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Abstract 
This paper presents a study of the numerical instability of the Advection Upstream Splitting 

Method (AUSM) for inviscid compressible flow analysis on two-dimensional structured triangular 

grids.  The composition of the AUSM flux-vector splitting scheme for the solution of the Euler 

equations is reviewed.  Mach number splitting functions operating with values from adjacent cells 

are used to determine numerical convective fluxes, and the pressure splitting is used for the 

evaluation of numerical pressure fluxes. The scheme is further extended to obtain higher-order 

spatial and temporal solution accuracy.  A computational model for shock wave problems is 

presented to investigate the numerical stability of the scheme.  The performance and efficiency of 

the AUSM scheme are evaluated by solving three high-speed compressible flow problems. 
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1. Introduction
In general, fluids are naturally 

compressible.  A fluid whose density varies 

an appreciable amount under high pressure 

load is called a compressible fluid.  The main 

difference between compressible and 

incompressible fluids is the rate at which 

forces are transmitted through the fluid itself 

[1]. Compressible flow behavior that includes 

shock waves occurs in numerous situations. 

The problem of a fixed shock in a steady flow 

can simply be modeled, and its solution obeys 

the Rankine-Hugoniot relationships. A 

pressure disturbance is transmitted in the form 

of successive compression and rarefaction 

waves due to its elastic in nature. When the 

strength of a pressure disturbance becomes 

large enough, the speed of the wave may 

increases beyond the speed of a sound wave, 

and this generates a wave of a higher  

amplitude called a shock wave. A shock tube 

is an equipment for generating gas flows of a 

very short duration which commonly used to 

generate shock or blast waves in the 

laboratory. A rapid removal of the diaphragm 

generates a flow of a short duration 

containing waves of finite amplitude 

separated by quasi-steady regions. Initially, a 

shock wave travels into the low pressure gas 

while an expansion or rarefaction wave 

travels into the high pressure gas. The quasi-

steady flow regions induced behind these 

waves are separated by a contact surface 

across which pressure and velocity are equal. 
During the past decades, a variety of 

shock-capturing schemes have been 

developed for solving the Euler equations of 

gas dynamics. The growth of interest in 

computational fluid dynamics especially the 

upwind schemes brought the development of  
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sufficiently robust, accurate and efficient 

numerical methods for the solution of inviscid 

compressible flow problems described by the 

non-linear system of the Euler equations. One 

of the methods, the Roe's flux-difference 

splitting scheme [2] has been proven to 

provide good efficiency for the solution of 

compressible inviscid flow problems. 

However, the scheme has some weakness and 

may fail or produce unphysical numerical 

solutions for certain problems, such as the 

high Mach number flow past a blunt-body [3] 

and the moving shock in a straight duct from 

an odd-even grid perturbation [4]. The 

unrealistic phenomenon is known as the 

carbuncle phenomenon. Such phenomenon 

was first reported by Perry and Imlay [3] for a 

blunt-body computations using the Roe's FDS 

scheme. It consists of a spurious steady-state 

solution obtained when computing supersonic 

flows past a blunt-body problem. The 

spurious solution includes a recirculation 

region behind the detached bow shock in the 

vicinity of the stagnation line. To overcome 

this problem, many researchers [5-9] 

proposed the entropy fix formulation to 

correct the near zero eigenvalues by some 

tolerances. However, There is an evidence 

[10] showing that the carbuncle phenomenon 

is incurable because it can be a valid solution 

with vanishing viscosity limits.    

The upwind schemes are categorized as 

either flux-vector splitting (FVS) or flux-

difference splitting (FDS). The FVS schemes 

[11-12] are known to be fast, simple and 

robust for capturing strong shocks and 

rarefaction waves. However, many numerical 

simulations indicated that these schemes are 

too dissipative and may deteriorate the 

boundary layer profiles. The FDS scheme by 

Roe [2] is widely used due to its accuracy, 

quality and mathematical clarity, while the 

FDS scheme requires longer computational 

time as compared to the FVS scheme due to 

its matrix calculations basis.  The AUSM 

scheme was presented [13] as a simple, fast  

 

 

and robust method in comparison to existing 

numerical schemes and became one of the 

most popular computational fluid dynamics 

techniques. The AUSM scheme is developed 

by combining the accuracy of the flux 

difference splitting scheme (FDS) and the 

robustness of flux vector splitting scheme 

(FVS) together. Accuracy was improved 

especially on the boundary or in the shear 

layers.  

The objective of this work is to review the 

finite volume formulation of the first- and 

second-order accurate of the AUSM scheme 

on two-dimensional triangular grids. The 

numerical instability of the AUSM scheme on 

two-dimensional structured triangular grids is 

investigated by testing against some well-

known problems that exhibit numerical shock 

instabilities. In order to improve the accuracy, 

Mach number and pressure splitting functions 

are used in this AUSM scheme (AUSM-M). 

The performance of the scheme is then 

evaluated through three examples.  These 

examples are (1) the symmetric rarefaction 

wave, (2) the Mach 3 flow over forward 

facing step, and (3) the Mach 2 shock 

reflection over wedge problems. 

 

2.    Governing Equation and AUSM 

Scheme 
The governing differential equations of 

the Euler equations for the two-dimensional 

inviscid flow [2] are given by 

                    0














yxt

GEU
                  (1) 

where U   is the vector of conservation 

variables, E   and G   are the vectors of the 

convection fluxes in x and y directions, 

respectively.  The perfect gas equation of 

state is in the form, 

                      1 ep                          
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where  p  is the pressure,    is the density, e   

is the internal energy, and    is the specific 

heat ratio (1.4 for perfect gas).By integrating 

Eq. (1) over a control volume,  , and by 

applying the divergence theorem to the 

resulting flux integral, we obtain 

               0ˆ 






 dSd
t

nFU               (3) 

where 
yx nGnEF ˆˆ    is the numerical flux 

vector and n̂   is the normal unit vector to the 

cell boundary. The underlying idea of the 

scheme is based on the recognition that the 

vector of convective fluxes [13] consists of 

two physically distinct parts, namely the 

convective and the pressure terms, that is 
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where H  is the enthalpy, and V is the 

contravariant velocity for convecting the 

convective term as passive scalar quantities. 

On the other hand, the pressure flux term is 

governed by the acoustic wave speed. 

By discretizing these two fluxes 

separately [13] and by introducing the 

advection Mach number for robustness, the 

numerical fluxes through a cell face can be 

written as 
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where a  is the speed of sound, and 
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Similar to the Van Leer’s flux-vector 

splitting scheme [12], the advection Mach 

number is determined as a contribution of the 

left and right split Mach numbers by 

 

                          RL MMM 2/1
                 (8) 

where the split Mach numbers are defined as 
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and the pressure at a cell face of the control 

volume is obtained from the second order 

splitting idea depending on the Mach number) 

as 

                        RL ppp 2/1
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The distributions of the M  and the p  terms 

are shown in Figs. 1(a)-(b). 

Finally, the numerical fluxes at the cell 

face of the AUSM scheme can be written in 

the upwind form as, 
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Fig. 1. Distribution of M  and p  terms. 

 

 

By writing the numerical fluxes in this form, 

it is easy to emphasize that the convective 

term is convective by the normal Mach 

number (
2/1M ) as passive scalar quantities, 

and the pressure flux term is governed by the 

acoustic wave speed (
2/1p ). 

 

3.    Higher-order Extension 
The solution accuracy from the first-order 

formulation described in the preceding 

section can be improved by implementing a 

high-order formulation for both space and 

time.  A high-order spatial discretization is 

achieved by applying the Taylor' series 

expansion to the cell-centered solution for 

each cell face [14] which can be reconstructed 

from, 

             rqqq  centroidface          
       (13) 

where  Tpvuq   consists of the 

primitive variables of the density, the velocity 

components, and the pressure, respectively;

q    represents the gradient of the variables; 

and r   is the vector projected to the given cell 

face. The quantity   in Eq. (13) represents 

the limiter for preventing spurious oscillation 

that may occur in the region of high gradients.  

In this study, the Vekatakrishnan's limiter 

function [15] is selected and can be written in 

the form, 
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where 
ic qq  , 

iqq  maxmax, , and 

iqq  minmin, .  The 
maxq  and 

minq  are 

respectively the maximum and minimum 

values of all distance-one neighboring cells.   

The function  is expressed in the form 
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Finally, the second-order temporal accuracy is 

achieved by implementing the second-order 

accurate Runge-Kutta time stepping method 

[16] as, 
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where t  is the time step. 

4.    Numerical Examples 

In order to evaluate the robustness and the 

accuracy of the AUSM scheme, three 

examples are examined.  All examples 

presented in this section are tested using 

uniform triangular grids.  These examples are 

(1) the symmetric rarefaction wave, (2) the 

Mach 3 flow over forward facing step, and (3) 

the Mach 2 shock reflection over wedge 

problems. 

4.1 Symmetric Rarefaction Wave 
The first benchmark problem is a rather 

difficult case because the initial conditions are 

chosen to produce a vacuum at the central 

region of the domain. Many numerical 

schemes cannot preserve the contact 

discontinuity and require certain numerical 

fluxes corrections [9]. This problem [17] is 

simulated on a 1.01  domain, which is 

discretized by uniform triangular elements     

( 40400 ). The initial conditions of the  

 

symmetric rarefaction wave problem ( 5M ) 

are given by )2.0,1,7(),,( Lpu  and 

)2.0,1,7(),,( Rpu , such that they produce a 

vacuum at the center of domain.   

Figures 2(a)-(c) show the first- and 

second-order accurate density, the pressure 

and the u-velocity distributions along the tube 

length at time 3.0t  compared to the exact 

solutions.  The first-order accurate solutions 

are shown by the hollow circle symbol. They 

are too diffusive and provide little accuracy 

especially in the vicinity of the rapid change 

area. This problem was repeated using the 

higher-order accurate scheme, and the 

solutions are shown by the solid circle symbol 

in Figs. 2(a)-(c).  The distributions show that 

such higher-order extension of AUSM 

scheme can provide a more accurate solution 

than the first-order solution. 

 
(a) Density 

 
(b) Pressure 
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(c) x-velocity 

Fig.2. Comparison of exact and numerical 

solutions of problem 4.1. 

 

           4.2 Mach 3 Flow over Forward 

Facing Step 

    The second problem is a Mach 3 flow 

through the channel with a forward facing 

step. The flow exits through the right 

boundary as shown in Fig. 3.  This problem 

was studied extensively by Woodward and 

Colella [18] and later by many researchers. 

Because the facing step contains a singularity, 

this may lead to an erroneous entropy layer at 

the downstream bottom wall as well as a 

spurious Mach stem at the bottom wall [19]. 

The flow phenomenon starts from the first 

time step. A strong shock wave is generated 

due to the facing step. Then, the shock wave 

impinges on the top wall and reflects at the 

wall to exhibit shock wave reflections at the 

top and bottom walls.  

 

 
 

Fig.3. Problem geometry of problem 4.2. 

 

 

 

 

 

 

 
(a) O(1) 

 

 
(b) O(2) 

Fig.4. Density contours of problem 4.2. 

 

 
 

Fig.5. Schlieren plot of problem 4.2. 

 

In the computation, the uniform triangular 

grid size of 1/20 is used. Figures 4(a)-(b) 

show the first- and second-order accurate 

density contours at time s 5.10t . These 

figures show that the first-order accurate 

solution is diffusive compared to the second-

order accurate solution. Again, the AUSM 

scheme can provide the improved resolution 

especially at the upper slip line emanated 

from the triple point and decrease the artifacts 

caused by the corner as shown in Fig. 5. The 

Kelvin-Helmholtz instability of the contact 

discontinuity along the upper wall is clearly 

visible. These schemes are more robust than 

the Roe’s FDS scheme [8] because no 

unphysical expansion shock wave on top of 

the facing step corner occurred in the 

solutions.  It is noted that the scheme can 

capture the slip line better with a finer grid 

size. 
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Fig.6. Problem geometry of problem 4.3. 

             4.3 Mach 2 Shock Reflection over 

Wedge 

    The computational domain for a Mach 

2 shock reflection over a wedge at 46 degrees 

[20] is illustrated in Fig. 6. All numerical 

experiments were performed using a 

structured triangular mesh with a spacing of 

0.0039 for a total of 91,471 cells.  Figures 

7(a)-(c) show the density contours obtained 

from the second-order solution accuracy at 

the four time steps where the shock wave is 

approximately located at the distance of 0.1 

from the right boundary at the time 35.0t .  

   The solution from the AUSM scheme is 

improved with good shock and Mach stem 

resolution until time 25.0t . However, the 

incident shock is slightly broken-down with 

spurious and kinked Mach stem due to an 

inappropriate numerical dissipation added to 

the vorticity and entropy waves [21] as shown 

in Fig. 7(c). The slipstream is not shown 

clearly in these figures. By using the 

Shadowgraph technique, both the slipstream 

emanated from the triple point and the 

spurious and kinked Mach stem are clearly 

expressed as shown in Fig. 8. 

 

 

 

 

 

 
(a) 15.0t  

 
(b) 25.0t  

 
(c) 35.0t  

 

Fig.7. Density contours at four time steps  

of problem 4.3. 

 

 
Fig.8. Shadowgraph plot of problem 4.2. 
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5.    Conclusions 
In this paper, the AUSM scheme with a 

reconstruction of the second-order accurate 

finite volume method on triangular grids in 

two-dimensional domain was presented. The 

theoretical formulation of the Euler system of 

equations, and the discretrization of the 

numerical fluxes were explained in detail. 

Three high-speed compressible flow 

examples were used to evaluate the accuracy 

and the robustness of the scheme. The 

examination process was found to provide 

more accurate solutions for two test cases.  

However, in the last example, the incident 

shock is slightly broken-down with spurious 

and kinked Mach stem at time 35.0t . In 

order to improve the solution, the problem is 

currently investigated to understand the 

mechanism of these numerical defects. 
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