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1. Introduction

The boundary element method (BEM) is a numerical technique used to solve the different problems in
science and technology. Computational methods such as the finite difference method (FDM) and finite element
method (FEM) are very costly and time- consuming because in these methods the whole domain is discretized
into a number of elements, whereas in boundary element methods the process of discretization takes place on
the surface of a body. This reduces the size of system of the equations with a considerable reduction in data,
which is needed to run a computer program efficiently. Boundary element methods are superior in several
aspects to other computational methods because of their surface modeling approach. Thus Complicated
structures can be more easily modeled by these methods and are therefore preferred by engineers. The results
of boundary element methods are more accurate and reliable than those of classical methods. This establishes
the fact that these methods (BEMs) are time-saving, accurate, efficient, and economical as compared to other
numerical techniques (Mushtaq, M et al. 2008 and 2009).

These salient features of BEMs make them popular in the communities of engineering and science. These
methods are essentially the methods for solving the partial differential equations arising in a wide range of
fields, e.g., fluid mechanics, solid and fracture mechanics, heat transfer and electromagnetic theory, potential
theory, elasticity, elatostatics and elastodynamics, etc. as detailed in (Brebbia and Walker, 1980). Furthermore,
the area of their applications is increasing day by day. The indirect method has been used for many years in
the past for flow field calculations due to its simplicity. The first work on flow field calculations around
three-dimensional bodies was probably done by (Hess and Smith, 1962 & 1967). The direct boundary element
method (DBEM) for potential flow calculations around objects was first applied in the past by (Morino et al.
1975). In recent past, boundary element methods have been applied by the author for flow field calculations
around two- and three-dimensional bodies (Muhammad; G et al. 2008 and 2010).
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2. Calculation of Oseen’s Flow Past a Circular Cylinder

Boundary element methods are applied for both problems of exterior and interior flows in two
dimensional space.

In this case, an indirect boundary element method is used to calculate the Oseen’s flow around a
circular cylinder. A circular cylinder of radius ‘a’ is held fixed in a uniform stream of incompressible viscous
fluid flowing steadily around it. Let the centre of a cylinder be taken as the origin, and U_ be the velocity of
uniform stream in the positive x — direction as given in Figure 1 (Shah, 2008).

Fig. 1. Oseen’s flow around a circular cylinder.

The hydrodynamical equations (Mine-Thomson,1968 and Lamb, 1932) are.

Ju 1 dp

Usix = “p axtvViu
av_ 1ap. M
Sgx P Jy+vV v
Ju Jdv _ (2)
ax+ay =0
Also V?p =0 3)
¢
and p = PUSQ 4)
The relations for the velocity components (Milne Thomson, 1968 and Lamb, 1932) are
_ 99, 1y
U= 9x 2k gx X 5)
_ a9 1 ay
V= 9y 2k ay
where k is an inertia coefficient. Also, we know that
Vip =0 (6)
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Using these relations in equation (2), we get

3’9 1 Py dx 979 1 a’y
ox° T2k 9x° 8x_6y“+2kw_0
29 9%¢ L(agx azx) ax
ax "oy ak \ox "oy “ax 0
: L( ) 6'_%)_
v ¢+ 5K Viy- - =0
Since V?¢ =0
L( a G_X)_
ok \Vix—2k gy 0
> Ix _
\Y x—2kax—0
(o2 ) - 7
or Vi-2ko7 )% =0 @)

Let the appropriate solution of equation (7) for small values of kr be

X =—C(l+kx)(y+]n%kr)

Let us assume :
x=—C +kx)(y+]n%kr)

so that the boundary conditions u =0 and v =0 are satisfied on the boundary of a circular cylinder.

ax 1 X
a—x=—Ck(Y+ln§kr)_C(l+kx)(;§)
1 axy __{( 1 ) X kxz}
I K k y+]n2kr +2+ T
1 ay C 1 x kx? 1
ﬁ_x—X=_ﬁ{k(‘f+‘"§kr)+?+_rr}‘c“*kx)(’f”“ikr) ®
Also 5
L) J 9°
Tx=-Us+Agg-(nnt Ay g3 (inn+ .. ©)
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Similarly,

if— —C[|+kx}(f~)

2k dy 2k 0
__2(-‘—;( %{Inr} Ekrd;;}.[lnl'}-""}
and
%_ﬁu%“nr} A'ﬂx; (Inr)+

Boundary conditions are
u=0and v=0 for r=a

Using the above boundary conditions in the equations (12) and (13), we obtain

C(2 y-Inz ka) (Ag 2k) (Ina)+(A1+%a2) %}(lnr)+ .......

and

c\ o c,) @’
0= (Ag_ﬂ) ﬁ(]na)+(A.+Za‘) axay(lna)+....

which give on comparison 1 |
—US—C(E—y—lnika) 0,
C
and
C
A1+Ea =0
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or C=—%
z—y—]nika
Ao = o=
and
A ——%a2

Using these constants in equations (12) and (13), we obtain

R L
u= U,.—c(j y-Iny Lr) ( ﬂ+ﬁ (Inr +(%a“’—%r‘) a(_xf(lnl']
=-—US

1 (1 1 1, 580
;—Y—In;kr)—;{r‘—a‘}—‘, _(lnr}}+|
|:~(+It1%ka—%{ . - - ox (14)

2
v =3 -at) oy

Us ) 0’
= (r a')a X0 y(]n r) (15)

2(y+]n ka— 2)

(Inr)

The magnitude of velocity is given by the relation

V=Vuliy? (16)

Now to approximate the surface of a circular cylinder, the coordinates of extreme points on the boundary
elements are generated in a computer program as under (Muhammad, G et al. 2008 and 2011).

The surface of the circular cylinder is discretized into m elements in a clockwise direction using the
following formula.

By = [(m+3)-2k]a/m,k=1,2,........m (17)

Then the coordinates of the extreme points of these m elements are calculated from

Xp = acos By

v = asin O Jk=1.2,....m (18)

3. Constant Variation

Let us consider the constant element case in which nodal points are to be taken at the middle of each
element. Also ¢ and 99 are constant in this case over such elements and equal to the value at the mid-

node of the element. dn
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Fig.2 The discretization of the surface of a circular cylinder into constant boundary elements

The mid-node coordinates over every element are defined by the formula

KpTXg+
Xm = a

, k,m=1,2,....8 (19)
ym = LEEEEeL
m 2

The equation for the indirect method in the case of a doublet distribution for the problems of two-
dimensional exterior flow is given by

1o oL i( l)
S Dit+5 f @~ \In,)dl+¢.
r—i

= - ( ¢ u.s.)i (20)

Since (¢ ,s)i =-X, equation(20) becomes

Lo L i( 1)
5 @it~ f @7 \Iny dIr+¢.
r—i
= x; (21)

Matrix Form Equation (21) can be written as

m
M
—%(Dﬁ‘z H]jq)i+¢¢:){i (22)
j=1
m
or X H;®j+d. = x; (23)
j=1

when all the nodal points are taken into consideration, then equation (23) can be put into the form

[H] {U} = {R} (24)
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where [H] is a matrix of influence coefficients, {U} is a vector of unknown total potentials and
{R} on the R.H.S. is a known vector whose elements are the negative values of the velocity potential
of the uniform stream at the nodal points on the boundary of the circular cylinder.
Since 2 o 1s specified at each node of the element, the values of the perturbation velocity potential
¢ can be found at each node on the boundary. The total potential ® is then found, which will then be used
to calculate the velocity on the circular cylinder.

Fig. 3 Discretization of constant boundary elements.

The velocity midway between two nodes on the boundary can then be approximated by using the formula

L _ O+ 1 — Dy
V "~ Length from node k to k

(25)

The method has been implemented using FORTRAN programming with 16, 32, and 64 constant
boundary elements.

Where

Us = Uniform Stream Velocity.

C = Constant of integration.

Y = Euler’s constant.

m = Number of nodes.

® = Total Potential.

¢ = Perturbation Velocity Potential.

k = inertia coefficient.
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Table 1. Comparison of computed velocity and exact velocity results for 16 constant boundary elements.

ELEMENT X Y COMPUTED EXACT ERROR
VELOCITY VELOCITY

1 -94 19 39785E+00 11841E+01 07862E+01
2 -.80 53 .11330E+01 .15207E+01 03877E+01
3 -53 .80 .16956E+01 18973E+01 02017E+401
4 -.19 94 .20001E+01 21237E401 01236E+01
5 .19 94 20001E+01 21237E+01 01236E+01
6 53 .80 .16956E+01 18973E+01 02017E+01
7 .80 53 .11330E+01 15207E+01 03877E+01
8 94 19 39785E+00 11841E+01 07862E+01
9 94 -.19 .39785E+00 .11841E+01 07862E+01
10 .80 -53 .11330E+01 .15207E+01 03877E+01
11 353 -.80 16956E+01 18973E+01 02017E+01
12 19 -94 .20001E+01 21237E+01 01236E+01
13 -.19 -.94 .20001E+01 21237E+01 01236E+01
14 -53 -.80 .16956E+01 .18973E+01 02017E+01
15 -.80 -.53 .11330E+01 .15207E+01 03877E+01
16 -94 -.19 39785E+00 .11841E+01 07862E+01
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Table 2. Comparison of computed velocity and exact velocity results for 32 constant boundary elements.

ELEMENT X Y COMPUTED EXACT ERROR
VELOCITY VELOCITY

1 -99 .10 .19699E+00 .10503E+01 08533E+01
2 -.95 29 .58339E+00 11537E+01 05703E+01
3 -87 A7 94738E+00 13237E+401 03763E+01
4 =17 .63 .12750E+401 A5173E+401 02423E+01
5 -.63 117 .15535E+401 .17022E+01 01487E+01
6 -47 .87 17724E+01 .18568E+01 00844E+01
7 -29 95 .19232E+01 .19669E+01 00437E+01
8 -.10 99 20001E+01 20240E+01 00239E+01
9 .10 99 .20001E+01 .20240E+01 00239E+01
10 29 95 .19232E401 .19669E+01 00437E401
11 A7 87 17724E+01 .18568E+01 00844E+01
12 .63 17 .15535E+01 .17022E+01 01487E+01
13 17 .63 .12750E+01 15173E+01 02423E+01
14 .87 A7 94738E+00 13237E+01 03763E+01
15 95 29 58339E+00 11537E+01 05703E+01
16 99 .10 .19699E+00 .10503E+01 08533E+01
17 99 -.10 .19699E+00 .10503E+01 08533E+01
18 95 -.29 .58339E+00 11537E+01 05703E+01
19 .87 -47 94738E+00 13237E+01 03763E+01
20 17 -.63 12750E+01 A5173E+01 02423E+01
21 .63 =17 15535E+401 17022E+01 01487E+01
22 A7 -.87 17724E401 .18568E+01 00844E+01
23 29 -95 .19232E+01 .19669E+01 00437E+01
24 .10 -99 20001E+01 20240E+01 00239E+01
25 -.10 -99 .20001E+01 20240E+01 00239E+01
26 -29 -95 19232E+01 .19669E+01 00437E+01
27 -47 -87 17724E401 .18568E+01 00844E+01
28 -.63 =77 .15535E+01 .17022E+401 01487E+401
29 =77 -.63 12750E+01 A5173E+01 02423E+01
30 -.87 -47 94738E+00 .13237E+01 03763E+01
31 -.95 -29 58339E+00 A11537E+01 05703E+01
32 -.99 -.10 .19698E+00 .10503E+01 08533E+01
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Table 3. Comparison of computed velocity and exact velocity results for 64 constant boundary

elements.
ELEMENT X Y COMPUTED EXACT ERROR
VELOCITY VELOCITY
1 -1.00 05 98258E-01 .10178E+01 09195E+01
2 -99 A5 .29383E+00 .10454E+01 07515E+01
3 -97 24 A48654E+00 .10975E+01 06109E+01
4 -94 34 .67460E+00 11691E+01 04945E+01
5 -.90 43 .85616E+00 .12543E+01 03981E+01
6 -.86 Sl .10295E+01 .13476E+01 03181E+01
7 -.80 .59 .11929E+01 .14442E+01 02513E+01
8 -74 67 .13447E+01 15401E+01 01954E+01
9 -.67 74 .14837E+01 .16322E+01 01485E+01
10 -.59 .80 .16084E+01 17176E+01 01092E+01
11 -51 .86 A7175E+01 .17944E+01 00769E+01
12 -43 90 18102E+01 .18609E+01 00507E+01
13 -34 94 .18854E+01 19155E+01 00301E+01
14 -24 97 19424E+01 .19574E+01 00150E+01
15 -.15 99 .19808E+01 19857E+01 00049E+01
16 -.05 1.00 20000E+01 20000E+01 .00000E+01
17 05 1.00 .20000E+01 .20000E+01 .00000E+01
18 15 99 .19808E+01 .19857E+01 .00049E+01
19 24 97 19424E+01 .19574E+01 00150E+01
20 34 94 .18854E+01 19155E+01 00301E+01
21 A3 90 18102E+01 .18608E+01 00506E+01
22 S1 .86 A7175E+01 17944E+01 00769E+01
23 .59 .80 .16084E+01 A7176E+01 01092E+01
24 67 74 .14837E+01 .16322E+01 01485E+01
25 T4 67 .13448E+01 15401E+01 01953E+01
26 .80 59 11929E+01 .14442E+01 02513E+01
27 .86 S1 .10294E+01 13476E+01 03182E+01
28 .90 43 .85616E+00 12543E+01 03981E+01
29 94 34 67461E+00 .11691E+01 04944E+01
30 97 24 A8654E+00 .10975E+01 06109E+01
31 99 A5 29383E+00 .10454E+01 07515E+01
32 1.00 05 98239E-01 .10178E+01 09195E+01
33 1.00 -.05 98242E-01 .10178E+01 09195E+01
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ELEMENT X Y COMPUTED EXACT ERROR
VELOCITY VELOCITY
34 99 -15 29383E+00 .10454E+01 07515E401
35 97 -.24 A8654E+00 .10975E+01 06109E+01
36 94 -34 .67461E+00 11691E+01 04944E+01
37 90 -43 .85615E+00 .12543E+01 03981E+01
38 .86 -.51 .10295E+01 .13476E+01 03181E+01
39 .80 -.59 .11929E+01 .14442E+01 02513E401
40 14 -.67 .13448E+01 .15401E+01 01953E+401
41 67 =74 .14837E+01 .16322E+01 01485E+401
42 59 -.80 .16084E+01 17176E+01 01092E+01
43 Sl -.86 17175E401 .17944E+01 00769E+01
44 43 -90 18102E+01 .18608E+01 00506E+01
45 34 -.94 .18854E+01 19155E+01 00301E+01
46 24 -97 .19424E+01 .19574E+01 00150E+01
47 15 -99 .19808E+01 .19857E+01 00049E+01
48 05 -1.00 .20000E+01 .20000E+01 .00000E+01
49 -.05 -1.00 .20000E+01 .20000E+01 .00000E+01
50 -.15 -99 .19808E+01 .19857E+01 .00049E+01
51 -24 -97 .19424E+01 .19574E+01 00150E+01
52 -34 -94 .18854E+01 .19155E+01 00301E+01
53 -43 -90 .18102E+401 .18609E+01 00507E+01
54 -51 -.86 17175E+01 .17944E+01 00769E+01
55 -.59 -.80 .16084E+01 .17176E+01 01092E+01
56 -.67 -74 .14837E+01 .16322E+01 01485E+01
57 -74 -.67 13447E+01 .15401E+01 01954E+01
58 -.80 -.59 .11929E+01 .14442E+401 02513E+401
59 -.86 -51 .10295E+401 .13476E+01 03181E+01
60 -90 -43 .85616E+00 .12543E+01 03981E+01
61 -94 -.34 .67460E+00 11691E+01 04945E+01
62 -97 -.24 A48654E+00 .10975E+01 06109E+01
63 -99 -.15 29384E+00 .10454E+01 07515E+01
64 -1.00 -05 98246E-01 .10178E+01 09195E+01
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Fig.4. Comparison of exact and computed values over the boundary of a circular cylinder for 16
constant boundary elements.
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Fig.5. Comparison of exact and computed values over the boundary of a circular cylinder for 32
constant boundary elements.
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Fig. 6. Comparison of exact and computed values over the boundary of a circular cylinder for 64
constant boundary elements.
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Conclusion
The indirect boundary element method has been applied to calculate Oseen’s flow past a circular

cylinder in the case of constant variation. The improvement in results gained by taking 32 and 64 constant
elements can be seen from Tables 2 and 3, and Figures 5 and 6, and the improvement increases with an
increase in number of boundary elements. Moreover, at the top of Figure 6, the computed results are convergent
with the exact results and as we come down, these results are slightly divergent from the exact ones due to
an increase of viscous effects.
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