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Abstract 
This article investigates the influence of radiation effects on steady free convection 

flow near isothermal stretching sheet in the presence of a magnetic field and viscous 
dissipation. The governing equations are converted into a system of non-linear ordinary 
differential equations via a similarity transformation. The resulting system of nonlinear 
coupled ordinary differential equations are solved numerically by using the Adams-Moulton 
predictor-corrector method with the shooting method. The numerical results for the velocity 
and temperature profiles are displayed graphically showing the effect of various values of the 
flow parameters: radiation parameter F , free convection parameter Gr, Magnetic parameter 
M, Prandtl number Pr , Eckert number Ec, and the parameter of relative difference between the 
temperature of the sheet, and the temperature far away from the sheet r. The effect of the 
radiation and magnetic field parameter on the shear stress and heat flux are discussed.  
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1. Introduction 

  
The study of the boundary layer 

behaviour on a continuous surface is 
important because the analysis of such flows 
finds applications in different areas such as 
the aerodynamic extrusion of a plastic sheet, 
the cooling of a metallic plate in a cooling 
bath, the boundary layer along material 
handling conveyers, and the boundary layers 
along a liquid film in condensation 
processes. As examples on stretched sheets, 
many metallurgical processes involve the 
cooling of continues strips or filaments by 
drawing them through a quiescent fluid and 
in the process of drawing, these strips are 
stretched. Elbashbeshy [1] investigated heat 

transfer over a stretching surface with 
variable and uniform surface heat flux 
subject to injection and suction. Guptha P.S. 
and Guptha A.S [2] studied the heat and 
mass transfer corresponding to the similarity 
solution for the boundary layer over an 
isothermal stretching sheet subject to 
blowing or suction. Sakiadis [3], first 
presented boundary layer flow over a 
continues solid surface moving with 
constant speed. Vajravelu and 
Hadyinicolaou [5] studied the convection 
heat transfer in an electrically conducting 
fluid near an isothermal stretching sheet, and 
they studied the effect of internal heat 
generation or absorption. 
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From the technological point of view, 
MHD free- convection flows have also great 
significance for the applications in the fields 
of stellar and planetary magnetospheres, 
aeronautics, chemical engineering, and 
electronics. The effects of magnetic field on 
free convection flow of electrically 
conducting fluids past a plate has been 
studied by many authors such as 
Soundalgekar [14], Singh et al.[13]. All the 
above investigations are restricted to MHD 
flow and heat transfer problems only. 
However, of late, the radiation effect on 
MHD flow and heat transfer problems have 
become more important, industrially. At 
high operating temperature, radiation effects 
can be quite significant  

The radiative flows of an electrically 
conducting fluid with high temperature, in 
the presence of a magnetic field, are 
encountered in electrical power generation, 
astrophysical flows, solar power technology, 
space vehicle re-entry, nuclear engineering 
applications and other industrial areas. The 
radiation effects on boundary layer flow 
with and without applying a magnetic field 
under different situations has been studied 
by many investigators, for examples: Israel-
cookey et al. [10], Mahmoud [11], Hayat et 
al.[9], Cortel[6] and Sajid and Hayat[12]. 
The radiation effect on heat transfer of a 
micropolar fluid through a porous medium 
has been studied by Emad M. Abo-Eldahab 
and Ahmed F. Ghonaim studied [17]. 
Takhar et al. [4] studied the radiation effects 
on MHD free convection flow for a non 
gray-gas past a semi- infinite vertical plate. 
The radiation effects on steady free 
convection flow near an isothermal 
stretching sheet in the presence of a 
magnetic field is studied by Emad M 
AboEldahab[18] 

In all the above mentioned studies, the 
viscous dissipation effects has been 
neglected. Gebhart [8] has shown that the 
viscous dissipation effect plays an important 
role in natural convection in various devices 

processes on large scales (or large planets). 
Also, he pointed out that when the 
temperature is small, or when the 
gravitational field is of high intensity, 
viscous dissipations is more predominant in 
vigorous natural convection processes. The 
radiation effect on steady free convection 
flow near isothermal stretching sheet in the 
presence of a magnetic field is studied by 
Ahmed Y [15]. 

The previous work of Ahmed Y [15] 
neglected the viscous dissipation effect. In 
most of the problems, the combined effect of 
thermal radiation effect and viscous 
dissipation effect on MHD free convection 
flow of a Gas at a stretching surface have 
not been studied.  Therefore, the aim of this 
study is to investigate the effects of radiation 
on steady free convection flow near an 
isothermal stretching sheet in the presence 
of a magnetic field, by taking into account 
the effect of viscous dissipation. 

 
2. Mathematical Formulation 

 
Here we consider the flow of an 

electrically conducting fluid, adjacent to a 
vertical sheet coinciding with the 
plane 0=y , where the flow is confined 
to 0>y . Two equal and opposite forces are 
introduced along the −x axis, so that the 
sheet is stretched, keeping the origin fixed. 
A uniform magnetic field of strength 0B  is 
imposed along the −y axis. The fluid is 
considered to be a gray, radiation absorber 
and emitter, but non- scattering medium. 
Gravity acts in the opposite direction to the 
positive x-axis. The radiative heat flux from 
the fluid in the −x  direction is considered 
negligible in comparison to that in the  −y  
direction. The Rosseland approximation [16] 
is used to describe the radiative heat flux in 
the energy equation. See Figure 1. 

Under the usual boundary layer 
approximation, the flow and heat transfer in  
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Figure1 Sketch of the physical model. 
 
the presence of radiation are governed by the 
following equations: 

0=
∂
∂

+
∂
∂

y
v

x
u

  (1) 

u uu v
x y
∂ ∂

+
∂ ∂

( )
22

0
2

Buv g T T u
y

σβ
ρ∞

∂
= + − −

∂
 (2) 

T Tu v
x y

∂ ∂
+

∂ ∂
22

2

1 r

p p p

k T q u
c y c y c y

µ
ρ ρ ρ

 ∂ ∂ ∂
= − +  ∂ ∂ ∂ 

  (3) 

where u and v  are the velocity components 
in the x and y directions, respectively, T is 
the temperature, g is the acceleration due to 
gravity, v  is the fluid kinematic viscosity, 
ρ  is the density, σ  is the electric 
conductivity, pC  is the specific heat at 

constant pressure, and rq is the radiative 
heat flux.   

The boundary conditions of the 
problem are  

cxu = , 0=v , wTT =  at 0=y  (4a) 

∞→ uu ,  ∞→TT  at ∞→y  (4b) 
Where 0>c , wT  is the constant 
temperature of sheet, ∞T  is the temperature 
far away from the sheet, and ∞u  is the free 

stream velocity. By using the Rosseland 
approximation [16], we have: 
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Where ∗σ is the Stefan- Boltzmann constant 
and ∗k  is the mean absorption coefficient. 
By using (5), the energy equation (3) 
becomes: 
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Introducing the following non dimensional 
parameters: 
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We can obtain the governing equation in 
dimensionless form as (with dropping the 
bars): 
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With the boundary conditions  
xu = , 0=v , 1=θ  at  y = 0, (11a) 
1=u ,  0=θ  as ∞→y , (11b)  

where 
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number. 
Introducing the stream function  ψ  defined 
in the usual way: 
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Equation (10) can then be written as:  
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And the boundary conditions (10) become: 
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Introducing,  
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Substituting equation (14) in equations (12) 
and equating the coefficients of 0x  and 1x , 
we obtain the coupled nonlinear ordinary 
differential equations:   
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 (18a) 
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The physical quantities of interest in this 
problem are the skin friction coefficient and 
the Nusselt number, which are defined by: 
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Using (14), the quantities in (19) can be 
expressed as:  
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The effect of parameters F, Gr, M, and Pr, 
on the functions gf ′′′′ ,  and θ ′ at the plate 
surface is tabulated in Table1 for =r  0.05. 
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Table 1 Variation of θ ′′′′′ ,, gf  at the plate surface with MGrF ,, , and Pr  parameters. 

F Gr  M  Pr  
Ahmed 
Y[15] 

)0(g ′′  

)0(g ′′  
Present 

Ahmed 
Y[15] 

)0(θ ′  

)0(θ ′  
Present 

Ahmed 
Y[15] 

)0(f ′′  

)0(f ′′  
Present 

1 0.5 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 0.820805 0.825 

2 0.5 0.1 0.73 -1.04771 -1.049 -0.297402 -0.298 0.703769 0.705 

3 0.5 0.1 0.73 -1.04771 -1.049 -0.335702 -0.336 0.656791 0.664 

1 0 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 0.110292 0.117 

1 0.5 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 0.820805 0.825 

1 1 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 1.53188 1.533 

1 0.5 0.01 0.73 -1.00398 -1.005 -0.230155 -0.231 1.12575 1.125 

1 0.5 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 0.820805 0.825 

1 0.5 0.5 0.73 -1.22325 -1.234 -0.204004 -0.205 0.513629 0.514 
 
3. Method of Solution 

 
The closed form solution for the 

equation (16) is:  
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For the purpose of numerical computation, 
the differential equations (15) & (17) are 
written in the form of a system of first order 
differential equations. The following 
transformation variables are used.  
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With this substitution, the couple system of 
equations (15) & (17) can be written as a 
first order system as:   
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The boundary conditions (18) give 

( ) ( ) 000 21 == YY , ( ) α=03Y , 
( ) 104 =Y , ( ) β=05Y  

The fundamental problem is to find the 
solution to differential equations (15)-(17) 
subject to the boundary conditions (18) for 
the various values of parameter α , β. In this 
case the choice of missing initial solution is 
difficult. Assuming initial values for α and 
β, the system is solved. An iterative shooting 
method, which uses globally convergent 
Newton Raphson method is employed. The 
guessed solution is changed in a systematic 
way until correct starting values are 
determined. The fourth order Adams 
predictor-corrector method is used to solve 
the system of equations. 
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4. Results and Discussion 
 
The numerical results for the velocity 

and temperature distribution are shown in 
Fig 1-5 for different flow field parameters of 
Prandtl number Pr, free convection 
parameter Gr , radiation parameter F , the 
parameter of relative difference between the 
temperature of the sheet, and the 
temperature far away from the sheet r , and 
the Eckert number Ec .  Fig.1 (a) displays 
the effect of Pr  and F on the velocity 
distribution. It is seen from this Figure that 
the velocity profile f ′decreases with an 
increase of the F and Pr. The effect of r  
increases  the velocity profile f ′ , while the 
velocity profile f ′decreases with an 
increase of magnetic field parameter M , as 
observed from Fig 1(b). 

From Fig.2 it is observed that the 
temperature distribution decreases as F  
increases as well as Pr  increases. It is also 
noticed that the temperature distribution 
increases as r  increases. This is an 
agreement with the physical fact that the 
thermal boundary thickness decreases with 
the increasing Pr  Fig.3 displays the behavior 
of g ′  with changes in the values of the 
magnetic field parameter M . It is seen, that 
the g ′  decreases with an increase in the 
magnetic field parameter M . The effects of 
viscous dissipation on f ′  and θ  are 
illustrated in Figures 4 and 5. The effect of 
the Eckert number Ec  on the dimensionless 
velocity component f ′  is displayed in 
Fig.4(a) and (4b) for different Pr values. It 
is clear from this Figure that   the velocity of 
the fluid increases with an increase of the 
Eckert number Ec . The increasing in fluid 
temperature due to viscosity is observed to 
be more pronounced for higher values 
of Ec . Fig.5(a) and (5b) show the effect of 
Eckert number Ec on the temperature 
profile for different Pr values. It is seen 

from this figure that the temperature profile 
increases with an increase of Eckert 
number Ec . It can be seen that the velocity 
profiles as well as temperature profiles are 
higher when 73.0Pr = , compared 
with 2Pr = . It is clear from Figs 4 and 5 
that the velocity and temperature of the fluid 
is at a higher level when viscous dissipation 
is considered, than if it is neglected. 

The effect of variation parameter on 
the skin friction coefficient ( )0f ′′  is shown 
in Fig.6 and the heat flux   ( )0θ ′  is shown 
in Fig.7.  Fig.6 displays the effect of 
magnetic field parameter M  on the skin 
friction coefficient ( )0f ′′ , with the effect of 
magnetic parameter M.  It is noticed that the 
effect of increasing M is a decrease in the 
wall temperature gradient ( )0θ ′ , as shown 
in Fig 7. Variation of θ ′′′′′ ,, gf  at the plate 
surface with different values of 

MGrF ,, Pr and cE  are shown in Table 
(1)-(3) From these tables, it should be 
mentioned that the results obtained herein 
are in good agreement with the previous 
work of Ahmed Y[15], when cE = 0, which 
gives validation of the present solution. 
 
5. Conclusion 

 
In the present work we have studied 

the effect of viscous dissipation and 
radiation on MHD free convection flow near 
an isothermal stretching sheet in the 
presence of a magnetic field. The effect of 
magnetic field reduces the temperature 
profiles and velocity profiles. It is observed 
that the effect of increasing viscous 
dissipation leads to an increase in the 
velocity profiles as well as temperature 
profiles. The velocity and temperature 
profiles decrease with an increase of 
radiation parameter F. The velocity profiles 
increases with an increase of the parameter 
of relative difference between the 
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temperature of the sheet, and the 
temperature far away from the sheet r.  
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Figure 1(a) Variation of the dimensionless 
velocity component f ′  with different Pr 
parameters and F values  
 

 
Figure 1(b) Variation of the dimensionless 
velocity component f ′with different 
parameters M and r.    
 

 
Figure 2 Variation of the dimensionless 
temperature θ  with different parameter 
Pr,  ,r  and F . 
 

 
Figure 3. Variation of the dimensionless 
velocity component g ′  with M parameters. 
 

 
Figure 4(a) Variation of the dimensionless 
velocity component f ′with Ec parameter. 
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Figure (4b) Variation of dimensionless 
velocity components f ′with Ec parameter. 
 

 
Figure 5(a) Variation of the dimensionless 
θ  with Ec parameter. 
 

 
Figure 5(b) Variation of the dimensionless 
temperature θ with Ec parameter. 

 
Figure 6 Variation of ( )0f ′′ with F and 
M parameters 

 
Figure 7 Variation of the heat flux 
( )0θ ′ with F and M parameters. 
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Table 2 Variation of θ ′′′′′ ,, gf  at the plate surface with F, Gr, M , and Pr parameters.  

F Gr  M  Pr  
Ahmed 
Y[15] 

)0(g ′′  

)0(g ′′  
Present 

Ahmed 
Y[15] 

)0(θ ′  

)0(θ ′  
Present 

Ahmed 
Y[15] 

)0(f ′′  

)0(f ′′  
Present 

1 0.5 0.1 0.73 -1.04771 -1.049 -0.224411 -0.225 0.820805 0.825 

1 0.5 0.1 2 -1.04771 -1.048 -0.480357 -0.480 0.523724 0.531 

1 0.5 0.1 5 -1.04771 -1.048 -0.882528 -0.882 0.36651 0.374 
 
Table 3 Variation of )0(f ′′ , )0(g ′′ , )0(θ ′  at the plate surface with F, Gr, M , and Pr and Ec 

parameters.                    

cE  F  Gr  M  Pr  )0(g ′′  )0(θ ′  )0(f ′′  

0.1 1 0.5 0.1 2 -1.049 -0.470 0.536 

0.5 1 0.5 0.1 2 -1.049 -0.456 0.542 

1 1 0.5 0.1 2 -1.049 -0.45 0.554 

1.2 1 0.5 0.1 2 -1.049 -0.331 0.586 

1.5 1 0.5 0.1 2 -1.049 -0.284 0.599 
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