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Abstract
This paper proposes a statistical downscaling model to directly describe the 
linkage between large-scale climate variables and annual maximum daily 
rainfalls (AMDR) at a local site. The proposed downscaling model is based on
principal component analysis (PCA) of global climate variables using 
singular value decomposition (SVD). The SVD technique is robust and                                    
efficient for calculating the standardized principal components (SPC) of 
the climate variables. The model has been tested with two popular general 
circulation models, GCMs, (HadCM3 and CGCM3) and available 41-year  
(1961 - 2001) AMDR data at 6 sites in the Chi and Mul River Basins               
(Thailand). The PCA of all possible climate predictors has shown that surface
divergence is the most important one for HadCM3 while the airflow movement, 
humidity, and pressure variables of CGCM3 are equally significant. Further, 
the tested results have indicated that the proposed method can links the 
simulated climate predictors given by the GCMs with the local AMDR  
indices because it adequately reproduces the observed frequencies of the 
AMDRs in calibration and validation periods. In addition, the scenarios 
(HadCM3A2, HadCM3B2, and CGCM3A2) of the 50-yr AMDRs have  
demonstrated that the largest values of AMDRs of most stations are  
approximately unchanged.
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1. 	 Introduction
	 Annual maximum daily rainfall (AMDR) at a single site is basic hydrologic information available 
for the analysis of flood risk. The larger the amount of the AMDR, the higher the level of the flood risk.  
Moreover, extreme precipitation is also fundamental to the design of highway and urban drainage structures, 
especially when the observed maximum rainfall at critical duration is unavailable. In this case, the AMDR 
of design return period is hence transformed into that at the desired duration using a simple-or multi-scaling 
concept [1-2].
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	 Climate variation and change usually have important impact on the local AMDR. Downscaling  
technique is necessary to be developed for assessing the climate impact for the referred engineering applications 
because the resolution (200 - 300 km) of the general circulation model (GCM) which, is accepted in practice 
is too coarse. Several downscaling techniques were thus proposed for the impact assessments [3-4]. They 
generally link the basic climate variables of the GCM at global scale, usually referred to as NCEP variables, 
to a station's daily precipitation, which is subsequently extracted for the considered AMDR.
	 The existing downscaling techniques can be categorized into dynamic downscaling (DD) and  
statistical downscaling (SD). In general, the DD technique models the physical dynamics of atmospheric 
variables at a grid spacing of 20 - 50 km [5-7]. However, the explicit solutions of the atmospheric dynamics 
cause the DD technique to be costly. Moreover, its domain size, number of experiments, and duration of 
simulation are often subjective, and usually lead to poor results. For the SD technique, it is mainly based on the
relationship or transfer function between the NCEP climate predictors and local predictand (e.g., daily  
precipitation) [8-11]. The SD technique is advantageous over DD in that (1) it is flexible for problem adaptation, 
(2) its computational resources are inexpensive, and (3) it is possible for the analysis of uncertainties and 
risks [12].
	 Alternatively, this paper proposes an SD technique that directly describes local AMDR using NCEP 
variables. The proposed SD technique applies principal component analysis (PCA) to reduce the large  
number of the global climate variables into their fewer significantly standardized principal components 
(SSPC). Note that this PCA application is different from a recent work by [4] in that our PCA is used for relating 
to the station AMDR while the PCA of the previous work is applied to the occurrence and magnitude of  
daily rainfall. In this study, the SSPC are calculated based on the technique of singular value decomposition 
(SVD) because it is computationally efficient and robust [13-14]. The linkages between the SSPC predictors 
and observed at−site AMDRs for 6 stations in the Chi and Mul river basins have shown that their AMDR 
probability distributions adequately describe the appropriate empirical ones for both calibration and validation 
periods. In addition, the projections of the 50−yr AMDRs under HadCM3A2, HadCM3B2, and CGCM3A2 
scenarios have been performed for several future periods using the proposed model.

2. 	 Statistical Downscaling Technique
	 Let X=[xij] be the m × n matrix of the average annual NCEP data xij (m = the considered period in 
years and n = the number of the NCEP variables),    be its standardized matrix of X with zero-means and 
unit-variances [i.e.,     = (X−   S-1 in which    is the m × n matrix of mean values and S is the n × n diagonal 
matrix of standard deviations of X], and P be the m × r (r = the rank of   ) matrix of standardized principal 
component (SPC). The annual NCEP data is adopted in this study because this NCEP data base is clearly 
defined, modeling of AMDR occurrence is not necessary for scenario construction, and their predictive  
ability is comparable to the others (average NCEP over rainy season and NCEP on the date of AMDR  
occurrence), as shown in [15]. The SPC matrix P is orthogonal by columns. That is, the r × r product matrix 
of 1/(m−1)] PTP where T = transpose operator, is equal to the identity matrix I(r) of order r.

The SPC matrix P is best computed by inverting the SVD technique as [16-18]

P =    ED−½ (1)

	 in which D is the r × r diagonal matrix of positive eigenvalues arranged in descending  
order (d11 > d22 > d33…> drr where djj = element of D); and E is the n × r matrix of associated               
eigenvectors with orthonomal columns [E T E = I (r)]and rows [EET = I (m)]. Notice in Eq. (1) 
that the SPC P is the weighted sum of every standardized NCEP variable where the weights are 
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the product of E and D−1/2. Moreover, all SPCs Pj (j = 1, 2, …, r) are arranged in descending order 
of significance based on the amount of data variances D that they take into account. That is, P1 is 
the most significant; P2 is the second most, and so on because d11 > d22 > d33…> drr. Note also that 
the product of  ED-½  is the correlation matrix Q between the SPC matrix P and the NCEP one    .               
The maximum qij of all correlations in the column vector Qj indicates that the SSPC Pj is actually 
the standardized NCEP variable    i.
	 If the matrix    is nonsingular (r ≤ n), the eigenvalue matrix D and corresponding eigenvector 
one E will be estimated from a characteristic equation as

RE = ED (2)

(3)

(4)

(5)

(6)

where R is the n × n correlation matrix expressed by

R =   1       T  m-1

otherwise (r ≤ m). Calculate first the eigenvalue matrix D and the m × r associated  
eigenvectors    of   , in which the m × m row product matrix     =[1/(m-1)]         T, using a character-
istic equation (         =     D). The eigenvector matrix G of R is then computed as

Z = In Y

Z = A + P* B + Ψ

To find out the SSPC sub−matrix P* of P, the cut−off level is to be specified for partitioning 
the first k column vectors of P as P*. The remaining ones are considered as noises P. In general, 
cumulative variances explained about 70 − 90% of the total variances and the eigenvalue djj ≥ 1 
are used as empirical cut−off rules [19]. Among these criteria, the lower limit of the explained  
variances is adopted in this study because its description is adequately accurate in AMDR  
downscaling.
	 These significant predictors P* are then related to the m × 1 column vector Z of normalized 
AMDR where

and Y is observed AMDR. The multiple linear regression form is chosen because it is  
simpler and easier to understand the linkage between the predictors and the predictand, as  
compared with non−linear downscaling methods [20]. The linear relationship can be written as 

where A and B are the column vectors of regression coefficients of dimensions m × 1 and k 
×1 respectively, and Ψ is the m × 1 column vector of residual errors with zero means and σ2  

variances. The coefficients (A and B) and residual variances (σ2) are estimated by the method of 
least squares [21].

E =   1       T  D (½)
m-1
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3.	 Numerical Applications
	 Six series of 47-year (1961-2007) observed AMDR in the Chi and Mul river basins  
(Thailand) and the corresponding NCEP data of GCMs (HadCM3 and CGCM3) during 1961-2001 
were considered for illustrating the development of the statistical downscaling technique.  
The characteristics of NCEP variables and outputs from HadCM3 and CGCM3 can be seen in their 
characteristics in [12] 
	 Fig. 1. presents the locations of the measured rainfall sequences. In the model  
development, the NCEP and the maximum rainfall data of both 1961-1975 and 1991-2001 
periods were used for model calibration. Note that the total length of the 26-year data was 
different from that (15 years, 1961-1975) of most climate change impact studies because we 
would like to have the AMDR series as long as possible. The remaining data of between the 
time intervals were later applied for model validation (1976-1990).
	 Table 1. shows the significant NCEP variables of HadCM3 for every considered station  
during the calibration periods. The table demonstrates that all NCEP predictors relate to the  
magnitude and direction of various winds. Among these climate variables, surface divergence 
is found to be the most important. However, the NCEP predictors of CGCM3 are quite different  
because they are a combination of the airflow movement, humidity, and pressure variables  
(see Table 2). Notice that the CGCM3 predictors are equally important in modeling the AMDR  
under climate variation and change for the study area. Also, note that the SSPC between the HadCM3 
and CGCM3 will be different because their grid sizes are not the same (HadCM3 2.5º × 3.75º 
and CGCM3 3.75º × 3.75º). Moreover, for each model, its significant predictors are distinguished 
against its grid location (e.g., Khon Kaen and Roi Et).

Fig. 1. Locations of selected rainfall gauging stations in the Chi and Mul River Basins.
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Table 1.	 Significant NCEP variables of HadCM3 for every considered station during  1961-1975  
	 and 1991-2001.

	 The AMDR results of the calibrated PCA technique presented in the form of probability plots 
were then compared with the corresponding observed ones. The downscaling technique would be 
inferred to adequately describe the historical maximum rainfalls if the assessment intervals are  
between 2.5−97.5 percentiles of the modeled AMDRs, containing the considered precipitation. The  
inference by assessment interval is more meaningful than that by point evaluation (e.g., mean or 
median). The model accuracy will be accepted if the bounds contain the observed AMDR. Fig. 2  
displays the historical AMDRs and the downscaled ones of HadCM3 and CGCM3 for various return  
periods at the study sites. The figure indicates that the proposed downscaling technique reproduces 
the observed AMDRs sufficiently. The downscaling technique has been also demonstrated its  
capability of satisfactorily preserving the local AMDR at every site in the validation period (see 
Fig. 3.).

Table 2.	 Significant NCEP variables of CGCM3 for every considered station during 1961−1975  
	 and 1991−2001.
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Khon Kaen Chaiyaphum

Roi Et Ubon Ratchathani

Fig. 2. 	 The probability plots of AMDR and observed ones for the calibration periods (1961-1975  
	 and 1991-2001).
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Fig. 3.  The probability plots of AMDR and observed ones for the validation periods (1976-1990).
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	 Based on the calibration and validation results, the technique has been thus applied to  
construct the AMDR scenarios (i.e., HadCM3A2, HadCM3B2, and CGCM3A2) for the base  
period (1961 - 1990) and future intervals (2020s, 2050s, and 2080s) at all locations using the  
climate simulation outputs of the referred scenarios. Note that the CGCM3 does not provide 
the CGCM3B2 scenario. Table 3-5 presents the AMDR anomalies of the 50-yr return period for 
the 2020s, 2050s, and 2080s intervals (i.e., the largest value in such periods), as compared with 
the base one. The table indicates that the HadCM3A2, HadCM3B2, and CGCM3A2 scenarios of 
the maximum rainfall index in the 2020s, 2050s, and 2080s for most stations are approximately  
unchanged. The range of the AMDR anomalies is usually less than 5 mm. This implies that floods 
in the future remain the same, provided that land uses and drainage structures are unchanged.

Table 3.	 AMDR anomalies of HadCM3A2, HadCM3B2, and CGCM3A2 for current period
	 (2020s) compared with base period (1961-1990).

Table 4. 	 AMDR anomalies of HadCM3A2, HadCM3B2, and CGCM3A2 for current period
	 (2050s) compared with base period (1961-1990).

Table 5. 	 AMDR anomalies of HadCM3A2, HadCM3B2, and CGCM3A2 for current period
	 (2080s) compared with base period (1961-1990).
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4. 	 Conclusions
	 A statistical downscaling technique is proposed in the present study to describe the linkage between 
NCEP variables and AMDR indices at a local site. The proposal is based mainly on PCA of average annual 
NCEP data. A combination of the robust and efficient technique of SVD and the 70% of cumulative variances 
of the NCEP data are used to determine their SSPCs, which are further applied as the significant predictors 
for the AMDR at the appropriate site.

	 The model has been developed for relating the SSPCs of the NCEPs (HadCM3 and CGCM3) to the 
AMDR indices at 6 stations in the Chi and Mul River Basins. The total length of available AMDR data 
for the chosen sites is 47 years (1961-2007). The model developments use the AMDR data during 1961- 
1975 and 1991-2001 for calibration. The intermediate data (i.e., 1976-1990) are applied for validation. 
The screening of all NCEP variables for HadCM3 shows that surface divergence is the most important  
predictor among all significant wind magnitudes and directions. The airflow movement, humidity, and  
pressure variables of CGCM3 are equally significant. The calibration and validation results have indicated 
that the models are feasible for downscaling the AMDRs because they adequately describe the frequencies of 
observed AMDR at all sites. Moreover, this technique had been shown to be more accurate than the existing 
method (i.e., AMDR extraction in downscaled daily rainfalls) in downscaling AMDR [22] 

	 Consequently, the downscaling approaches have been thus used to construct the HadCM3A2, HadCM3B2,  and 
CGCM3A2 scenarios of the 50−yr AMDRs for the base period (1961-1990) and future intervals (2020s, 2050, and 
2080s). The developed SD technique of AMDR at site was investigated on the ability to project its AMDR scenarios.  
The HadCM3A2, HadCM3B2, and CGCM3A2 scenarios of the proposed technique in 2020s, 2050s, and 
2080s have demonstrated that the largest values of AMDRs of most stations are approximately unchanged.
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