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Abstract

A direct method of solution of fifth order ordinary differential equations (odes) is
proposed in this paper. Collocation of the differential system is taken at selected grid points to
reduce the number of functions to be evaluated per iteration. A number of predictors of the
same order of accuracy with the main method for the estimation of y -functions and their
derivatives in the main method are generated. The symmetric implicit multiderivative
algorithm [SIMA] is suitable for numerical integration of non-stiff and mildly-stiff fifth order
equations. Test examples are solved with the method to confirm its efficiency.
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1. Introduction

In this article, a direct solution of
fifth order ordinary differential equations
(odes) of the form (1)

yo =f(xy Y,y xelabl @
together with initial conditions

y¥ @)=y, i=00)4,

is explored. This class of problems has a lot
of applications in applied sciences,
mechanical, civil and aerospace engineering
especially where vibration of structures due
to passage of moving loads under damping
forces are of paramount importance.

Akbar and Siddique [1] investigated
the analytical solution of fifth order weakly
nonlinear oscillatory systems of type (1). In
practice, the numerical integration process
of problem (1) involves a reduction to
systems of first order equations which may
then be solved with any known methods for
first order equations. This approach has its
inherent setbacks, Awoyemi [2]. Different

authors have proposed methods for direct
solution of higher order problems. Awoyemi
[2], Parand and Hojjati[3], Saravai and
Mirrajei [4], Golbabai and Arabshahi [5],
Kayode[6], [7], all considered second order
equations using different step-lengths and
step-numbers to obtain methods of various
order of accuracy. Kayode and Adeyeye [8]
and Kayode and Obarhua [9] also
developed numerical hybrid methods for
direct solution of general second order
differential equations by using different
basis functions to generate collocation and
interpolation equations,. In their work,
Awoyemi and Idowu [10] considered direct
numerical solution of third order equations.
Awoyemi  [11] and Kayode [12]
investigated the direct solution of fourth
order differential equations. However, all
these methods are not suitable to solve fifth
order problems of type (1) without reduction
to lower order problems. Kayode and
Awoyemi  [13] proposed a 5-step
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multiderivative collocation method in a 1 x ¥ ¥ x ¥ xX X X8
predictor-corrector mode for problem (1). Tox, X2, &, X 8, 8, X, K8,
The method is non-symmetric and may not 1ox, X, ©, x, X, 3, ¥, X,
be suitable for oscillatory problems. Kayode 1ox, K, K, X, X, L X, X,
[14] proposed an explicit method for solving A=l ox, @ K Xy XL XL X, X,
(1) directly. The aim of this article is to 1o, 20 Xy X, 8 . X, R,
propose — a symmetric implicit 00 0 0 0 120 720x 25205 6720%
multlderlvatlve algorithm [SIMA] with 00 0 0 0 120 720, 2520%, 6720%,
increased stepnumber as well as increased 000 0 0 0 120 720x . 2500% . 67205

order of accuracy (p) for the approximate - " " e

solution of (1) directly. .
X=[Hh A 4 & A4 & 4 A4 A,
2.  Methodology

The basis function for the
approximate solution of problem (1) is taken
to be the partial sum of power series of a

single variable x in the form
k+2

y(x) =D Ax! (2)
j=0

B:[fn fn+3 fn+6 yn yn+l yn+2 yn+3 yn+4 yn+5]T'

T is the matrix transpose,

fn+r = f(xn+r' yn+r' yr'wr’ yr’1'+r’ yr’lﬂ+r’ yrlmv+r)' r :0’ 1' 2' Y
yn+i ~ y(Xn+i)'

where Solving the matrix (4) for /Ij's and using
4; €R,yeC"(a,b) = P(x). X—X,.c
The fifth derivative of (2) substituted in (1) = T
is given as

in  (3) yielded, after

simplification, the continuous method

k+2

2AG-DG-2)( -9 -44x" = Fx vy, y@,y?, y)

: ©)
Collocating (3) at X=X, ;, J=0Q)k-1
and interpolating (2) at x=Xx_;, j =0(3)k

yield the following
interpolation matrix

collocation and

AX =B (@)
where

k-1 k-4
yk (t) = zaj (t) yn+j + Zﬂsj (t) fn+3j' (5)
i=0 j=0

The continuous coefficients ¢, (t) and
B;(t) in (5), when k is taken to be 6, are
found to be:

a,(t) = L[seoot +9108t2 +8456t° +3521t* +560t° — 28t° ~16t” —t°],
o 25200

a,(t) = _—1[2340’[ +6798t2 +7196t% + 3311t* +560t° — 28t° —16t" —t°],

5040

a,(t) = L[zm +3228t? +5516t° + 3101t* + 560t° — 28t° —16t” —t°],
2 2520

a(t) = Flzo[sgsot +2862t% — 3416t — 2891t* —560t° + 28t° +16t7 +1°],

a,(t) :%[16560t+12732t2 —896t° — 2681t* —560t° + 28t° +16t7 +1°],

a,(t) = i[zszoo +48900t + 27642t + 2044t° — 2471t* —560t° + 28t° +16t7 +1°],
=Y 25200
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B (t) = ——————[29520t + 73044t” + 66668t° +27923t* +4760t° —154t° —148t" ~13t°],

2721600

A= 1360

Bol®) = oo 15040t +13068t? +13132t° + 6769t * +1960t° +322t° + 28t7 +1°].

5443
A discrete implicit multiderivative form and
its derivatives arising from (5), whent =1,
are obtained to be

5

2h
+—[f +25f .+ f
S A

(6)

Ynis =4Ynis ~OYnia Y2 =4Yn + Vo

n+3

p =7and C,,, is0.40277;

Yoo = 420h ——[1632y, , —2175y,,, — 2440y, , + 6360y, , —4440y, , +1063y,]
+—[761f +16730f, , +7071,],
3780
(7)
p =7, c,,=-0.400297619;
1452 5429 45 9291 1367 585
Yneo = h? 403 Ynis + 1260 Tonn Ynea T 193 Yne3 71 Yni2 630 You 122 Ya
o031t +527756 1, ,+ 22080 ¢ 1,
68040
(8)
p =7, c,,, =0.442890211;
" 1
Ynie = W[’JAGYMS +955yn+4 -2310 Yoia 2660)/,”2 —1480 Yo +321yn]
h? 287
+m[89 fo.6 +11341 +? f.1
9)
p =7,c,., = —0.09583333;
Yoes = 50h‘°[ 201y, . +1055y, , — 2210y, , + 2310y, , —1205y, , + 251y, ]
N nosof,, +7180f, ,+ 228 1,
080 5
(10)
p=7c,,=035972222.

Definitions: [Lambert [15]]
(a2) Order and error constant

Let L be the linear difference
operator associated with (5) given by

[43920t +98964t” +78736t° + 27265t * +3430t° — 224t° —86t" —5t°],

FLy00ihl= e yocr ) -h*By* o+ i1 (D

where y(x) is an arbitrary function,
continuously differentiable on an interval [a,
b]. Assuming that y(x) has as many higher

derivatives as may be required, then
expanding (11) by Taylor series gives

KIy(x);h]=Coy(x) +Cy” (x)+C,y® (0+-+Cpy P () +---
(12)
where

Co=ayta+a,++a,,

C =a,+2a,+-+ke,

1
C, :a(a1+22a2+"'+kzak)’(ﬁu+181+ﬂ2+"'+ﬁk)y

0 2),(/31+2“ﬂ2+ +k"4), p=3,4,

1
C, :E(a1+2°a2+---+k”ak)—

The order of accuracy of (5) is p if
C,=C=C,=---=C,=C,,=0, C ,=#0

and its error constant is CM. Applying the

definitions of order and error constant above
to (6), (7), (8), (9) and (10) produces order
of accuracy p = 7 for each of them and error

constants  C ., to be 0.40277,

—0.400297619, 0.442890211,
—0.09583333, 0.35972222, respectively.

p+2

(b) Symmetry, Consistency zero
stability and convergence

Consider the characteristic equation
associated with (5) given by

[1(r,h)= p(r)—o(r), h=2n°,  (13)

of . .
where 4 =— is the eigenvalue(s) of the

Jacobian of (1). pand o are the first and

second characteristic polynomials of (5)
respectively. They are given by
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k .
p(r)=>a;r = r*—4r°+5r* —5r’ +4r-1 (14)
=0

a(r):zk:ﬁjrj = 2—27(r5+25r3+1) (15)
=0

The linear multistep method (5) is consistent
if the order of accuracy p=1,

k
Zajrj =0,
=0

p(r)=p"(r)=p"(r)=--p"(r)=0
and p"(r) =nlo(r) for the principal root r
=1.

Zero stability property of a linear multistep
method (5) requires that the roots of (14)

must satisfy |r|<1, and every root with

|r| =1 must have multiplicity 6.

The necessary and sufficient conditions for
a linear multistep method to be convergent
are consistency and zero stability, [see
Henrici [16] for the proof].

Applying these definitions to (6) shows that
the method is symmetric, consistent, zero-
stable and convergent.

3. Generating the Starting Values

Implementation of the implicit
discrete method (6) requires some starting
values for the evaluation of
y, j=106; r=01)4 in the f-
function. In this paper, the explicit method
of order seven of Kayode [14] is adopted as
the main predictor to implementy, ., and its

required derivatives. These are reproduced
as follows:

5

h
Yoss =4Ynis =9Ynea +9¥n2 —4You + Y, +E[ fos +10f 5+ f 1]
(11)
p=7andc,,=-0.125,

, 1
Vs = g5 L704Ys.c ~2535Y,., ~1720y, ; +5640, , + 991y, ; ~4080Y,]

+ h—d[lgll‘m5 +164f ,,+1595f ],
420
(12)
p=7,c,,, =0.49156746,

1
600h°
h3
75600

Vo= [13078Y, s — 2915y, , —~87620Y, ., +155870y,,, + 24197y, ,, ~102610y,]

+

[74519f, , + 475251, , +4517601,],
(13)
p=7,c,,, = 0.800165343,

Vo = g 112Y,.5 +165Y,., ~ 730y, , +1080y, , +163y,,, 690y, ]

+ h—2[1021fm5 +310f, ,+3175f ],
600
(14)
p=7,c,.,=0.69716666,

Yiie = hi,,[491yn+s —2305y,, +4310y,., - 4010y, , — 341y, , +1855y,]

h
+30g0 18291 s 15561, 5 ~4120f,..],

(15)
p=7, c,,=047361111.

The starting values for y".,r=0,1,...,4 in

n+5?

Kayode and Awoyemi [9] are adopted for
f..s in(11) — (15).

4. Numerical Examples

Two non-linear numerical examples
are solved to demonstrate the accuracy and
usability of the new method.

Problem 1

y® =2yOy@ @ _yOy® gy (x* —2x-3)e*,

0<x<],
¥(0)=1 y®(0)=1, y?(0) =3, y¥(0) =1, y*(0) =1 h=0.01.

Theoretical solution is y(x) = &* + X°.
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Tablel. Results of problem 1.

x-value y-exact y-computed Absolute Errors Errors in [14]
0.1000 1.115170918075647 1.115170918074188 1.459721e-012 1.210563e-008
0.1500 1.184334242728283 1.184334242718375 9.908074e-012
0.2000 1.26140275816017 1.261402758118294 4.187584e-011 1.927066e-008
0.2500 1.346525416687741 1.346525416558994 1.287477e-010
0.3000 1.439858807576003 1.439858807253826 3.221776e-010 3.025973e-008
0.3500 1.541567548593257 1.541567547894400 6.988572e-010
0.4000 1.651824697641271 1.651824696276096 1.365175e-009 4.697311e-008
0.4500 1.770812185490169 1.770812183028581 2.461589¢e-009
0.5000 1.898721270700129 1.898721266533392 4.166737e-009 7.208283e-008
0.5500 2.035753017867396 2.035753011165992 6.701404e-009
0.6000 2.182118800390510 2.182118790058871 1.033164e-008 1.092800e-007
0.6500 2.338040829013897 2.338040813641658 1.537224e-008
0.7000 2.503752707470478 2.503752685281417 2.218906e-008 1.635841e-007
0.7500 2.679500016612677 2.679499985410939 3.120174e-008
0.8000 2.865540928492470 2.865540885606931 4.288554e-008 2.417328e-007
0.8500 3.062146851925993 3.062146794152898 5.777310e-008
0.9000 3.269603111156952 3.269603034701117 7.645583e-008 3.526740e-007
0.9500 3.488209659315849 3.488209559730279 9.958557e-008
1.0000 3.718281828459047 3.718281700584095 1.278750e-007 5.081954e-007
Problem 2

y(5) — 6{2(y(1))3 +6yy(l) y(z) + yzy(3)}, 1<x< 2’
yO =1y =-1 y?®)=2y?®)=-6y“1)=24, h=0.1.

. o 1
Theoretical solution is y(x) = —.
X
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Table2. Results of problem 2.

x-value y-exact y-computed Absolute Errors | Errorsin [14]
1.10 0.909090909090908 0.909090909705684 6.147755e-010 6.380986e-009
1.15 0.869565217391303 0.869565221664023 4.272720e-009
1.20 0.833333333333331 0.833333350448592 1.711526e-008 1.702314e-007
1.25 0.799999999999999 0.800000049850512 4.985051e-008
1.30 0.769230769230767 0.769230887857545 1.186268e-007 1.196389e-006
1.35 0.740740740740738 0.740740986399939 2.456592e-007
1.40 0.714285714285712 0.714286174015168 4.597295e-007 4.670389e-006
1.45 0.689655172413790 0.689655969010327 7.965965e-007
1.50 0.666666666666664 0.666667966010523 1.299344e-006 1.325687e-005
1.55 0.645161290322578 0.645163309002528 2.018680e-006
1.60 0.624999999999997 0.625003013203557 3.013204e-006 3.082943e-005
1.65 0.606060606060603 0.606064955702371 4.349642e-006
1.70 0.588235294117644 0.588241397183878 6.103066€e-006 6.256635e-005
1.75 0.571428571428568 0.571436928520323 8.357092e-006
1.80 0.555555555555552 0.55556675961580 1.120406e-005 1.150269e-004
1.85 0.540540540540537 0.54055528575267 1.474521e-005
1.90 0.526315789473681 0.526334880320716 1.909085e-005 1.962155e-004
1.95 0.512820512820509 0.512844873295431 2.436047e-005
2.00 0.499999999999997 0.500030682958982 3.068296e-005 3.156371e-004
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5. Conclusion

A six-step collocation method has
been proposed to directly solve fifth order
odes of the form (1) without the burden of
reduction to system of lower order
problems. The method and its associated
derivatives are of order seven. The starting
values and their associated derivatives for
the implementation of the method are
obtained to be same order seven. Two non-
linear fifth order problems were solved with
the new method as test problems. The
accuracy of the results is compared with
Kayode [14] as shown in Tables 1 and 2
above. The results obtained showed the
usability of the method for solving fifth
order odes especially nonlinear problems.
However, stiff problems have not been
addressed in this work. In future research
work, efforts will be directed at proposing
numerical methods capable of solving
general stiff fifth order odes directly.
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