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Abstract 

This paper explores the effect of demand uncertainty on the decision variable of operation 

time and its interaction with yield and learning during production ramp-up. A dynamic profit 

model for production ramp-up coupled with learning and demand uncertainty is built to identify 

optimal ramp-ups under various manufacturing contexts. Numerical simulations are explored to 

determine the various factors leading to changes in optimal production ramp-ups due to demand 

uncertainty. Results demonstrate that, under increasing demand uncertainty, firms should 

generally be conservative and slow down the ramp-up. It is also demonstrated that demand 

uncertainty leads to slower ramp-up regardless of varying learning rates and capacity/demand 

constraints. The only exception is products with high profit margin in which optimal ramp-ups 

are insensitive to demand uncertainty. 
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1.   Introduction 
Increasing global competition means 

that customers are always looking for the 

latest model products on the market. Product 

lifecycles are becoming shorter while new 

product introduction rates have been steadily 

increasing. [1-6] Hence, product introduction 

has become an increasingly larger part to the 

operation of a manufacturing firm. 

To survive, it must succeed financially and 

consistently at releasing new products. 

However, releasing new product is not a 

simple act of making an announcement and 

putting the new products on store shelves. 

Before a new product can be introduced into 

the market, it must be introduced into a 

manufacturing facility.  

Typically, the time it takes to make a 

product—the operation time—is long for the 

first few. As workers become more familiar 

with the manufacturing processes and make 

adjustments to eliminate unnecessary wastes, 

the facil i ty can gradually speed up  

manufacturing unti l  i t  reaches full  

manufacturing capacity. This progressive 

increase in production rate is called  

production ramp-up. Operation time during 

production ramp-up directly affects the 

productivity and, thus, the profitability of the 

firm. 

At the center of a production ramp-up 

is the learning effect, which in this article 

refers to the improvement in yield as workers 

cumulative output increases as opposed to the 

traditional meaning of the reduction in unit 

cost. By gaining experience, workers become 

familiarized with the processes involved in 

manufacturing the new products and are less 

prone to making mistakes, allowing an 

increase in production rate. It is evident that 

firms in various manufacturing industries, 

from semiconductor to automotive [3, 7], 

have exhibited significant yield improvements 

from the learning effect during production 

ramp-up. If  the facil i ty is operated  

excessively fast, it can lead to production of 
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defective parts because workers may not have 

sufficient time or are not yet familiar with 

manufacturing the parts. On the other hand, 

overly slow production incurred an  

opportunity cost from wasted capacity. Also, 

from a learning standpoint, operating the 

facility rapidly means that workers will be 

generating higher cumulative output, leading 

to faster improvement. This complex 

interrelationship creates an “intertemporal 

trade-off between the short-term opportunity 

cost of capacity and long-term value of 

learning.” [8] 

Another significant factor that can 

affect the profitability of a firm during 

production ramp-up is demand uncertainty. 

This adds a stochastic dimension to the 

tradeoff between the opportunity cost and the 

value of learning.  Regardless of the amount 

of marketing research going into the product 

design, a firm may not be able to perfectly 

foresee the demand for its new products. 

When demand is underestimated, there is an 

addit ional opportunity cost  of  

underproduction. When it is overestimated, 

capacity is wasted and the manufacturing 

facility incurs additional manufacturing costs 

without generating revenue. To accurately 

evaluate the effect of demand uncertainty to 

the profit stream of production ramp-up, this 

article have incorporated these additional 

costs when determining optimal ramp-ups.  

This art icle investigates the  

interaction between the decision variable of 

operation time, yield, yield improvement or 

learning, and the effect of demand uncertainty 

throughout the production ramp-up. A 

dynamic profit model of production ramp-up 

that allows for the flexibility of periodic 

changes in operation time is constructed. The 

model uses profit to determine the optimal set 

of operation times—a production ramp-up—

from the introduction of a new product to the 

period of full capacity production. Numerical 

illustrations are used to demonstrate the effect 

of demand uncertainty on the optimal  

production ramp-ups under various  

manufacturing contexts.  

The remainder of the article is 

arranged as follows. In the next section, 

related streams of literature are reviewed to 

identify the contributions of this article. In 

Section 3, the dynamic, intertemporal profit 

model of production ramp-up is detailed 

along with underlying assumptions. Section 4 

demonstrates the effect of demand uncertainty 

on the optimal set of operation times through 

numerical illustrations and discussions of the 

underlying reasons. The managerial  

implications and future directions for research 

are concluded in Section 5.    

 
2. Related literature 
 

This study draws on two branches of 

literature: process capacity improvement from 

learning and capacity planning under 

uncertainty. To better explain and position the 

contribution, this article has provided a more 

detailed review of the two branches. 

There have been a number of 

researches addressing the importance of 

enhancing production capacity during ramp-

up through investments, experimentation, and 

learning. Bayus [9] developed a dynamic 

model of product innovation where the 

tradeoffs between investments on product 

improvement and process improvement are 

considered. Research by Chand et al. [10] 

focused on allocating production capacity 

between production activit ies and  

improvement activities, such as those that go 

on during production launch. Optimal  

investments in process change and knowledge 

creation versus process improvement were 

identified by Carrillo and Gaimon [11]. 

Terwiesch and Xu [12] studied the tradeoff 

between capacity enhancement from process 

change and learning during production ramp-

up and identified regimes where “copy-exact” 

and more traditional approaches to process 

improvement were appropriate. Carrillo and 

Franza [1] developed a model to determine 

the best time-to-market and time-to-volume 

(ramp-up duration) in product design and 

manufacturing capacity, focusing on the role 
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of the allocation of resources between these 

activities. Terwiesch et al. [13] indicated that 

high-tech firms are shifting from minimizing 

time-to-market to minimizing time-to-volume 

and studied optimal strategies to facilitate 

learning during production ramp-up in the 

data storage industry. Terwiesch and Bohn [8] 

applied a dynamic programming model to 

explore the interactions among capacity 

utilization, yield, and learning to assess the 

net value of experimentation (and the learning 

it provides) during the ramp-up period. As 

stated, a variety of literature investigates the 

interaction between capacity improvement 

(yield) and learning, but this work builds on 

existing research by exploring how demand 

uncertainty affects the decision of optimal 

ramp-up. 

Another branch of related work is 

capacity planning under demand uncertainty. 

The concept has been detailed in an extensive 

review by Mula et al [14]. Bitran and Yanesse 

[15] applied a deterministic approximation to 

a nonsequential capacity planning problem 

when demand is stochastic.  Karabuk and Wu 

[16] formulated a capacity planning model 

using multi-stage stochastic program where 

demand and capacity uncertainties were 

incorporated. Eppen et al. [17] used stochastic 

programming approach to study capacity 

planning problems for different demand 

scenarios regarding facil i ty selection . 

Breithaupt [18] presented a dynamic  

production model to develop a feedback 

control for capacity planning with defined 

control and reference variables. These articles 

use analytical or simulation methods to assist 

in capacity planning under uncertainties such 

as demand, quality, and lead time, while this 

article aims to extend the existing research by 

forming a linkage among capacity, operation 

time, and learning while addressing demand 

uncertainty. 

The contribution of this article is to 

establish a connection between the two 

aforementioned streams of literature, an 

approach no studies have attempted so far. 

The established intertemporal linkage among 

operation time, learning, and capacity from 

the capacity enhancement research stream is 

combined with a methodology to determine 

the optimal capacity for demand uncertainty 

in order to determine the optimal set of 

operation times during the production ramp-

up, referred to in this work as the optimal 

production ramp-up. Additionally,  

manufacturing contexts that influence the 

optimal ramp-up under demand uncertainty 

are also investigated. 
 

3.  Evaluating production ramp-up: an 

intertemporal dynamic profit model 

 

In this section, the calculations and 

assumptions involved in modeling production 

ramp-up and evaluating i ts economic  

performance are described. First ,  the  

production ramp-up model that establishes the 

relationship among operation time, yield, 

learning, and output is explained. 

Next,  a  profit model translates the output 

into deterministic cost, revenue, and profit. 

Then, the uncertain revenue model  

incorporated into this work is detailed along 

with the optimization method used to  

determine optimal ramp-ups. 

3.1 Dynamic Production Ramp-up 

Model 
 

A production ramp-up, as mentioned 

previously, is a set of gradually decreasing 

operation times from when the new product is 

introduced into the manufacturing facility 

until the facility reaches its full production 

capacity. Throughout  this duration, 

the operation time is gradually reduced to 

speed up the production rate. To simplify this 

process, the duration is divided into n periods 

of steady state operation each of which the 

operation time remains constant.  

Assume that the total available time is 

T for all time periods, and that the minimum 

possible operation time for the process is tmin. 

The maximum possible production capacity is 

therefore T / tmin. This minimum operation 
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time is related to the physical limit of the 

process such as the maximum speed of 

cutting tools or cooling time of a material. 

The operation time choice ti, is a decision 

variable in each period, and a set of operation 

times τ = [t1, t2,…, tn] is referred to as a ramp-

up. The number of product starts with the 

available time is thus T / ti. Therefore, the 

cumulative product starts in manufacturing up 

to period i is 

                 
1

i

i

j j

T
v

t

                          (1) 

Define yield yi as the fraction of 

nondefective products out of the total starts in 

manufacturing. It is modeled as a function of 

operation time and manufacturing learning 

parameter ai, which is the reduction in defect 

rate due to accumulated experience. A 

specific functional form relating defect rate, 

operation time, and manufacturing learning is 

defined according to Terwiesch and Bohn [8] 

to simplify the analysis as 

           min

0 1
i i

i

t
y y a

t


 
 
 
                 (2) 

where tmin is the minimum operation 

time below which the operation is physically 

impossible. The parameter y0 captures the 

base yield which is independent of the 

operation time and cannot be improved, while 

the parameter a represents the benefit of 

learning on the reduction of defective product 

rate. The parameter a is modeled using a 

truncated form of the log-linear relationship 

developed by Nadeau et al. [19]: 

    
max min 1

min( ,max( , ))
q

i i
a a a bv




          (3) 

where amax and amin are the maximum 

and minimum observable values for a. The 

parameter b is the chance of the first product 

being defective; v is the cumulative output; 

and q is the learning rate. Here, a larger value 

of q leads to faster yield improvement. 

This functional form is consistent 

with the assumptions in [8] that yield should 

improve with increasing operation time but 

with diminishing returns and that yield should 

also improve with increasing process 

capability, a quantity that is captured by a. 

The form is different, however, in the way 

learning is modeled. According to [8], 

learning is modeled as a function of 

experimentation effort and the cumulative 

time the facility has been processing the new 

product, independent of operation times. In 

this work, learning is modeled after 

cumulative output, which depends on 

operation times of all preceding periods as 

shown in Eq. (3).  

The number of nondefective products 

in period i can then be expressed as 

        min

0
1

i

i i

i

tT
y a

t t
N 

 
 
 

 .              (4) 

3.2 Deterministic Profit Model 

Early in production ramp-up demand 

for the product is high, but this will decrease 

over time as the product gradually loses its 

‘new’ appeal. Therefore, it is assumed that the 

starting demand is d, and it decays at a rate of 

δ per period. For simplicity, since the 

reduction in revenue stream due to this ‘loss 

of appeal’ can be modeled using δ, the selling 

price p is assumed constant. As this article 

focuses on the dynamics inside the 

manufacturing facility, it is viewed that the 

demand and its decay rate are exogenous to 

the model. If demand in a period is higher 

than the number of nondefective products, it 

is assumed that customers will not wait for 

products at a later period as there can be 

many other similar products available. Only 

the number of products made to meet demand 

in each period is sold; unmet demand is 

irrecoverable. The number of surplus 

products, which are stored for later sale, is 

represented by Si. The number of products 

sold, si, in period i is 

      1

1
min ,

i

i i i
s d N S




                  (5) 

where the first term is the demand in 

period i. The second term is the number of 

products available for sale in the same period, 

equal to the number of nondefective products 
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in the period plus the number of surplus 

products from all preceding weeks. The 

number of surplus products at any period can 

be recursively defined as 

        
1

0 ; 0

; 0
i

i i i

i
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
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
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A variable cost per product start is c. 

Therefore, the deterministic profit generated 

in each period is 

         
i

i

i

T
ps c

t
   .                           (7) 

Based on Eq.(4), it would seem 

straightforward to derive the operation time 

that maximizes the number of nondefective 

products in a period. However, as learning is 

dependent on the cumulative output and thus 

the operation time, all subsequent period 

operation time decisions are dependent on the 

current period decision. The optimal 

operation time for a period is not necessarily 

the one that maximizes the profit in this 

period. In fact, it may be an operation time 

that generates more learning from which 

future periods may benefit. 

The added complexity of considering 

demand is that the number of products sold is 

no longer singly dependent on the operation 

t ime decision. When manufacturing is  

constrained by demand, decreasing operation 

time increases the revenue until production 

volume exceeds demand. Beyond this point, 

faster operation time only leads to product 

surplus which needs to be stored for sale later. 

       The deterministic total profit is the 

discounted profit streams over production 

ramp-up periods. Taking r as the discount 

rate, the deterministic total profit is     
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The operation time choice in a given 

period affects the profit in two ways. First, it 

affects revenue through its relationship with 

yield and nondefective output.  For  

the operation time choice to maximize the 

revenue, it must maximize the number of 

nondefective output. Second, it affects the 

costs in subsequent periods as they depend on 

learning and cumulative output. 

However, if demand is lower than 

capacity, then revenue depends on the 

operation time choice until the nondefective 

output reaches the demand. Beyond this point, 

reducing the operation time to generate 

additional output does not increase revenue, 

but the additional output would still enhance 

learning. 

3.3 Incorporating Demand 

Uncertainty 
 

This article assumed that the starting 

demand is no longer a deterministic value d0 

but instead a randomly distributed number 

with an average of μ and a standard deviation 

of σ: 

                              
2

~ ( , )d N   .    (9) 

The demands for subsequent weeks 

still follow the functional form applied in the 

deterministic model with a constant weekly 

decay rate of δ. The magnitude of uncertainty 

in demand is captured by its standard 

deviation, which represents the accuracy of 

demand forecast. Instead of evaluating a 

ramp-up’s performance by the total profit 

based on Eq. (8), the objective function is 

now an expected value of the total profit 

based on the distribution of demand. The 

expected value of profit in period i is the 

revenue from expected sales minus the cost: 

   i i

i

T
E pE s c

t
   .              (10) 

 

 

The objective function to be used to 

search for the optimal ramp-up is the 

discounted expected profit stream over the 

production ramp-up periods. Taking r as the 

discount rate, the objective function becomes 
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In this article, the objective function 

for the deterministic demand cases is the total 

profit defined in Eq. (8) while the objective 

function for the uncertain demand cases is the 

expected total profit defined in Eq. (11). 

Crystal Ball, an Excel add-on, is used in 

conjunction with its OptQuest module to 

generate demand uncertainty and to search for 

optimal ramp-ups. Two constraints are 

imposed on the operation times: 1) that they 

are non-increasing, i.e., the operation time of 

the current week is smaller than or equal to 

that of the preceding period and 2) that they 

are integers. These conditions are imposed to 

imitate a typical production ramp-up that 

gradually increases production rate and to 

reduce the running time of the search 

algorithm. For each scenario, the simulation is 

repeated at least 100000 times to ensure that 

the confidence intervals are sufficiently small 

and that the differences in expected profits 

among the cases are statistically significant. 

The 95% confidence interval bars are shown 

on all numerical illustration cases in the next 

section as error bars. 

4. Numerical Illustrations 

4.1 Baseline Parameters 

A number of numerical examples are 

solved in this section to provide a better 

understanding of optimal ramp-ups in various 

manufacturing contexts. Consider a typical 

automotive underbody manufacturing facility. 

The discount rate is 0.3% per period. The cost 

per start c is $500. The available 

manufacturing time T is 80 hours per period. 

The minimum possible operation time tmin is 

60 s, which means that the maximum 

production capacity is 4,800 vehicles per 

period if there is no defective product at all. 

The starting demand is assumed to be 

normally distributed with an average of 4,800 

vehicles per period with a decay parameter δ 

= 0.95, and the magnitude of demand 

uncertainty is modeled by its standard 

deviation. The finished product is sold at 

$750 so that the ratio p/c—indicative of the 

product profit margin—is 1.5. According to 

the data from manufacturing experts, there are 

minimal yield losses during steady state 

operation (y0 = 1) and learning parameter b = 

0.8 and q = 0.15. This baseline scenario is 

modeled after an actual midsize sedan 

automotive underbody plant. The illustrative 

cases are solved using Monte-Carlo 

simulation to model the demand and the 

OptQuest module in Crystal Ball to find the 

optimal ramp-ups. 

         4.2 Optimal Ramp-ups and 

Profitability 

First, this article investigates the 

effect of demand uncertainty on optimal 

ramp-ups. Fig.1 exhibits typical suggested 

ramp-ups for the baseline case under 

increasing standard deviations (SD) of 

starting demand. The operation times in the 

early weeks are long and gradually decreasing 

as workers accumulate experience and 

become more efficient with the 

manufacturing processes so they can produce 

more and increase profit. 

 
Fig.1. Comparison of optimal ramp-ups under 

demand uncertainty. 
 

More importantly,  Fig.1 

demonstrates the effect of demand uncertainty 

on the optimal ramp-ups. As demand 

becomes more volatile and unpredictable, the 

model suggests increasingly slower ramp-ups. 

The cumulative outputs after week 20 of the 

suggested ramp-ups of SD = 0, 1000, and 

2000 are 42942, 35598, and 29697, 

respectively. This means that under the given 

manufacturing context, the opportunity cost is 
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low compared to the risk of unsold products. 

This result is in agreement with that of 

Anupindi and Jiang [20]. Increasing demand 

uncertainty leads to increasing risk and lower 

value for each additional nondefective 

product. Therefore, the model suggests slower 

production ramp-ups with increasing demand 

uncertainty. This is illustrated in  

Fig. 2. Note that from this figure 

onward, each optimal ramp-up will be 

represented as an average operation time over 

production ramp-up (20 weeks). This is to 

avoid overcrowding the figures and allow for 

easy ramp-up comparison. 

 
 

Fig. 2. Expected value of profits of 

deterministic and uncertain optimal ramp-ups 

and profit improvement under demand 

uncertainty. 

 

The difference between the expected 

profits for deterministic and uncertain cases is 

the ‘value’ of explicitly considering demand 

uncertainty. Notice that the differences are 

statically significant only beyond the standard 

deviation of 600. Therefore, this approach is 

not applicable for relatively predictable 

demands. 

As demand uncertainty increases, the 

difference widens while expected profits 

decreases, showing that the ‘value’ becomes 

exponentially more significant with large 

demand uncertainty. In this case, at standard 

deviation of 2000, the expected improvement 

in total profit is $1.5 million or 33% of the 

expected total profit from deterministic ramp-

up. The increase in average operation time 

between standard deviations of 0 and 2000 is 

31 s or 22%. 

4.3 Demand-constrained Systems 

Section 4.2 investigates a system 

whose maximum capacity equivalent to the 

demand so that all nondefective products are 

sold, which raises a question of whether the 

suggested slower ramp-up is simply a result 

of this condition. This section will attempt to 

answer that question. Consider a case where 

the average starting demand (2400) is much 

lower than the maximum capacity (4800). In 

other words, the system is constrained by 

demand. Here, the comparison to section 4.2 

is made among cases with equal coefficients 

of variation to account for the differences in 

average starting demands. For the baseline 

case, the average starting demand is 4800, 

and its standard deviations are 200, 400, …, 

2000. Therefore, to make a fair comparison, 

the standard deviations of starting demand in 

this case will be 100, 200, …, 1000, thus 

keeping the same coefficients of variation. 

Similar to the baseline case, 

increasing demand uncertainty also leads to 

slower optimal production ramp-ups as shown 

in Fig. 3. The increases in average operation 

times from the deterministic to the most 

uncertain demands are also comparable (28% 

vs 30%), exhibiting that demand and capacity 

constraints have very little effect on the 

optimal ramp-ups under demand uncertainty. 

 
 

Fig.3. Average operation times under varying 

demand uncertainty for a demand-constrained 

production (average starting demand = 2400). 
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Fig. 3 also illustrates that demand 

uncertainty can be so great that the resulting 

expected value of profit is negative—from the 

standard deviation of 600 and above in this 

case. With increasing demand uncertainty, it 

becomes more likely that the firm will incur 

losses. Therefore, selling price should be 

carefully determined especially when  

manufacturing is demand-constrained. To 

shed some light on the pricing decision, this 

work will further investigate the effect of 

product profit margin on optimal ramp-ups. 

4.4 High Product Profit Margin 

This article now considers a case for 

a production ramp-up of a high profit margin 

product—where the ratio of selling price to 

cost per start is high (p/c = 5), compared to 

the baseline case (p/c = 1.5). As shown in 

Fig.4. Average operation times under varying 

demand uncertainty for a low profit margin 

product (p/c = 5)., the most contrasting aspect 

of the result compared to low profit margin 

cases in sections 4.2 and 4.3 is that the 

optimal ramp-ups for high profit margin cases 

are virtually insensitive to demand 

uncertainty. The model suggests the same 

ramp-ups for both deterministic and uncertain 

cases, resulting in identical expected total 

profits. This is because the selling price is 

high and the loss of sale has a higher value 

than the cost of unsold finished product; 

maximizing expected profit becomes a simple 

matter of maximizing the number of finished 

products, regardless of demand. Therefore, 

increasing demand uncertainty does not affect 

the optimal ramp-ups of high profit margin 

products. 

4.5 Fast Learning Rate 

Since learning is such a central 

process to production ramp-up, exploring how 

it is affected by learning rate under demand 

uncertainty can prove beneficial. In this 

section, the learning rate q has been increased 

from 0.15 in the baseline case to 0.3. In the 

baseline case, it is found that the model 

suggests increasing average operation time by 

11.3% as demand uncertainty increases. Fig.5 

exhibits the change in average operation time 

with increasing demand uncertainty for a fast 

learning firm. 

 

 
Fig.4. Average operation times under varying 

demand uncertainty for a low profit margin 

product (p/c = 5). 

 

 
Fig.5. Average operation times under varying 

demand uncertainty with respect to different 

learning rates. 

 

Compared to the baseline case, the model 

suggests increasing average operation time by 

30 s or 27%. Note that the suggested 

increases in average operation times are the 

same; the percentage increase is more for a 

fast learning firm only because its average 

operation time is smaller. The expected total 

profit increases by $0.9 million or 13% for 

the case with a standard deviation of 2000. 

Here, a fast learning firm stands to gain less 

from considering uncertainty because it 

already operates with fast improvement and 

little loss, so there is little room for 

improvement even with a slower ramp-up. 
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 5. Conclusion 

The article presents the findings on 

the effect of demand uncertainty on optimal 

production ramp-ups under various 

manufacturing contexts. By developing a 

dynamic profit model of production ramp-up 

that incorporates learning and uncertain 

demand, optimal ramp-ups can be identified 

through expected profit maximization. The 

findings shed light on the robustness of 

suggested optimal ramp-ups under the effects 

of varying profit margins and learning rates. 

Numerical illustrations demonstrate 

that, in certain manufacturing contexts, 

explicit consideration of the stochastic nature 

of demand can be crucial to the financial 

performance of production ramp-up. This is 

especially true for production of low profit 

margin products with slow learning rates. 

Additionally, this emphasizes the advantages 

of manufacturers whose profit margins are 

high—they do not need to be concerned with 

demand uncertainty. They only have to 

maximize nondefective output to achieve 

optimum financial performance. 

The constraints on production, 

whether it is made upon capacity or demand, 

have no effect on the changes in optimal 

ramp-ups under demand uncertainty. Change 

in profit due to capacity utilization is 

unaffected by demand, resulting in similar 

changes in optimal ramp-ups regardless of the 

constraints. 

Product profit margin is crucial to the 

robustness of the optimal production ramp-

ups under demand uncertainty. For low profit 

margin products, managers should consider 

slowing down the ramp-up as demand 

becomes increasingly uncertain. For such a 

case, cost saving is the way to increase 

expected profit. On the contrary, optimal 

production ramp-ups for high profit margin 

products are virtually insensitive to demand 

uncertainty; generating profit is easily 

achieved by producing more products to 

satisfy demand since the cost per start is not 

expensive. 

Manufacturing learning rates have a 

less significant impact than profit margin. A 

fast learning system is more affected than a 

slow learning system as it ramps up operation 

time faster, so there is more room to slow 

down the system, save cost, and still be able 

to satisfy demand. 

This article has investigated in details 

the robustness of optimal production ramp-up 

due to demand uncertainty. Future research 

should address uncertainty in factors that 

affect cost structure of production. It may also 

be worthwhile to explore uncertainties that 

affect cost and revenue simultaneously, and to 

investigate if there exists a synergy between 

them. 
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