

1
[ 146 955 2310 2660 1480 321 ]

50

287
         [89 1134 ],

120 5

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

 

       

  

 

(9) 

p  = 7, 09583333.02 pc ; 

 

6 5 4 3 2 14

6 3

1
[ 201 1055 2210 2310 1205 251 ]

50

2063
         [1069 7180 ],

1080 5

iv

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

 

      

  

 

(10) 

p  = 7, 35972222.02 pc . 

Definitions: [Lambert [15]] 

(a) Order and error constant 

Let L be the linear difference 

operator associated with (5) given by 

L 5

0

[ ( ); ] [ ( ) ( )]
k

v

j j

j

y x h y x jh h y x jh 


    (11) 

 

where ( )y x  is an arbitrary function, 

continuously differentiable on an interval [a, 

b]. Assuming that ( )y x  has as many higher 

derivatives as may be required, then 

expanding (11) by Taylor series gives 

 

L (1) (2) ( )

0 1 2[ ( ); ] ( ) ( ) ( ) ( )p

py x h C y x C y x C y x C y x       

(12) 

where 
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p p p p
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The order of accuracy of (5) is p if  

0 1 2 1 20,   0p p pC C C C C C       

and its error constant is 2pC  . Applying the 

definitions of order and error constant above 

to (6), (7), (8), (9) and (10) produces order 

of accuracy p = 7 for each of them and error 

constants 2pC   to be 0.40277, 

0.400297619 , 0.442890211 , 

0.09583333 , 0.35972222,  respectively. 

 

(b) Symmetry, Consistency zero 

stability and convergence 

Consider the characteristic equation 

associated with (5) given by 

 

( , ) ( ) ( )r h r r    , 5h h ,        (13) 

 

where 
f

y






 is the eigenvalue(s) of the 

Jacobian of (1).  and  are the first and 

second characteristic polynomials of (5) 

respectively. They are given by 
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6 5 4 2

0

( )  4 5 5 4 1
k

j

j

j

r r r r r r r 


      
    

(14) 

 

6 3

0

2
( )  ( 25 1)

27

k
j

j

j

r r r r 


              (15) 

 

The linear multistep method (5) is consistent 

if the order of accuracy 1p  , 

0

 0
k

j

j

j

r


 ,  

1( ) ( ) ( ) ( ) 0nr r r r           

and ( ) ! ( )n r n r  for the principal root r 

= 1.  

Zero stability property of a linear multistep 

method (5) requires that the roots of (14) 

must satisfy 1r  , and every root with 

1r   must have multiplicity 6. 

The necessary and sufficient conditions for 

a linear multistep method to be convergent 

are consistency and zero stability, [see 

Henrici [16] for the proof]. 

Applying these definitions to (6) shows that 

the method is symmetric, consistent, zero-

stable and convergent. 

3.    Generating the Starting Values 

Implementation of the implicit 

discrete method (6) requires some starting 

values for the evaluation of 
( ) ,  1(1)6;  0(1)4r

n jy j r    in the f 

function. In this paper, the explicit method 

of order seven of Kayode [14] is adopted as 

the main predictor to implement 6ny   and its 

required derivatives. These are reproduced 

as follows: 
5

6 5 4 2 1 5 3 14 5 5 4 [ 10 ]
6

n n n n n n n n n

h
y y y y y y f f f              

    (11) 

p = 7 and 2 0.125pc    , 

 

6 5 4 3 2 1

4

5 3 1

1
[1704 2535 1720 5640 991 4080 ]

420

          [191 164 1595 ],
420

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

  

      

  

 

            (12) 

p = 7, 2 0.49156746pc   , 

 

6 5 4 3 2 12

3

5 3

1
[13078 2915 87620 155870 24197 102610 ]

600

          [74519 47525 451760 ],
75600

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

 

      

  

                (13) 

p = 7, 800165343.02 pc , 

 

6 5 4 3 2 13

2

5 3 1

1
[12 165 730 1080 163 690 ]

50

         [1021 310 3175 ],
600

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

  

      

  

                (14) 

p = 7, 69716666.02 pc , 

 

6 5 4 3 2 14

5 3 1

1
[491 2305 4310 4010 341 1855 ]

           [8291 1556 4120 ],
3600

iv

n n n n n n n

n n n

y y y y y y y
h

h
f f f

     

  

     

  

                (15) 

p = 7, 2pc =-0.47361111. 

 

The starting values for 
( )

5, 0,1,...,4r

ny r   in 

Kayode and Awoyemi [9] are adopted for 

5nf   in (11) – (15). 

 

4.     Numerical Examples 
Two non-linear numerical examples 

are solved to demonstrate the accuracy and 

usability of the new method. 

 

Problem 1 
(5) (1) (2) (4) (1) (3) 22 8 ( 2 3) ,xy y y yy y y x x x e      

,10  x  
(1) (2) (3) (4)(0) 1,  (0) 1,  (0) 3,  (0) 1,  (0) 1,  0.01.y y y y y h     

 

Theoretical solution is y(x) = 
2xex  . 
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Table1.  Results of problem 1. 

 
x-value y-exact y-computed Absolute Errors Errors in [14] 

0.1000 1.115170918075647 1.115170918074188 1.459721e-012 1.210563e-008 

0.1500 1.184334242728283 1.184334242718375 9.908074e-012  

0.2000 1.26140275816017 1.261402758118294 4.187584e-011 1.927066e-008 

0.2500 1.346525416687741 1.346525416558994 1.287477e-010  

0.3000 1.439858807576003 1.439858807253826 3.221776e-010 3.025973e-008 

0.3500 1.541567548593257 1.541567547894400 6.988572e-010  

0.4000 1.651824697641271 1.651824696276096 1.365175e-009 4.697311e-008 

0.4500 1.770812185490169 1.770812183028581 2.461589e-009  

0.5000 1.898721270700129 1.898721266533392 4.166737e-009 7.208283e-008 

0.5500 2.035753017867396 2.035753011165992 6.701404e-009  

0.6000 2.182118800390510 2.182118790058871 1.033164e-008 1.092800e-007 

0.6500 2.338040829013897 2.338040813641658 1.537224e-008  

0.7000 2.503752707470478 2.503752685281417 2.218906e-008 1.635841e-007 

0.7500 2.679500016612677 2.679499985410939 3.120174e-008  

0.8000 2.865540928492470 2.865540885606931 4.288554e-008 2.417328e-007 

0.8500 3.062146851925993 3.062146794152898 5.777310e-008  

0.9000 3.269603111156952 3.269603034701117 7.645583e-008 3.526740e-007 

0.9500 3.488209659315849 3.488209559730279 9.958557e-008  

1.0000 3.718281828459047 3.718281700584095 1.278750e-007 5.081954e-007 

 

 

Problem 2 
(5) (1) 3 (1) (2) 2 (3)6{2( ) 6 }y y yy y y y   ,   ,21  x  

(1) (2) (3) (4)(1) 1,  (1) 1,  (1) 2,  (1) 6,  (1) 24,  0.1.y y y y y h         

Theoretical solution is .
1

)(
x

xy   
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Table2. Results of problem 2. 
 

x-value y-exact y-computed Absolute Errors Errors in [14] 

1.10 0.909090909090908 0.909090909705684 6.147755e-010 6.380986e-009 

1.15 0.869565217391303 0.869565221664023 4.272720e-009  

1.20 0.833333333333331 0.833333350448592 1.711526e-008 1.702314e-007 

1.25 0.799999999999999 0.800000049850512 4.985051e-008  

1.30 0.769230769230767 0.769230887857545 1.186268e-007 1.196389e-006 

1.35 0.740740740740738 0.740740986399939 2.456592e-007  

1.40 0.714285714285712 0.714286174015168 4.597295e-007 4.670389e-006 

1.45 0.689655172413790 0.689655969010327 7.965965e-007  

1.50 0.666666666666664 0.666667966010523 1.299344e-006 1.325687e-005 

1.55 0.645161290322578 0.645163309002528 2.018680e-006  

1.60 0.624999999999997 0.625003013203557 3.013204e-006 3.082943e-005 

1.65 0.606060606060603 0.606064955702371 4.349642e-006  

1.70 0.588235294117644 0.588241397183878 6.103066e-006 6.256635e-005 

1.75 0.571428571428568 0.571436928520323 8.357092e-006  

1.80 0.555555555555552 0.55556675961580 1.120406e-005 1.150269e-004 

1.85 0.540540540540537 0.54055528575267 1.474521e-005  

1.90 0.526315789473681 0.526334880320716 1.909085e-005 1.962155e-004 

1.95 0.512820512820509 0.512844873295431 2.436047e-005  

2.00 0.499999999999997 0.500030682958982 3.068296e-005 3.156371e-004 
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5.    Conclusion 
A six-step collocation method has 

been proposed to directly solve fifth order 

odes of the form (1) without the burden of 

reduction to system of lower order 

problems. The method and its associated 

derivatives are of order seven. The starting 

values and their associated derivatives for 

the implementation of the method are 

obtained to be same order seven. Two non-

linear fifth order problems were solved with 

the new method as test problems. The 

accuracy of the results is compared with 

Kayode [14] as shown in Tables 1 and 2 

above. The results obtained showed the 

usability of the method for solving fifth 

order odes especially nonlinear problems. 

However, stiff problems have not been 

addressed in this work. In future research 

work, efforts will be directed at proposing 

numerical methods capable of solving 

general stiff fifth order odes directly. 
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