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Abstract

In this article, we consider a new parametrization of  the two-parameter 
Inverse Gaussian distribution. We find the estimators for parameters of 
the Inverse Gaussian distribution by the method of moments and the 
method of maximum likelihood. Then, we compare the efficiency of the 
estimators for the two methods based on their bias and mean square 
error (MSE). For this we fix values of parameters, run simulations, and 
report MSE and bias for estimates obtained by both methods. The 
conclusion is that when sample sizes are 10, the method of moments 
tends to be more efficient than the maximum likelihood method for 
estimates of both parameters (lambda and theta). When sample sizes 50, 
are the estimates of the method of moments tend to be efficient, for Theta 
The maximum likelihood the method tends to be more efficient than the 
method of moments for Lambda. When sample sizes are 100, the estimates 
of the method of moments tend to be more efficient for Theta. For the 
estimate, of parameter Lambda, the maximum likelihood method tends to 
be  more efficient. 
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1.  Introduction

	 The Inverse Gaussian distribution became known in statistics only in the late 40s of the twentieth 
century. Many contemporary statistical methods for data analysis involve and are derived with the 
extensive use of the Inverse Gaussian distribution. As it is mentioned in the monograph by Chhikara and 
Folks (1989) [1], the Inverse Gaussian distribution has several properties analogous to a Gaussian 
distribution, but the name can be misleading. It is an "Inverse" only in that, while the Gaussian 
distribution describes a Brownian Motion's level at a fixed time, the Inverse Gaussian describes the 
distribution of time a Brownian Motion with positive drift takes to reach a fixed positive level. An inverse 
Gaussian distribution in the classical parametrization contains two parameters, shape parameter μ and 
scale parameter ß. 

	 Chhikara and Folks (1989)[1] reviewed some analogies between the statistical properties of the 
Inverse Gaussian and the Gaussian distributions and the summarized statistical properties are done by 
Johnson et al. (1995).[2]
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Before that, Tweedie (1957) [3] extended some results  of Schrodinger in theoretical physics and noticed 
the inverse relationship between the cumulant-generating function of the time per unit distance and the 
cumulant-generating function of the distance covered in unit time. The detailed study of the corresponding 
distribution was published in Tweedie (1957) [3] with the new name, Inverse Gaussian, for the first 
passage-time distribution of the Brownian Motion with drift. Even before this, Wald (1947) [4] derived an 
approximation of the sample size distribution in a sequential probability ratio test as a special case of the 
Inverse Gaussian distribution.

	 The Inverse Gaussian distribution is a useful statistical tool for engineering, biology, physics, 
finance, and many other applications. For instance, in tracer dynamics, emptiness of a dam, a purchase 
incidence model, the distribution of strike duration, a word frequency distribution, and many others. 
Moreover, the Inverse Gaussian is the most appropriate statistical distribution when skewed data analysis 
is needed. 

	 The Inverse Gaussian distribution is closely related to the Birnbaum-Saunders distribution. 
Cysneiros, et al. (2008) [5] mentioned that the Birnbaum-Saunders distribution, also known as the 
 
fatigue-life distribution, is frequently used in reliability studies. Furthermore, Leiva et al. (2008) [6] 
provided a lifetime analysis based on the generalized Birnbaum-Saunders distribution. The estimation 
method is examined by means of Monte Carlo simulations.

	 In Ahmed et al (2008) [7] a new parametrization for a related Birnbaum-Saunders distribution is 
proposed. This re-parametrization fits the study of materials since the proposed parameters characterize or 
specify the thickness of the sample and the nominal treatment loading on the sample. The usual shape and 
scale parameters of the distribution do not offer this physical interpretation. In Ahmed et al (2008) [7] the 
statistical properties of the direct application of the standard methods of point estimation to the new 
parameters are investigated. In an effort to appraise the performance of proposed estimators in a practical 
setting, Monte-Carlo simulations are conducted for small, moderate and large sample sizes.

	 In this article, we will estimate new parameters of the Inverse Gaussian distribution by the method 
of moments and the method of maximum likelihood. Also we compare bias and mean square error (MSE) 
for both methods.



2.	 The Density Functions of the Inverse Gaussian (IG) Distribution with the 
 
	 New Parameters and Classical Parameters. 

	 The density function of the Inverse Gaussian distribution with classical parametrization can be 
written as



					     fIG (x; μ, ß) =   ß  x -3/2 exp      ß(x-µ)2     

, x > 0.          	           

						                2π	          2π2x

 

while with the new parametrization that we consider in this paper, it is:

			
  
				      fIGnew(x; λ,θ) =   λ         θ  

3/2

exp      1    λ   θ       θ   
2

   
 

, x > 0.

						      θ   2π   x                 2         x        x	



	 In the following we consider the Inverse Gaussian distribution only with the new parametrization 
and we denote it as IG (λ, θ). As we mentioned above, this re-parametrization fits the study of materials 
and new parameters have direct physical interpretation. Interrelations between the usual parameters μ, ß 
and the new parameters θ and  λ are as follows: 


(1)


(2)
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3. 	 The Estimation Method.

	

	 3.1  Method of Moments. (Berger and Casella, 1990) [8]

	 Let X1,...,Xn  be a sample from a population with pdf. f (x : θ1...,θk). Method of moments estimators 
are found by equating the first k sample moments to the corresponding k population, and solving the 
resulting system of simultaneous equations. More precisely, define



						      m1    =  1  ∑   Xi  ,  µ1  = E(X)

						                  

n     

						    

  m1  =  1  ∑   X2
i  ,  µ2  = E(X2)


						                  
n     


							             
.


							             .

				                                                 .	

	 


						          

					                    mk  =  1  ∑   Xk

i  ,  µk  = E(Xk)

						                  

n     


The population moment µj will typically be a function of θ1,...,θk , say µj (θ1,...,θk). The method of 
moments estimator (θ1,...,θk) of (θ1,...,θk) is obtained by solving the following system of equation for (θ1,...,θk) 
in terms of (m1,...,mk):


		  λ   =     ß ,          µ     =  λ θ, 	 (3)

		  µ 

					      

		  θ   =    µ

2 ,          ß     =  λ2 θ.	 (4)

		   ß 


	 In Fig.1. we present graphs of a few densities functions of the Inverse Gaussian distribution for 
various values of parameters.


		  Fig.1.  Probability density function for classical Inverse Gaussian distribution

			   when λ = 1 and  θ =1, 3, 5
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						              m1    =  µ1 (θ1,...,θk)
							      


						              
m1    =  µ2 (θ1,...,θk).

							      					

		

.

		  .

		  .	

	 


						              m1    =  µk (θ1,...,θk).



For each integer n, the nth moment of  X (or Fx (x)), µ'n, is µ'n = E(X

n
) The nth central moment of  X ,  µn ,is  

µn = E(X-µ)n , where µ =  µ'1 = E(X)   



	 3.2	 Maximum Likelihood Method (Hogg and  Tenis, 2001, p.342-343) [9]

		  Let  X1,X2,...,Xn be a random sample in a distribution that depends on one or more unknown 
parameters  θ1,θ2,...,θm with probability density function denoted by f (x : θ1,θ2,...,θm). Suppose that (θ1,        
θ2,...θm) is restricted to a given parameter space Ω .Then the joint probability density function of 
X1,X2,...,Xn is:

		
 
		  L (θ1,θ2,...,θm)      = 		  f (x1 : θ1,θ2,...,θm) f (x2:θ1,θ2,...,θm)

                                          		  …	f (xn : θ1,θ2,...,θm) , θ1,θ2,...,θm ∈ Ω 



When regarded as a function of θ1,θ2,...,θm, is called the likelihood function. Say [u1(X1,X2,...,Xn), 
u2(X1,X2,...,Xn),...,um(X1,X2,...,Xn)] is that m –tuple in Ω that maximizes L(θ1,θ2,...,θm). 

					     Then  θ1    =    u1(X1,X2,...,Xn)

					              θ2     =    u2(X1, X2,...,Xn)

							            .

							            .

							            .

			                                       θm   =     um(X1,X2,...,Xn)

are maximum likelihood estimators of θ1,θ2,...,θm, respectively; and the corresponding observation of 
these statistics, namely u1(x1,x2,...,xn),u2(x1,x2,...,xn),...,um(x1,x2,...,xn) are called maximum likelihood 
estimates. In many practical cases, these estimators  (and estimates) are unique.



4. Methodology

	 We study the characteristic function of the Inverse Gaussian distribution. Next, we calculate the first 
two moments for the new parametrization and derive the maximum likelihood for the Inverse Gaussian 
distribution. Moreover, we derive the solution of the method of moments and the maximum likelihood 
equations. Finally, we compare bias and MSE of both  parameters and both estimation methods for the 
Inverse Gaussian distribution. 

  

	 4.1	 Calculation of the First Two Moments for the Inverse Gaussian (IG)   		
  
		  Distribution.

		  The characteristic function of a continuous random variable is defined as

	
  

(6)


(7)


(8)
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	 φx(t)   =   E(eitx)   =   ∫ eitx f (x,θ)dx. 	 (9)

We found the characteristic of the IG ( λ,θ) distribution 

	 φIG (t;θ,λ)   =   exp{λ[1− (1−2iθt)  ]} 	 (10)



Next, we calculated ln φIG (t; λ,θ) and  usual series expansion to find first two cummulants                          
This expansion gives the first population moment µ'1 = λθ, and gives the second central population 
moment  µ'2 = θ2 of the Inverse Gaussian (IG) distribution.



	 4.2 	 The Solution of the Method of Moments Equations

We will estimate equations for two parameters of the Inverse Gaussian (IG) distribution when

               	 m1   =  µ'1 = X 

		     m2   =  µ'2 =     ∑(X−X)2                                 

where

                m1  is first  sample moment

		     m2  is second central sample moment

Then, we find the first central population moment (k1) equal to the first central sample moment (m1) and 
the second  central population moment (k2) equal to the second central sample moment (m2),so we solve 
the parameters  λ, θ for the estimator.     

The method of moments estimates  for two parameters of Inverse-Gaussian distribution are



                   

		                            λ MME  =                                θ MME =        

	

	

	

	 4.3	 The Solution of Maximum Likelihood Equations 

		  We derive the maximum likelihood function of the Inverse Gaussian (IG) distribution is 
denoted as fIG (X : λ, θ), and the likelihood function: 


L(x : λ, θ  = fIG (X1; λ, θ) fIG(X2; λθ...fIG(Xn; λ, θ)  Then, maximize  L(x: λ,θ) by setting  λ = 0 and minimize  
L(x: λ,θ)  by setting  θ = 0. 


		  After that we find  θ and  λ for the estimators. Moreover, we find the second derivative for 
checking the estimators that provide maximum of the likelihood function. The estimates for two 
parameters of IG- distribution by the maximum likelihood method are


−∞


∞


1

2
-


−
−−1


n


−n∑(X−X)2


(∑Xi)
2


i=1


n
 −(∑Xi−X)2


i=1


n


n


5. 	 Findings and Results

	 After that, we generate an Inverse Gaussian distribution and compute the estimates of  parameters 
 
θ, λ. We use the following values of parameters for simulations  θ = 0.5, 1, 5, 10, and 50, λ = 0.5, 1, 5, 10, 
and 50 and sample sizes n = 10, 50, and 100 by using the R program version 2.11.1. Then, we calculate 
bias and MSE for both parameters. 


(11)


(12)


(13)
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	 where n = 10, θ = 0.5, 1, 5, 10, 50 and λ = 0.5, 1, 5, 10, 50 in Tables 1-5. In Tables 6-10 we provide 
a comparison of bias and MSE of estimates by method of moments and maximum likelihood method 
where n = 50,  θ  = 0.5, 1, 5, 10, 50 and  λ = 0.5, 1, 5, 10, 50. Finally, in Tables 1-3 we give a comparison 
of bias and MSE of estimates by method of moments and  maximum likelihood method  where n = 100,    
θ  = 0.5, 1, 5, 10, 50 and  λ = 0.5, 1, 5, 10, 50

	 As can be seen from Table 1, we begin with the simulation results for the percentage of absolute 
relative bias parameter θ and λ. The percentages of absolute relative bias parameter θ of MME are smaller 
than that of MLE for all situations. In addition, the MME also provides the smallest value of percentage of 
absolute relative bias parameter λ when  λ = 1 and 5. In summary, the method of moments (MME) is more 
efficient than the maximum likelihood method (MLE) in parameter θ for the percentage of absolute 
relative bias criterion, which is shown in Fig.2. 


Table  1.	A comparison percentage of absolute relative bias and MSE of the estimator θ ( θ = 0.5) and λ 
 
	 (λ =  0.5, 1, 5, 10, 50) by the method of moments and  maximum likelihood method  for n = 10.


Note:*	represents the minimum values. 


Parameter


	 θ  	 λ 	 MME  	 MLE  	 MME  	 MLE	 MME  	 MLE 	 MME  	 MLE


	0.5	 0.5	 0.99970•	 0.99998	 0.99990	 0.99960•	 0.000022•	 0.000025	 0.001765	 0.000001•


		  1	 0.99990•	 0.99994	 0.99970•	 0.99983	 0.000002	 0.000002	 0.000001•	 0.000011

		  5	 0.99970•	 0.99978	 0.99993•	 0.99996	 0.000001•	 0.000025	 0.000296•	 300.6734

		  10	 0.99980•	 0.99998	 0.99994	 0.99923•	 0.000159	 0.000025•	 0.005171•	 310.6352

		  50	 0.99950•	 0.99998	 0.99997	 0.99879•	 0.002569	 0.000143•	 0.206127	 0.115932•


MSE of θ
 MSE of λ
parameter

X 100
bias


of θ

parameter


X 100
bias


of λ


absolute relative bias of the parameter θ


Fig.2. 	 A comparison percentage of absolute relative bias  of the parameter θ  by MME and 

            MLE when θ (θ  = 0.5), λ (λ = 0.5, 1, 5, 10, 50)  and n = 10. 
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Fig.3. 	 A comparison percentage of absolute relative bias  of the parameter  λ by MME and MLE when θ 
 
	 (θ  =  0.5), λ (λ = 0.5, 1, 5, 10, 50) and  n = 10.


Table  2. 	 A comparison percentage of absolute relative bias and MSE of the estimator θ (θ=5) and λ
 
		  (λ =  0.5, 1, 5, 10, 50) by method of moments and  maximum likelihood method  where n = 50.


Note:* represents the minimum values.


Parameter


	 θ  	 λ 	 MME  	 MLE  	 MME  	 MLE	 MME  	 MLE 	 MME  	 MLE


	0.5	 0.5	 0.99987•	 1.20536	 0.99992	 0.99978•	 0.00085•	 0.000160	 0.00005•	 0.00030

		  1	 0.99980•	 1.08254	 0.99994	 0.99977•	 0.00019	 0.00035	 0.00003	 0.00001•


		  5	 0.99975•	 1.75234	 0.99996	 0.99981•	 0.00958	 0.00516•	 0.00107	 0.00086•


		  10	 0.99960•	 1.00356	 0.99998	 0.99994•	 0.00034•	 0.00236	 0.00367•	 11.5498

		  50	 0.99944•	 1.04852	 0.99998	 0.99983•	 0.00169	 0.00003•	 5.32695	 0.26477•
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	 As can be seen from Table 2, we consider the percentage of absolute relative bias parameter  θ and  
λ. The percentages of absolute relative bias parameter θ of MME are smaller than that of MLE in all 
cases. In addition, the MLE is smaller than that of  MME value of percentage of absolute relative bias 
parameter  λ in all cases too. In summary, the method of moments (MME) is more efficient than the 
maximum likelihood (MLE) method for the estimate of parameter θ but the maximum likelihood method 
(MLE) is more  efficient than the method of moments (MME) for the estimate of parameter λ in criteria 
percentage of absolute relative bias as shown in Figs. 4-5.


Fig.4.	 A comparison percentage of absolute relative bias  of the parameter  θ by MME and MLE when θ
 
	 (θ  = 5), λ (λ = 0.5, 1, 5, 10, 50)  and n = 50.


Fig. 5.   A comparison percentage of absolute relative bias  of the parameter  λ by MME and  MLE when 
 
	 θ (θ = 5), λ (λ = 0.5, 1, 5, 10, 50) and n = 50.
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Table  3.	 A comparison percentage of absolute relative bias and MSE of the estimator  θ (θ = 1) and λ
 
	  	 (λ = 0.5, 1, 5, 10, 50) by method of moments and  maximum likelihood method where n = 100.


Note:* represent the minimum values.


Parameter


	 θ  	 λ 	 MME  	 MLE  	 MME  	 MLE	 MME  	 MLE 	 MME  	 MLE


	0.5	 0.5	 0.99988•	 0.99991	 0.99992	 0.99988•	 0.00004•	 0.01328	 0.00005 	 0.00002•


		  1	 0.99996 	 0.99976•	 0.99974•	 0.99996	 0.00001•	 0.00032	 0.00001•	 0.00005


		  5	 0.99983•	 0.99993	 0.99994	 0.99985•	 0.00009	 0.00002•	 0.82475	 0.00029•


		  10	 0.99978•	 0.99996	 0.99996	 0.99973•	 0.00054•	 0.00399	 0.00495•	 0.00721


		  50	 0.99914•	 0.99989	 0.99999	 0.99990•	 0.00451	 0.00009•	 0.19160	 0.06269•
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X 100
bias
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parameter


X 100
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MSE of θ
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absolute relative bias of the parameter θ


Fig.6.		 A comparison percentage of absolute relative bias  of the parameter θ by MME and MLE when θ
 
		  (θ  = 1), λ (λ = 0.5, 1, 5, 10, 50)  and n = 100.
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	 As can be seen from Table 3, we consider the percentage of absolute relative bias of the parameters  
θ  and  λ  . The percentages of absolute relative bias of the parameter  θ of MME are smaller than that of 
MLE  when  λ  =, 1, 5, 10, and 50. In addition, the MLE is smaller than that of  MME value of percentage 
of absolute relative bias parameter  λ when λ  = 1, 5, 10, and 50.

	 In summary, the percentage of absolute relative bias  of parameter θ the method of moments 
(MME) is  more efficient than the maximum likelihood method  (MLE)  but parameter  λ the maximum 
likelihood method (MLE), is more efficient than the method of moments (MME) and shown in Fig.6-7.


MME (lambda)
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Fig.7. 	 A comparison percentage of absolute relative bias  of the parameter θ by MME and MLE when 
 
		  θ (θ = 1), λ (λ = 0.5, 1, 5, 10, 50)  and n = 100.
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6.	 Conclusions



	 6.1	 Research Conclusions

	 After we found the formulas for estimators, we generated the random numbers that follow the 
Inverse Gaussian .When sample sizes are 10, the method of moments tends to be more efficient than the 
maximum likelihood method for both estimates. When sample sizes are 50, for estimates of θ,  the method 
of moments tends to be more efficient than the maximum likelihood method. For estimate of λ, the 
maximum likelihood method tends to be more efficient than the method of moments. When sample sizes 
are 100, for estimates of θ, the method of moments tends to be more efficient than the maximum 
likelihood method. For stimates of parameter λ, the maximum likelihood method tends to be more 
efficient than the method of moments.



	 6.2	 Discussion and Future research

	 In this article we discussed point estimation of new parameters and for the Inverse Gaussian 
distribution. User should use the maximum likelihood method more than the method of moments  because 
the maximum likelihood estimates are easier to calculate. But the method of moments is more efficient 
than the maximum likelihood method in some cases.

	 For questions of interval estimation, the test of hypothesis remains to be considered for future 
research. If a bias correction is applied and an appropriate distribution is the for establishing critical 
values, then target size and a reasonably good test can be achieved for moderate sample sizes. We suggest 
a more computationally intensive nested bootstrap, which calculates critical values of the test statistic 
from its bootstrapped distribution rather than using tests on the critical value of the student-t distribution. 
To calculate the asymptotically valid variances, covariances, and bias measures, one can use the balanced 
bootstrapping re-sampling methods. There are several techniques for generating confidence intervals 
available, for example the percentile methods and bias corrected method with acceleration. 


MME (lambda)

MLE (lambda)
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