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Abstract 
 The effects of viscous dissipation and radiation on magnetohydrodynamic(MHD) free 
convection flow along a sphere with joule heating and heat generation have been investigated. 
The governing equations are transformed into dimensionless non-similar equations by using set 
of suitable transformations and solved numerically by the finite difference method along with 
Newton’s linearization approximation. We have focused our attention on the evaluation of 
velocity profiles, temperature profiles, shear stress in terms of local skin friction and the rate of 
heat transfer in terms of local Nusselt number for different values of radiation parameter, 
Prandlt number, heat generation parameter, magnetic parameter, joule heating parameter and 
viscous dissipation parameter and the numerical results have been shown graphically.  
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1.  Introduction 

 In this paper, the description of the effects 
of viscous dissipation and radiation on 
magnetohydrodynamic free convection flow 
along a sphere with joule heating and            
heat generation has been focused on. Many 
researchers have studied the problems of free 
convection boundary layer flow over or on       
a various types of geometrical shapes. Amongst 
them Nazar et al. [1] studied free convection 

boundary layer on an isothermal sphere in a 
micropolar fluid. Soundalgekar et al. [2] have 
studied radiation effects on free convection 
flow of a gas past a semi-infinite flat plate. 
Akhter and Alim [3] studied effects of radiation 
on natural convection flow around a sphere 
with uniform surface heat flux. Limitations of 
this approximation are discussed briefly in Ö
zisik [4]. The transformed boundary layer 
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 According to the above assumption, the  
governing equations continuity, momentum and 
energy for steady two-dimensional laminar 
boundary layer flow problem under consideration 
can be written as : 

equations are solved numerically using Keller 
box method described by Keller [5] and later by 
Cebeci and Bradshaw [6] along with Newton’s 
linearization approximation and used by Hossain 
et al. [7] and Alim et al. [8]. The effects          
of radiation and joule heating on 
magnetohydrodynamic free convection flow 
along a sphere with heat generation have been 
studied by Miraj et al. [9-10]. Miraj et al. [11] 
have also studied the effects of pressure work 
and radiation on natural convection flow around 
a sphere with heat generation. Molla et al. [12] 
have studied the problem of magnetohydrodynamic 
natural convection flow on a sphere in the 
presence of heat generation or absorption. 
Alam et al. [13] studied the viscous dissipation 
effects with MHD natural convection flow on   
a sphere in the presence of heat generation. 
Amin [14] also analyzed the influences of both 
first and second order resistance, due to the 
solid matrix of non-darcy porous medium, 
Joule heating and viscous dissipation on forced 
convection flow from a horizontal circular 
cylinder under the action of transverse magnetic 
field. Numerical results have been obtained in 
terms of local skin friction, rate of heat transfer, 
velocity profiles as well as temperature profiles 
for a selection of relevant physical parameters 
and shown graphically. 

2.  Formulation of the problem 

 A steady two-dimensional magnetohydrody- 
namic (MHD) natural convection boundary layer 
flow from an isothermal sphere of radius a, 
which is immersed in a viscous and 
incompressible o ptically dense fluid with heat 
generation and radiation heat loss is considered. 
It is assumed that theconstant temperature at 
the surface of thsphere is Tw, where Tw > T∞ . 
Here T∞ is the ambient temperature of the fluid, 
T is the temperature of the fluid in the 
boundary layer, g is the acceleration due to 
gravity and (U, V) are velocity components 
along the (X, Y) axes. The physical 
configuration considered is as shown in Fig. 1 

Fig. 1.  Physical model and coordinate system.
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With the boundary conditions 

U = V = 0,  T = T∞ at  Y = 0
U    0,   T      T∞    as  Y     ∞   (4)

where r(X)=α sin is the radial distance from the 
centre to the surface of the sphere, k is the   
thermal conductivity, β is the coefficient of   
thermal expansion, B0 is the strength of   
magnetic field, σ0 is the electrical conductivity,   
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ν (= μ/ρ) is the kinematic viscosity, μ is the   
viscosity of the fluid, ρ is the density, cp is the 
specific heat due to constant pressure and Q0 is 
the heat generation constant. 

The above equations are non-dimensionalised 
using the following new variables: 

where ar is the Rosseland mean absorption   
co-efficient, σs is the scattering co-efficient and 
σ is the Stefan-Boltzmann constant. 

Substituting Eqs. (5), (6) and (7) in the 
continuity Eq. (1), the momentum Eq. (2) and 
the energy Eq. (3) leads to the following non-
dimensional equations: 

where Pr =            is the Prandtl number,  

Q =                      is the heat generation  

parameter, J =                    is the joule heating 

parameter,  Vd =                          is the viscous 

dissipation and Rd =                 is the radiation 
parameter. 

With the boundary conditions (4) becomes : 

To solve Eqs. (10) and (11) with the help of 
following variables : 

ψ = ξ  r(ξ)f(ξ,η)  ,  θ = θ(ξ,η), r(ξ) = sinξ (13) 

where ψ is the stream function defined by :  
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where Gr is the Grashof number, θ is the   
nondimensional temperature function, θw is the 
surface temperature parameter and qr is the  
radiation heat flux. Thus the Rosseland diffusion 
approximation proposed by Siegel and Howell 
[15] is given by simplified radiation heat flux 
term as: 
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Cf  = ξ f ́́  (ξ,0)  (23)

Using the above values in Eq. (10), we get the 
following equation : 

where M =                is the MHD parameter 

Putting the values of u and v in Equation (11), 
we get the following equation : 

f = f́ = 0,  θ= 1 at  η = 0
f́    0,   θ     0    as  η     ∞   (17)

f (0) = f́(0)=0,  θ(0) = 1
f́    0,   θ     0    as  η     ∞   (20)

Where τw= μ              is the shearing stress,  

qc = -            is the conduction heat flux,  

k being the thermal conductivity of the fluid 

and qr is the radiation heat flux. 

The heat flux qx is defined by :  
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 where primes denote the differentiation of 
the function with respect to η 

 It can be seen that near the lower stagnation 
point of the sphere, i.e., ξ ≈ 0, Eqs. (15) and 
(16) reduce to the following ordinary  
differential equations: 
 
f́́́+ 2f f́́    - f́ + θ - Mf́ = 0      (18) 
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Subject to the boundary conditions : 

In practical applications, the physical quantities  
of principle interest are the shearing stress τw ,  
the rate heat transfer and the rate of species   
concentration transfer in terms of the skin  
friction coefficient Cf and Nusselt number Nu,   
which can be written in non-dimensional form 
as : 

Cf  =        τw and Nu =            (qc + qr)Y=0   (21)a2Gr   
μv

aGr   
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1
4
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4

Using Eqs. (5), (6), boundary condition (20) 
and putting the values of τw and qw in (21), we 
get the following equations 

The values of the velocity and temperature  
distribution are calculated respectively from 
the following relations: 

We discuss the velocity distribution as well as 
the temperature profiles for a selection of 
parameter sets consisting of heat generation  
parameter, magnetic parameter, viscous dissipation 
parameter, joule heating parameter, and the 
Prandlt number at different position of ξ . 
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3.  Method of Solution  

 To obtain the solution of the problem, the   
numerical method used is a finite difference 
method known as Keller-box method [5].   
To begin with, the partial differential Eqs.  
(15)-(16) are first converted into a system of 
first order differential equations. Then these 
equations are expressed in finite difference 
forms by approximating the functions and their 
derivatives in terms of the centered differences 
and two point averages using only values at the 
corner of the box (or mesh rectangle). Denoting 
the mesh points in the (ξ ,η)-plane by ξi and ηj 
where i = 1, 2, . . . , M and j = 1, 2, . . . , N, 
central difference approximations are made, 
such that those equations involving ξ explicitly 
are centered at (ξi-1/2, ηj-1/2) and the remainder at 
(ξi , ηj-1/2), where ηj-1/2 = (ηj+ηj-1)etc. Grid 
dependency has been tested and solutions       
are obtained with grid of optimum dimensions 
182×200 in the (ξ, η) domain and non-uniform 
mesh size is employed to produce results of 
high accuracy near the coordinate ξ = 0, η = 0. 
The central difference approximations reduces 
the system of first order differential equations 
to a set of non-linear difference equations for 
the unknown at ξi in terms of their values at ξi-1. 
The resulting set of nonlinear difference 
equations are solved by using the Newton’s 
quasi-linearization method. The Jacobian matrix 
has a block-tridiagonal structure and the difference 
equations are solved using a block-matrix 
version of the Thomas algorithm; further 
details of the computational procedure have 
been discussed in the book by Cebecci and 
Bradshow [6] and widely used by many authors 
including Hossain et al. [7] and Alim et al. [8].  

 

4. Results and discussion  

 We have investigated the effects of viscous 
dissipation and radiation on magnetohydrody- 
namic free convection flow along a sphere with 

joule heating and heat generation. Solutions  
are obtained in terms of velocity profiles,   
temperature profiles, skin friction coefficient, 
rate of heat transfer and presented graphically 
for selected values of the radiation parameter 
(Rd = 1.00, 2.50, 4.00, 6.00, 9.00), Prandtl   
number (Pr = 0.72, 1.00, 3.00, 5.00, 7.00), heat 
generation parameter (Q = 0.00, 0.10, 0.15, 
0.20, 0.25), magnetic parameter (M = 0.10, 
0.50, 1.00, 2.00, 3.00) , joule heating parameter 
(J = 0.30, 1.00, 2.00, 3.00, 3.50) and viscous 
dissipation parameter (Vd = 0.10, 25.00, 50.00, 
80.00, 100.00) against η at any position of ξ. 
The effects for different values of radiation 
parameter Rd the velocity profiles and 
temperature profiles in the case of Prandtl 
number Pr = 0.72, heat generation parameter   
Q = 0.20, magnetic parameter M = 0.50, joule 
heating parameter J = 0.30 and viscous dissipation 
parameter Vd =25.00 are shown in Fig. 2(a) 
and 2(b), respectively. We observed that, when 
the radiation parameter Rd increases, both the  
velocity profiles and the temperature profiles 
increase. With increasing values of Prandtl 
number the velocity profiles and the temperature 
profiles decrease as shown in Fig. 3(a) and 
3(b), respectively. The velocity boundary layer 
thickness and thermal boundary layer thickness 
decrease for the increasing values of radiation 
parameter. In Fig. 4(a) and 4(b), the heat 
generation parameter Q increases while with 
radiation parameter Rd = 1.00, Prandtl number 
Pr = 0.72, magnetic parameter M = 0.50, joule 
heating parameter J = 0.30 and viscous 
dissipation parameter Vd = 25.00, both the 
velocity and temperature profiles, increase.   
Fig. 5(a) display results for the velocity   
profiles for different values of magnetic  
parameter M in the case of radiation parameter   
Rd = 1.00, Prandtl number Pr = 0.72, heat  
generation parameter Q = 0.10, joule heating   
parameter J = 0.30, and viscous dissipation   
parameter Vd = 25.00. It can be seen from Fig. 
5(a) that as the magnetic parameter M 
increases, the velocity profiles decrease to the 

1 
2
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position of η = 3.33718. From that position of 
η velocity profiles change with the increase of 
magnetic parameter and all the velocity profiles 
cross in between η = 3.33718 and η = 4.64344. 
This is because of the velocity profiles, having 
lower peak values for higher values of magnetic 
parameter, tend to decrease comparatively slower 
along η direction than velocity profiles with 
higher peak values for lower values of 
magnetic parameter Fig. 5(b) displays results for 
the Temperature profiles, temperature profiles 
increase for increasing values of magnetic 
parameter. Fig. 6(a)-6(b) display results of the 
velocity profiles and temperature profiles, for 
different values of joule heating parameter J 
with radiation parameter Rd = 1.00, Prandtl 
number Pr = 0.72, heat generation parameter Q 
= 0.20, magnetic parameter M = 0.50 and 
viscous dissipation parameter Vd = 25.00. The 
joule heating parameter J increases, and the 
velocities rise the position of η = 1.23788 for J 
= 0.30, 1.00, 2.05, 2.00, 3.50 and from that 
position of η velocities fall slowly and finally 
approaches to zero. It is also observed from 
Fig. 6(b) that as the joule heating parameter J 
increases, the temperature profiles increases. 
Fig. 7(a)-7(b) display results for increasing 
values of viscous dissipation parameter Vd , the 
velocity profiles and the temperature profiles 
increase. We observed from Figure (b) that as 
the viscous dissipation parameter Vd increases, 
the temperature profiles increase. There are no 
changes of velocity boundary layer thickness 
and thermal boundary layer thickness. 

It has been seen from Fig. 8(a) that as radiation 
parameter Rd increases, the skin friction 
coefficient Cf increases up to the position of ξ = 
0.83776. From that position the skin friction 
coefficient Cf decreases and the rate of heat 
transfer Nu increases as shown in the Fig. 8(b). 
Fig. 9(a) shows that when the Prandtl number Pr 
increases, the skin friction coefficients Cf 
decrease up to the positionof ξ = 0.71558 From 
that position of ξ, skinfriction coefficients Cf 

change with the increase of Prandtl number Pr. It 
is seen from Fig. 9(b) that as Prandtl number 
Pr increases, the rate of heat transfer Nu 
increases up to the position of ξ = 0.06981 and 
from the point ξ = 0.27925 the rate of heat 
transfer decreases for Pr = 0.72, 1.00, 3.00, 
5.00 and 7.00. That is, the rate of heat transfer 
falls slowly from the position of    ξ = 0.06981 
and from the point ξ = 0.27925 the rate of heat 
transfer quickly falls. The skin friction 
coefficient Cf increases and rate of heat transfer 
decreases for on increase of heat generation 
parameter Q as shown in Fig. 10(a)-10(b). In 
Figure 11(a), the values of magnetic parameter 
M increase for the while radiation parameter 
Rd =1.00, Prandtl number Pr = 0.72, heat 
generation parameter Q=0.10, joule heating 
parameter J = 0.30 and viscous dissipation 
parameter Vd =25.00, and the skin friction 
coefficient Cf decreases. It is observed from 
Fig. 11(b), that the rate of heat transfer 
decreases along the ξ direction from lower 
stagnation point to downstream. From Fig. 
12(a)-12(b) we observe that the skin friction 
coefficient Cf increases and heat transfer 
coefficient decreases for increasing values of joule 
heating parameter J with radiation parameter 
Rd = 1.00, Prandtl number Pr = 0.72, heat 
generation parameter Q = 0.10, magnetic 
parameter M = 0.50, and viscous dissipation 
parameter Vd =25.00. Fig. 13(a) shows the skin 
friction coefficient Cf increases for different 
increasing values of viscous dissipation parameter 
Vd with radiation parameter Rd = 1.00, Prandtl 
number Pr = 0.72, heat generation parameter   
Q = 0.10, magnetic parameter M = 0.50, and 
joule heating parameter J = 0.30. Frictional 
force at the wall becomes much higher towards 
the downstream for higher values of Vd and the 
rate of heat transfer as shown in Fig. 13(b) 
gradually decreases for higher values of viscous 
dissipation parameter.  
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Fig. 2. (a) Velocity profiles and (b) Temperature profiles for different values of Rd when   
Pr = 0.72, Q =0.2, M = 0.5, J = 0.3 and Vd = 25.0 

Fig. 3. (a) Velocity profiles and (b) Temperature profiles for different values of Pr when Rd = 
1.0, Q =0.2, M = 0.5, J = 0.3 and Vd = 25.0. 

Fig. 4. (a) Velocity profiles and (b) Temperature profiles for different values of Q when Rd = 
1.0, Pr = 0.72, M = 0.5, J = 0.3 and Vd = 25.0.  
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Fig. 5. (a) Velocity profiles and (b) Temperature profiles for different values of M when   
Rd = 1.0, Pr = 0.72, Q = 0.1, J = 0.3 and Vd = 25.0. 

Fig. 6. (a) Velocity profiles and (b) Temperature profiles for different values of J when   
Rd = 1.0, Pr =0.72, Q =0.2, M = 0.5 and Vd = 25.0. 

Fig. 7. (a) Velocity profiles and (b) Temperature profiles for different values of Vd when   
Rd = 1.0, Pr = 0.72, Q = 0.2, M = 0.5 and J = 0.3.  
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Fig. 8. (a) Skin friction coefficient and (b) Rate of heat transfer for different when Pr = 0.72, Q 
=0.2, M = 0.5, J = 0.3 and Vd = 25.0. 

Fig. 9. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Pr when 
Rd = 1.0, Q =0.2, M = 0.5, J = 0.3 and Vd = 25.0 

Fig. 10. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Pr 
when Rd = 1.0, Pr = 0.72, M = 0.5, J = 0.3 and Vd = 25.0 
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Fig. 11. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Q when 
Rd = 1.0, Pr = 0.72, Q = 0.1, J = 0.3 and Vd = 25.0. 

Fig. 12. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of J when 
Rd = 1.0, Pr = 0.72, Q = 0.2, M = 0.5 and Vd = 25.0. 

Fig. 13. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Vd 
when Rd = 1.0, Pr = 0.72, Q = 0.2, M = 0.5 and J = 0.3. 
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5. Conclusion  

 The effects of viscous dissipation and radiation 
on magnetohydrodynamic free convection flow 
along a sphere with joule heating. Heat   
generation has been investigated for different 
values of relevant physical parameters including 
the magnetic parameter M and viscous dissipation 
Vd. From the present investigation the following 
conclusions may be drawn:  

 • Velocity profiles increase for increasing   
  values of radiation parameter Rd, heat  
  generation parameter Q, joule heating  
  parameter J, and viscous dissipation   
  paramete Vd. 

 • Temperature profiles increase for   
  increasing values of radiation parameter   
  Rd, heat generation parameter Q, magnetic   
  parameter M, joule heating parameter J,   
  and viscous dissipation parameter Vd. 

 • Velocity profiles and temperature profiles   
  decrease for increasing values of Prandlt   
  number Pr. 

 • Skin friction coefficients Cf increase for   
  increasing values of heat generation   
  parameter Q, joule heating parameter J,   
  and viscous dissipation parameter Vd.   
  Skin friction coefficients Cf decrease for   
  increasing values of magnetic parameter   
  M. 

 • Rate of heat transfer Nu increases for   
  increasing values of radiation parameter   
  Rd and rate of heat transfer Nu decreases   
  for increasing values of heat generation   
  parameter Q, joule heating parameter J,   
  and viscous dissipation parameter Vd. 
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7.  Nomenclature 

 

a  Radius of the sphere [m] 

ar  Rosseland mean absorption co-efficient   
 [cm3/s] 

B0 Strength of magnetic field [A/m] 

Cf Skin-friction coefficient  

CP Specific heat at constant pressure  
 [Jkg-1k-1] 

f Dimensionless stream function  

g Acceleration due to gravity [ms-2] 

Gr Grashof number  

J Joule heating parameter 

k Thermal conductivity [wm-1k-1] 

M Magnetic parameter 

Nu Nusselt number 

Pr Prandtl number 

qc conduction heat flux [w/m2] 

qr Radiative heat flux [w/m2] 

qw Heat flux at the surface [w/m2] 

Q0 Heat generation constant  

Q Heat generation parameter 

Rd Radiation parameter 

r Radial distance from the symmetric  
 axis to the surface [m] 

T Temperature of the fluid in the   
 boundary layer [K] 

T∞ Temperature of the ambient fluid [K] 

Tw Temperature at the surface [K] 
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U Velocity component along the surface  
 [ms-1] 

V Velocity component normal to the   
 surface [ms-1] 

u Dimensionless velocity along the surface 

v Dimensionless velocity normal to the   
 surface 

X Coordinate along the surface [m] 

Y Coordinate normal to the surface [m] 

Greek symbols  

β Coefficient of thermal expansion [K-1] 

θ Dimensionless temperature 

μ Dynamic viscosity of the fluid  
 [kgm-1s-1] 

ν Kinematic viscosity [m2/s] 

p Density of the fluid [kgm-3] 

σ Stephan Boltzmann constant  
 [js-1m-2k -4] 

σ0 Electrical conductivity [mho.m-1] 

σs  Scattering coefficient [m-1] 

τw Shearing stress at the wall [N/m2] 

ξ Dimensionless coordinate along the  
 surface  

η Dimensionless coordinates normal to   
 the surface 

ψ Stream function [m2s-1] 




