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Abstract 
This paper presents a characteristic-based scheme for solving the level set equation in 

arbitrary two-dimensional domain.  The characteristic-based approach is used to derive a level set 

equation in two dimensions for solving the evolving interface problems with zero level set along 

their interfaces.  An explicit finite volume method is employed to discretize the characteristic level 

set equation. The scheme is used to study motion by mean curvature where the interface moves in 

the normal direction with the velocity proportional to its curvature. Accuracy and robustness of the 

proposed method are evaluated via test cases with prescribed velocity fields and its curvature on 

structured triangular grids. The predicted results are compared with those in literatures. 

 

Keywords: Characteristic Level Set Equation; Explicit Scheme; Finite Volume Method; Mean 

Curvature Analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.    Introduction 

A difficulty in analyzing the  

multiphase or multifluid flows is that the 

internal interface position and shape must be 

determined as a part of the solution of the 

field equations. Flows near the interfaces 

often have strong vortical components 

because of the related sharp gradients in the 

fluid properties.   To predict  the flow 

phenomena accurately, we precisely tracked 

the interface in both time and space.The 

interface normal vectors and curvatures also 

needed to be approximated through a highly 

accurate numerical scheme in order to model 

the interface accurately.  Numerically, there 

are two sources of error in the calculation of 

the surface tension: 1) the discretization of the 

surface tension, and 2) the approximation of 

the interface curvature [1]. 
Many researchers have proposed 

various techniques for capturing or tracking  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interface topology. Typical methods are 

the front tracking method [2,3], the level set 

method [4,5], and the volume-of-fluid method 

[6,7]. In the past years, the level set method 

has gained popularity in describing the 

location and motion of advancing interfaces 

due to its simplicity. The basic idea is to 

determine the position of the front interface 

by a distinct     iso-value of a scalar function, 

namely the so called level set function. The 

applications of the level set method for 

moving boundaries and interfaces problems 

exist in many fields such as the crystal 

growth, multiphase flows, multifluid flows, 

front propagat ions, f luid-structural  

interactions, curvature-driven flow, etc. In 

general, the interface is represented by a zero 

level contour of a signed distance function.  It 

is desirable to maintain the level set function, 
),( tx   as a signed distance 
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function during the interface evolution for 

accurate interface capturing.  The calculation 

of the interface curvature from the level set 

method is straightforward but not necessarily 

accurate [5].   

 The objective of this work is to 

develop a robust explicit finite volume 

element method for solving the characteristic 

level set equation in two-dimensional 

triangular grids domain.  This paper presents 

an idea of using the finite volume and finite 

element  schemes to discretize the  

characteristic level set equation for solving 

curvature-driven flow problems [8,9] by 

adding the curvature driven motion term into 

the level set equation. In this paper, the 

concept of characteristic-based scheme 

[10],for approximating the Lagrangian 

derivatives in time, is used to derive the level 

set equation. An explicit finite volume 

method is employed to develop the 

discretized equations for the spatial domain.  

The approximation of the gradients at cell 

faces for determining curvature term is 

calculated by means of the conventional 

weighted-residual finite element technique 

[11]. Robustness and efficiency of the 

proposed method are examined by analyzing 

two examples, and comparing with those 

reported by other researchers.   

 

2.    Characteristic Level Set for Motion 

by Mean Curvature Formulation 

Given a smooth front   in Euclidean 

space 
NR ,the mean curvature x of   at 

the point x  is the average of the principal 

curvatures at x . The problem of motion by 

mean curvature of fronts of
NR can be stated 

as follows: The evolution of a given initial 

front 0 such that at every time t , the 

boundary point of the front moves with a 

normal speed equal to the mean curvature of 

the boundary [12]. The level set method is an 

implicit method for determining the evolution  

 

of an interface of fluids.  The level set 

function   (or distance function) such that 

)min(),( It xxx   for all II x  is a  

passive scalar function that is advected by the 

flow with the local flow velocity.  This paper  

considers the motion by mean curvature 

where the interface moves in the normal 

direction with a velocity proportional to its 

curvature, i.e.,   bV  where b  is a 

constant,and the curvature )/(  

. For the two-dimensional domain, the level 

set function can be written as, 
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where ),( tx  defines the implicit 

interface by its zero level set, and is chosen to 

be positive outside )(  , negative inside 

)(  , and zero on the interface ( I ), 

and ),0( Tt  for T .The velocity field 

)),,(,( ttxxVV  can be defined in 

several ways depending on the applications 

[4,5].  The initial condition is defined for 

x  with 
2R  and 

I 
  by )()0,( 0 xx   . 

By following the idea described in [10], 

Eq. (1) is semi-discretized along the 

characteristic line. By utilizing the Crank–

Nicolson scheme, it can be written in the 

form, 
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Then, the local Taylor series expansion in 

space is applied to the second term on the 

left-hand side and to the right-hand side 

terms.  The incremental distance x  along 

the characteristic path is then approximated 

by tn   2/1
Vx , where 

2/1n
V  is the 

average velocity along the characteristic at 

time 2/1 nt .  Finally, Eq. (2) can be 

written in a fully explicit form as, 
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By utilizing some vector identities, Eq. 

(3) can be written preferably in the 

conservation form for applying the finite 

volume method as follows, 
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3.    Finite Volume Scheme 

The computational domain is first 

discretized into a collection of non-

overlapping convex polygon control volumes 

i  and Ni ,...,1 , that completely 

cover the domain such that i

N

i  1 , 

0i , and 0 ji  if ji  . Eq. (4) 

is integrated over the control volume i  to 

obtain 
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The divergence theorem is applied to 

some spatial terms on the right-hand side to 

yield,  
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By using the approximation to the 

cell average of   over i  at time 
nt  and 

1nt [13] for any control volume, we 

approximated the flux integral over i  

appearing on the      right-hand side of Eq. (7) 

by the summation of fluxes passing through 

all adjacent cell faces. Finally, a fully explicit 

formulation for solving a characteristic level 

set equation is obtained in the form, 
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The level set function, 
n

ij , at cell face at 

the time step 
nt , is approximated by applying 

the Taylor series expansion in space such that  
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ij   )( xx  where ix  and ijx  

are the cell centroid and face centroid 

locations, respectively. For the opposite 

direction of velocity, the values of 
n

ij  may be 

similarly computed but by using the values 

from the neighboring control volumes 

according to the upwinding direction, such 

that  
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The boundary conditions for Eq.(7) can 

be given by 
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where   ND  .  

A numerical simulation can take into 

account only a part of the truncation of the 

domain and, thus, can lead to artificial 

boundaries. The ghost cells concept is 

implemented in this paper. The scalar 

quantity on the Dirichlet boundary condition 

is given by the user, and the linear 

extrapolation is used to determine the scalar 

quantity on the Neumann boundary condition. 

       The CFL-like stability criterion must be 

fulfilled in order to ensure the stability of an 

explicit scheme on a triangular mesh.  The 

permissible time step within each cell is 

determined from 
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where ijnv ,


 is the scaled normal velocity at 

ij , 
c

i is the characteristic length of cell i ,  

and 10 C .  In this paper, all examples are 

performed with the value of 8.0C . 

 

4. One-Dimensional Numerical 

Analysis 

In this section, a numerical analysis        

of the one-dimensional homogeneous 

convection-diffusion equation is presented. 

For simplicity, the order of accuracy and 

stability of the explicit numerical scheme 

given by Eq.(10) will be analyzed on               

a uniform one-dimensional grid cel l , 

xi  .Theone-dimensional homogeneous 

convection-diffusion equation is
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where a  is a given velocity. The numerical 

equation for the ith cell, ),( 2/12/1  iii xx , 

may be written as 
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The gradient quantities at the cell faces i-

1/2 and i+1/2 are calculated by using the one-

dimensional linear interpolation function 
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Similarly, the gradient quantity at cell-

centered of i  is 
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By substituting these expressions into the 

right-hand side of Eq.(11), we obtain 
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  and 

2)( x
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
 , are the cell 

Courant number and the cell diffusion 

parameter, respectively.  The truncation error 

analysis by using the Taylor series expansion 

on Eq.(14) at ),(),( nitx n

n   shows that the 

accuracy is of the order ),,( 22 xxttO  . 

          The discrete Fourier transform is 

applied to Eq.(14), term by term, in order to 

analyze the stability of the numerical scheme. 

Then the amplification factor )(G  is 

calculated as 
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where   is a phase angle. For a stable 

solution, the modulus of )(G  must be 

bounded for all values of   ( 1)( G ). The 

critical points at   ,0  are obtained by 

differentiating Eq.(15) with respect to   and  

setting the derivative to be zero. The values of 

)(G  at these points are 
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For )( G  to be bounded by one, the 

numerical scheme is conditionally stable 

when 5.00  rR . Such condition 

implies that tCG 1)( , where 0C . 

The numerical scheme satisfies the von 

Neumann condition.  Thus the scheme is 

stable. However, it should be noted that the 

stability condition is restrictive. The CFL-like 

condition as described by Eq.(9), which is 

obtained by applying the discrete Fourier 

transform to the convection and diffusion 

parts separately, is stable with a large time 

step. Such stability condition has been tested 

by using many numerical examples as will be 

presented in the following section. 

5.    Results 

To evaluate the robustness and 

accuracy of the proposed characteristic level 

set method, two examples are examined. 

These examples are used to study motion by 

mean curvature where the interface moves in 

the normal direction with a velocity 

proportional to its curvature.   All examples 

presented in this section are tested using 

uniform triangular grids.  These examples are: 

(1) the motion by mean curvature of a star 

shape, and (2) the motion in the normal 

direction involving mean curvature of a 

quatrefoil problems. 

          5.1 Motion by Mean Curvature of 

a Star Shape 
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     The first benchmark problem is used 

to examine the capability of the proposed 

method to calculate the curvature of a star 

shape [9], where the motion of simply-closed 

curve collapsing with the speed proportional 

to the local curvature in a square domain of  

 

 

)1,1()1,1(  . This problem is tested 

using the same domain size as described in 

the previous problems.  The initial condition 

of the star shape is given by, 

 

 ]5.2))/tan(7[cos(2.0)(  xyrx  (17) 

where 22 yxr   and the coefficient of 

curvature term, b  is set to 0.02. The 

challenging task of this test case is to verify 

the Grayson's theorem [14], such that all 

simply closed curves eventually collapse to a 

round point. Due to the effect of the 

curvature, the initial star shape will deform to 

a round-shape.  Numerical solutions are 

presented by using two grids S1 ( 64/1h ) 

and S2 ( 128/1h ). The initial form of the 

star shape is shown in Fig. 1. Figures 2(a)-(d) 

show the zero level contour plots obtained 

from grid S1 at 0.1,5.0,25.0t , respectively. 

Similarly, figures 3(a)-(d) show the solutions 

obtained from grid S2.  These solutions are 

similar to those reported in [9].  The 

numerical solution at time 0.1t  also 

confirms that the Grayson's theorem is 

numerically verified. 

 

 

  
Fig.1.  Plots of initial condition of  

problem 5.1. 

 
(a) 25.0t  

 
(b) 5.0t  
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(c) 0.1t  

 

Fig.2.  Numerical solutions of grid S1 at three 

times of problem 5.1. 

 

 
(a) 25.0t  

 
(b) 5.0t  

 

 

 
(c) 0.1t  

 

Fig.3.  Numerical solutions of grid S2 at three 

times of problem 5.1. 

     

       5.2 Motion in the normal direction 

involving mean curvature of a quatrefoil 

     The next problem is used to examine 

the capability of the proposed method for 

calculating the interface normal vector and 

surface curvature of a quatrefoil in a square 

domain of )1,1()1,1(  . This problem 

is also tested using the same domain size as 

described in the previous problems.  The 

initial condition of the quatrefoil is given by 

[8], 

))/(tan4sin(4.06.0
1)(

1 xy

r


x .          (18) 

The velocity field in the normal direction is, 

                      







V                          (19) 

with the curvature coefficient of 0.0005. At 

time 2.0t  the quatrefoil is split into 

disconnected components. 
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Fig.4.  Plots of continuous initial condition  

for problem 5.2. 

 

The initial form of the quatrefoil is shown 

in Fig. 4.  The topology changes of  

the quatrefoil  at  the four t ime steps 

of 2.0 ,15.0,1.0,05.0  andt  computed 

from using the two grids S1 and S2 are 

shown in Figs. 5(a)-(d), respectively. The 

results obtained from these grids are 

comparable to those presented in [8].  
 

 
(a) Grid S1 

 

 

 

 

 
(b) Grid S2 

 

Fig.5.  Comparison of numerical solutions 

ontwo grid sizes of problem 5.2 

(continuousinitial condition). 

 

This problem is tested again with the 

discontinuity initial condition (along the 

interface of the quatrefoil) of 1 when 0 , 

and 0 otherwise,  in order to assess 

the robustness of the proposed method. The 

initial form of the binary quatrefoil is shown 

in Fig. 6.  The topology changes of the binary 

quatrefoil at the four time steps are presented 

in Figs. 7(a)-(d), respectively. The computed 

solutions are quite closed to those from the 

continuous initial condition given by Eq. (9), 

except that there is one zero level component 

at the center of the domain.  This component, 

however, does not appear when the  

calculation starts from the continuous initial 

condition. The solutions show that  

the characteristic-based level set method 

provides high resolution results comparable to 

other high-resolution schemes [8,9]. 
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Fig.6.  Plots of discontinuous initial 

conditionof  problem 4.2. 

 

 
(a) Grid S1 

 

 
(b) Grid S2 

 

Fig. 7. Comparison of numerical solutions  

on two grid sizes of problem 5.2  

(discontinuous initial condition). 
 

 

 

 

 

6.    Conclusion                                                      

 A fully explicit finite volume method 

for solving the characteristic-based level set 

equation in two-dimensional domain is 

presented.  The theoretical formulation of the 

characteristic level set equation based on the 

characterist ic-based scheme has been 

explained in details.The finite volume method 

was applied to derive the discretized  

equations for the spatial domain. The scheme 

is used to study motion by mean curvature 

where the interface moves in the normal 

direction with a velocity proportional to its 

curvature. Two numerical examples were 

used to evaluate the performance and to 

determine the order of the accuracy of the 

proposed method.  These examples showed 

that the method provides the second order 

accurate and converged solution with 

improved accuracy as the grid is refined. 

 

7.  Acknowledgement 

The author is pleased to acknowledge the 

College of Industrial Technology, King 

Mongkut's University of Technology North 

Bangkok (KMUTNB), and the National Metal 

and Materials Technology Center (MTEC) for 

supporting this research work. 
 

8.  References 

[1] Scardovelli, R. and Zaleski, S., Direct 

Numerical Simulation of Free-Surface 

and Interfacial Flow, Annu. Rev. Fluid 

Mech., Vol. 31, pp. 567-603, 1999. 

[2] Unverdi, S.O. and Tryggvason, G., 

Front-Tracking Method for Viscous, 

Incompressible, Multi-fluid Flows, J. 

Comput. Phys., Vol. 100, pp. 25-37, 

1992. 

[3] Tryggvason, G., Bunner, B., Esmaeelt, 

A., Juric, D., Al-Rawahi, N., Tauber, 

W., Han, J., Nas, S. and Jan, Y.J., A 

front-Tracking Method for the 

Computations of Multiphase Flow, J.  

 



Thammasat International Journal of Science and Technology                                                        Vol.19, No.4, October-December 2014 

  

36 

 

 

Comput. Phys., Vol. 169, pp. 708-759, 

2001. 

[4] Osher, S. and Sethian, J.A., Fronts 

Propagating with Curvature-Dependent 

Speed: Algorithms based on Hamilton-

Jacobi Formulations, J. Comput. Phys., 

Vol. 79, pp. 12-49, 1988. 

[5] Sethian J.A. and Smereka, P., Level Set 

Methods for Fluid Interfaces, Annu. 

Rev. Fluid Mech., Vol. 35, pp. 341-372, 

2003. 

[6] Hirt, C.W. and Nichols, B.D., Volume 

of Fluid (VOF) Method for the 

Dynamics of Free Boundaries, J.  

Comput. Phys., Vol. 39, pp. 201-225, 

1981. 

[7] Renardy, Y. and Renardy, M., PROST: 

A Parabolic Reconstruction of Surface  

Tension for the Volume of Fluid 

Method, J. Comput. Phys., Vol. 183, pp. 

400-421, 2002. 

[8] Frolkovic,P.andMikula,K.,High-

ResolutionFlux-based Level Set 

Method, SIAM J. Sci. Comput., Vol. 29, 

pp. 579-597, 2007. 

[9] Osher, S. and Fedkiw, R. Level Set 

Methods and Dynamic Implicit 

Surfaces, Springer, New York, 2003. 

[10] Phongthanapanich,S. and Dechaumphai, 

P., An Explicit Finite Volume Element 

Method for Solving Characteristic Level 

Set Equation on Triangular Grids, Acta 

Mech. Sin., Vol. 27, pp. 911–921, 2011. 

[11] Phongthanapanich,S. and Dechaumphai, 

P.,Finite Volume   Method for 

Convection–Diffusion–Reaction 

Equation on Triangular Meshes, Int. J. 

Numer. Methods Biomed. Eng., Vol. 26, 

pp. 716-727, 2010 

[12] Evans, L.C. and Spruck, J. Motion of 

Level Sets by Mean Curvature I, J. 

Differential Geometry, Vol. 33, pp. 635-

681, 1991. 

[13] Phongthanapanich,S., An Explicit Finite 

Volume Element Method without an 

Explicit Artificial Diffusion Term for  

 

 

Convection-Diffusion Equation on 

TriangularGrids, Thammasart  

International Journal of Science & 

Technology, Vol. 15, pp. 69-80, 2010. 

[14] Grayson, M.A., The Heat Equation 

Shrinks Embedded Plane Curves to 

Round Points, J. Differential Geometry, 

Vol. 26, pp. 285-314, 1987. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 


