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Abstract 

Dumitresku’s model is a classic model for predicting the shape of a Taylor bubble head. 

Since the model consists of two equations, there is a discontinuity in predicting Taylor bubble 

surfaces when two equations are switched. A proposed model is derived from Euler’s equation 

and based on the Dumitresku’s model. It can predict the whole shape of a Taylor bubble head, 

similar to the Dumitresku’s model. However, this model reduces the discontinuity which 

regularly occurs in the Dumitresku’s model due to the equations switching. Similarities between 

the Dumitresku’s model and the proposed model are investigated through a numerical simulation 

of flow fields around a Taylor bubble head. Simulation results show that the geometric and 

kinematic similarities between the two models are extremely ensured while the dynamic 

similarity is acceptably ensured with less confidence. However, the proposed model can partially 

reduce the discontinuities in the simulation results as desired. 
 

Keywords: Computation; Dumitresku’s model; Euler’s equation; Similarity; Taylor bubble. 

 

1.   Introduction 
An interesting pattern of two-phase 

gas-liquid flows in pipes is slug flow which is 

characterized by a succession of liquid slugs, 

separated by elongation bubbles (the so called 

Taylor bubbles) rising upward, as shown in 

Fig. 1(a). The flow pattern is usually observed 

in engineering works. Many research topics 

focus on studying slug flow phenomena, for 

instance, the pressure drop across a slug unit 

[1,2], the flow field around a Taylor bubble 

[3-5] and the dynamics of entrained dispersed 

bubbles [6]. The shape of a Taylor bubble 

head is an interesting topic because it 

influences the flow field and the pressure 

drop around the Taylor bubbles. Nogueira et 

al. [7] predicted the shape of Taylor bubble 

head by employing a classic model of 

Dumitrescu [8]. Dumitrescu’s model is 

derived from the theory of potential flow and 

is used for predicting the shape of Taylor 

bubble heads in a stagnant liquid pipe based 

on 2 equations, namely, a circle radius 

equation 3 4 pR  and a nonlinear-polynomial 

equation as shown with Eq. (1) and Eq. (2), 

respectively:    
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It is apparent that there is a discontinuity in 

the shape of a Taylor bubble at 0.5 pz R   

when Eq. (1) is switched to Eq. (2). This 

disagrees with reality. In addition, splitting 

the shape of a Taylor bubble head into 2 parts 

is rather difficult for researchers who want to 

study the change of Taylor bubble shape due 

to some influences of the flow field around 

the Taylor bubble, e.g., pipe diameter, 

viscosity and surface tension. Consequently, 

the objective of this work is to derive a model 

that can predict the whole shape of a Taylor 

bubble head, similar to the Dumitresku’s 

model, without switching equations. 
 

2. Model derivation 
 Generally, the velocity field of the 

flows around a Taylor bubble is considered 

with respect to the bubble nose as shown in 

Fig. 1(b). As a result of the symmetry around 

the pipe centerline, only the right side of the 

flow field in Fig. 1(b) is considered as shown 

in Fig.2. If the streamline adjacent to the 

outside surface of the Taylor bubble is drawn 

as illustrated in Fig. 2, we will find that the 

liquid flows toward the Taylor bubble and 

that there is a stagnation point at the Taylor 

bubble nose. The liquid finally flows along 

the free surface of the Taylor bubble. Because 

the flow along the Taylor bubble surface is 

incompressible and inviscid, it can be 

governed by the Euler’s equation:    

        l l l

DV
g p

Dt
   .                                (5) 

 

Since the Euler’s equation is applied along 

the streamline over the Taylor bubble, it turns 

out to be 

            l
l l

V V z p
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t s s s
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.      (6) (6) 

Generally, the effect of tension and normal 

stress on the Taylor bubble surface is 

negligibly small. This leads to static pressure 

that is constant along the streamline, that is 

l nosep p  or 0lp s   . Moreover, if the flow 

is steady, Eq. (6) will become 

 

                        V V g z    .                    (7) (7) 

Integrating Eq. (7) from the Taylor bubble 

nose results in 
 

 
 

Fig.1. Schematic diagram of slug flow (a) 

with respect to pipe wall (b) with respect to 

Taylor bubble nose. 
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Fig.2. Schematic diagram of the streamline of 

the flow on the outside surface of a Taylor 

bubble created by 150 coordinate points 

which are evenly distributed. 

 (10) 

In case of steady flow, the mass flux, across 

each pipe cross-sectional area, must be 

constant. And it must be equal to the mass 

flux across the inlet sectional area, i.e., 

   2 2 2
l l p b l b pw R R w R      

or 

                  2 2 2
l p p b bw R R R w  

 
.            (11) 

Substituting Eq. (11) into Eq. (9) yields 
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                                                              (12) 

 

noseR , which is 1bR  in Fig. 2, must be zero. 

Therefore, Eq. (12) becomes 
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Since the Taylor bubble nose is a stagnation 

point as shown in Fig. 2, the nose velocity      

( noseV  ) must be zero. This results in 0nose  , 

in accordance with Eq. (10). Hence, both Eq. 

(13) can be reduced to 
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Eq. (14) is potentially applicable because it 

will turn out to be Eq. (2) when 1l  .  

 Although Eq. (14) is theoretically 

correct, there is a singularity at 0z  . 

Employing a small constant ( ) avoids the 

problem and improves Eq. (14). This yields  
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Herein,   is assigned to be 10
-38

. 

 

The variable l  is determined by Eq. (1) and 

Eq. (2) so that the proposed model will be 

similar to the Dumitresku model under a set 

of appropriate parameters. Because Froude 

number is employed in Eq. (2), it must be set 

properly. Hayashi [9] proposed that Froude 

number is predicted with 

                 

1

2

1

0.01

0.0816
Fr

Re
 

  
 

             (16) (16) 

where  
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when Eötvös number ( Eo ) is larger than 100. 

Nigmatulin and Bonetto [10] suggested that 

Froude number should be 0.351 in Eq. (2). 

This means that Re  must be as large as 

possible, resulting in the largest possible pD . 
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Because Nogueira et al. [7] stated that the 

Dumitrescu’s model predicted the shape of 

Taylor bubbles, agreeing well with the 

experimental data of Mao et al. [11] for air-

water systems, an air-water slug flow rising in 

stagnant water is firstly selected for this 

study. Therefore, a pipe with a diameter of 

0.1m is used in this study since air-water slug 

flows rising in stagnant water have generally 

been observed only in pipes with a diameter 

not larger than 0.1m [12-14]. 

 The length of a Taylor bubble ( bL ) is 

another important parameter. In experiments 

[11, 15, 16], the length of a Taylor bubble 

varies from 4 pD  to 30 pD , approximately. 

The length of the Taylor bubble exploited in 

this study is set to be 5 pD  ( bL =0.500m) so 

that the Taylor bubble head is specifically 

focused. After setting pR =0.050m and bL

=0.500m, the curve of the Taylor bubble head 

will be created by Eq. (1) and Eq. (2) with 

150 points of coordinates as illustrated in Fig. 

2. The coordinate points are distributed along 

the bubble surface at an approximately equal 

interval. Finally, it is found that these points 

of coordinates are well fitted with Eq. (14) 

and l  as predicted by 

                          2
1 1 a z

l a e                (19) 

in which 1 1.067a   and 2 152.7a   . 

 

3. Computational Setup 
 

 The proposed model is computationally 

investigated in comparison to the 

Dumitresku’s model in this section. The 

computational domain is the space confined 

in the dashed box shown in Fig. 1(b). The 

domain occupies only the right side of the 

pipe due to the symmetry along the pipe 

centerline. The pipe radius ( pR ) is 0.050m, 

and the Taylor bubble length ( bL ) is 5 pD  

(=0.500m). The slug length ( sL ) in front of 

the Taylor bubble (indicated in Fig. 3) must 

be long enough to prevent the inlet boundary 

condition from the influence of flow reversal 

around the Taylor bubble nose. Shemer [17] 

stated that the flow reversal approximately 

occurs at 0.5 pD  above the bubble trip. Hout 

[18] reported that large vortices decayed and 

that the flow tended to become stagnant again 

approximately 2 pD  behind the bubble tail. 

Nevertheless, the stable slug length, as found 

in experiments, is between 4-20 pD  [15, 16]. 

In this investigation, the slug length ( sL ) is set 

to be 15 pD  (= 1.500m), which is sufficiently 

long. The computational program is 

developed from the program code (CAFFA.F) 

provided by Ferziger [19]. The standard 

cylindrical k - model is employed. And the 

implicit pressure-correction method on the 

finite volume framework with the second 

order spatial accuracy is applied in the code. 

 As illustrated in Fig. 3, 31 gridlines are 

placed on r-axis. There are 2 sets of gridline 

on z-axis: 166 gridlines are drawn from the 

pipe centerline, and 150 gridlines are drawn 

from the Taylor bubble surface. A velocity 

inlet boundary condition is posed at the top of 

the computational domain with a fixed 

velocity ( bw =0.347m/s). A fixed outlet mass 

flux condition is posed on the bottom of the 

domain ( out inm m ). A no-slip condition with 

a wall function is posed along the pipe wall 

on the right side of the domain with a fixed 

wall velocity ( wallw =0.347m/s). A symmetry 

boundary condition is posed on the left side of 

the domain. The fluid is water of which 

density and viscosity are respectively 997.0 

kg/m
3
 and 8.910 10

-4
Pa-s. 
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Fig.3. Computational domain and exploited 

grid. 

 

4. Results and Discussion 
 

 First, the comparison of the flow fields 

over the Taylor bubble surface predicted 

using two different models is discussed. Since 

the flow fields are severely developed within 

the region around the Taylor bubble head, 

Fig. 4 shows only the flow fields in the region 

for a better comparison. According to Fig. 4, 

the two simulated flow fields, shown with 

vector plots, are similar. Both velocity 

profiles similarly develop from a uniform 

flow (on the top of the figure) to become a 

non-uniform flow with a stagnation point at 

the Taylor bubble nose ( z = -1.500m). Then, 

both flows are faster within the narrow gap 

between the pipe wall and the Taylor bubble 

surface to maintain a constant mass flux. 

While the static pressure distributions, shown 

with the contour lines, rapidly increase within 

the upper half of both flow fields due to 

hydrostatic pressure (gravity). Then, there is a 

low variation in the static pressure 

distributions within the lower half of both 

flow fields due to the balance between 

hydrostatic pressure and dynamic pressure.  

 

 
                  (a)                                 (b) 

Fig.4. Comparison of velocity and pressure 

fields around the Taylor bubble head 

computed from (a) the Dumitresku’s model 

and (b) the proposed model (the unit of the 

contour lines is Pa). 

 
 The comparison is further explored by 

investigating three levels of flow similarity on 

the Taylor bubble surface, namely, geometric, 

kinematic and dynamic similarities. The 

geometric similarity can be investigated as 

shown in Fig.  5. The figure shows the  
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comparison of Taylor bubble surfaces 

predicted based on the two models. It is 

obvious that the Taylor bubble surface 

predicted based on the proposed models fits 

well with that predicted based on the 

Dumitresku’s model. However, as shown in 

Fig. 6, some discrepancy will be found in the 

region around the head of the Taylor bubble if 

the region is magnified. The discrepancy can 

be used for calculating a correlation 

coefficient ( r ) [20] so that the investigation is 

easier. In this case, the correlation coefficient 

( r ) is 0.9994. This means that the 

discrepancy is very small since the correlation 

coefficient ( r ) is very close to unity. 

Therefore, the geometric similarity is ensured. 

 

 
Fig.5. Comparison of Taylor bubble shapes 

predicted based on the Dumitresku’s model 

and the proposed model. 
 

 The kinematic similarity can be 

investigated as shown in Fig. 7 and Fig. 8, 

which show the comparisons of velocity 

components on the Taylor bubble surfaces. 

Fig.7 reveals that the velocity components on 

z-axis continuously decrease from zero with 

an abrupt change approximately at z =-

1.525m ( z =0.025m) for both models. 

According to Eq. (1) and Eq. (2), the position 

z =0.025m is the position where the 

switching of these two equations occurs          

( 0.5 pz R  ). This is likely to be the reason 

why there is an abrupt change in both curves 

in Fig. 7. However, it is quite doubtful 

because there is no obvious discontinuity in 

Fig. 6. This may confirm that the velocity 

component on the z-axis is very sensitive to 

Taylor bubble shapes and discontinuity must 

be diminished to obtain better result. The 

discrepancy between two curves in Fig. 7 is 

small at first but gradually increases along the 

Taylor bubble length. The correlation 

coefficient ( r ) in Fig. 7 is 0.9970. 

 

 
Fig.6. Comparison of the shapes of Taylor 

bubble predicted from the Dumitresku’s 

model and the proposed model (within the 

region close to Taylor bubble nose). 
 

 
Fig.7. Comparison of velocity component on 

z-axis along Taylor bubble surfaces predicted 

based on the Dumitresku’s model and the 

proposed model. 

 

 Fig.  8 reveals that  the velocity  

components on r-axis first increase from zero, 

then decrease approximately at z =   -1.510m 

( z =0.010m) for both models. There is, 

indeed, an unsmooth change in the curve of 

the Dumitresku’s model as indicated by an 

arrow at 0.5 pz R  . But the change is not as 

obvious as that in Fig. 7. The discrepancy 

between these two curves can be used to 

calculate the correlation coefficient ( r ) which 

is 0.9962. Because both Fig. 7 and Fig. 8 give 
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the correlation coefficient ( r ) in the same 

order of magnitude which is very close to 

unity, the kinematic similarity can be ensured. 

 

 
Fig.8. Comparison of velocity component on 

r-axis along Taylor bubble surfaces predicted 

based on the Dumitresku’s model and the 

proposed model. 

 

 The dynamic similarity is the similarity 

of forces acting on the Taylor bubble surface. 

Theoretically, shear on any free surfaces is 

equal to zero. Although there is some shear in 

practice, it is negligibly small compared to 

normal force. The normal force on the Taylor 

bubble surface is a result of two contributions, 

namely, normal stress and pressure. Since 

normal stress is much smaller than pressure in 

the case of incompressible flows. Comparison 

between pressure distributions on the Taylor 

bubble surface is, thus, sufficient for ensuring 

the dynamic similarity. Fig. 9 shows the 

pressure distributions on the two Taylor 

bubble surfaces. It is apparent that there is 

some discrepancy although both curves 

similarly develop. The correlation coefficient 

( r ) calculated from these two curves is 

0.9324. The magnitude of the correlation 

coefficient ( r ) is rather less than those 

obtained from Fig. 5, Fig. 7 and Fig. 8. 

Nonetheless, it is still close to unity, i.e., it 

can ensure the dynamic similarity with 

sufficiently high confidence. Once again, an 

abrupt change is found in both curves. But the 

proposed model gives a smaller abrupt 

change. This may be because there is no 

switching of equations as in the Dumitresku’s 

model. 

 

 
Fig.9. Comparison of static pressure along 

Taylor bubble surfaces predicted based on the 

Dumitresku’s model and the proposed model. 

 

 Besides water, some other fluids, of 

which Fr  equals to 0.351 but Re  differs, are 

also employed to investigate the similarities. 

Table 1 shows that the r  of lp  is the least 

when it is compared to the r  of bR , lw  and 

lu  for each fluid. However, the minimum r  

of lp   is 0.9324 which is still sufficiently 

high. 
 

 

Table1. Properties [21] and correlation coefficients of bR , lw , lu  and lp  for used fluids.

 

Liquids 
l l 

l
2
gDp

3
/l

 2
 Re Eo Fr 

r 

kg/m
3
 cP g/m

2
 Rb wl ul pl 

Water 997 0.891 72.0 1.2 10
10

 38900 1360 0.351 0.9994  0.9970 0.9962 0.9324 

Ethylene glycol 1113 19.9 47.5 3.1 10
7
 1940 2300 0.351 0.9994 0.9970 0.9965 0.9863 

58% Sucrose solution 1272 40.5 76 9.7 10
6
 1090 1640 0.351 0.9994 0.9970 0.9965 0.9882 

Tellus oil 864 52 31 2.7 10
6
 578 2730 0.351 0.9994 0.9970 0.9966 0.9895 

90% Diluted glycerol 1234 154 64.8 6.3 10
5
 279 1870 0.351 0.9994 0.9970 0.9967 0.9905 
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5. Conclusions 

5.1 A model which can predict the whole 

shape of a Taylor bubble head, similar to the 

Dumitresku’s model, is derived from the 

Euler’s equation and based on the 

Dumitresku’s model so that there is no 

equation switching. The proposed model 

consists of Eq. (15) and Eq. (19) for bL

=0.500m.  

5.2 We found that the geometric and 

kinematic similarities between the 

Dumitresku’s model and the proposed model 

are ensured with very high correlation 

coefficient ( r ) while the dynamic similarity 

is also ensured but with a smaller correlation 

coefficient. The minimum value for r  is 

0.9324 (the r  of lp  for water).  

5.3 Approximately at 0.5 pz R  , there is 

an abrupt change in the distribution curves of 

bR , lw , lu  and lp  which are obtained based 

on both the Dumitresku’s model and the 

proposed model. But the abrupt changes are 

more pronounced in the curves obtained from 

the Dumitresku’s model. This may be because 

of the switching between Eq. (1) and Eq. (2) 

in the model. Hence, it can be concluded that 

the proposed model can partially reduce the 

discontinuity. 

5.4 The proposed model is derived by 

assuming that there is no heat transfer across 

the bubble surface and that the surface of the 

bubbles is symmetrical along the pipe 

centerline. Users must bear in mind these 

restrictions. 

5.5 The void fraction is generally an 

important parameter in two-phase flows. With 

this proposed model, it can be calculated as 

follows: 

Void fraction   bubble totalf V V  

where 2
nose b

nose

z L

bubble b
z

V R dz


   and 

  2
Total P s bV R L L  . 

 

      5.6 A limitation of applying the proposed 

model is found when it is exploited to predict 

the shape of Taylor bubble head with very 

small z , i.e., when 0< z <0.001 pR  in which 

case the proposed model will give imaginary 

numbers. Nevertheless, interpolation can be 

used in this narrow interval with an 

acceptable error. 
 

Nomenclature 

 

Characters 

D  : Pipe diameter 

Eo  : Eötvös number;   2
l g pgD     

Fr  : Froude number; 2b pw gR   

g  : Gravity acceleration 

k  : Turbulent kinetic energy 

L  : Length 

p  : Static pressure 

R  : Radius 

r  : Location on r-axis or Correlation 

coefficient  

Re  : Reynolds number; l b p lw D    

s  : Surface 

u  : Velocity component on r-axis 

V  : Total velocity 

w  : Velocity component on z-axis 

z  : Location on z-axis 

Symbols 

  : Velocity ratio squared;  
2

V w   

  : A small constant 

  : Dissipation 

  : Viscosity 

  : Density 

  : Tension 

Superscripts and Subscripts 

b  : Taylor bubble 

D  : Dumitresku 
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g  : Gas 

l  : Liquid 

nose  : Taylor bubble nose 

p  : Pipe 

s  : Slug 

wall  : Pipe wall 
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