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Abstract 
In this paper we prove that every convex subordered set of an ordered set can be 

written as an intersection of a down-set and an up-set. We characterize o-modular and o-
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1. Introduction 
 

The study of semilattices has 
become very important in the study of 
general algebra. The class of semilattices 
has an equivalent pictorial subclass of 
ordered sets. A non-empty set P  together 
with an order relation ≤  is said to be an 
ordered set. It is denoted by P = 〈P; ≤ 〉. 
The dual order of ≤ is denoted by  ≥. That 
is,  x ≤ y if and only if  y ≥ x. 
Let P be an ordered set and Q ⊆ P. Define 

L(Q): ={x∈Px ≤ a  for all },a Q∈  

U(Q): ={x∈Px ≥ a  for all }.a Q∈  
Then L(Q) is said to be the lower bound of 
Q  and U(Q) is said to be the uper bound 

of Q. An element y ∈L(Q) is said to be the 
greatest lower bound of Q if x ≤ y for all 
x∈L(Q). Dually, an element y ∈U(Q) is 
said to be the least upper bound of Q if y ≤ 
x for all x ∈U(Q). If the least upper bound 
of {x, y} exists for each x, y∈P, then we 

say that the ordered set P is a join-
semilattice as an ordered set. An algebra S 
= 〈S; ∨〉 is said to be a join-semilattice as an 
algebra if the binary operation ∨ is 
reflexive, commutative and associative. In 
this paper, by a semilattice we mean join-
semilattice. It is a natural question: whether 
we can generalize the results of semilattices 
(or lattices) to ordered sets. A Convex 
sublattice play an important role in the 
study of lattice theory (see [2]). In Section 2 
we generalize a result of a convex sublattice 
to a convex subordered set.  

The classes of modular and 
distributive semilattices are very suitable 
subclasses of semilattices. A semilattice S is 
called a modular semilattice if for all a, b, 
c∈S with c ≤ a ≤ b∨c implies the existence 
of b1≤ b such that a = b1∨c.       

A semilattice S is called a 
distributive semilattice if for all a, b, c∈S 
with a ≤ b∨c implies the existence of b1 ≤ b 
and c1 ≤ c such that a = b1∨ c1. A semilattice 
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S is directed below if any pair of element of 
S has a common lower bound. It is well 
known that all modular and distributive 
semilattices are directed below. Larmerov′a 
and Rachuneck [4](see also [1]) introduced 
the modularity and distributivity for an 
ordered set using only set-theoretical 
concepts. Rachuneck [5, 6] introduces the 
notion of (o-modular) o-distributive  semi-
lattices which are a proper superclass of 
(modular) distributive semilattices. In 
Section 3 we discuss the o-modular and o-
distributive semilattices. 

Let S be a semilattice. A non-empty 
subset I  of S  is said to be an ideal of S if 

(i) i∨j ∈I for all  i, j ∈I and 
(ii) i∈I, x∈S with x ≤ i  implies 

.Ix∈  
The set of all ideals of S is denoted 

by I(S). It is well known that a semilattice S 
is modular (distributive) if and only if I(S) 
is a modular (distributive) lattice. In Section 
4 we give some characterizations of o-
modular and o-distributive semilattices in 
terms of ideals. 
  Modular elements, distributive ele-
ments and standard elements in a lattice 
have been studied by several authors (see 
[3, 2, 7]). Let L be a lattice. An element 
m∈L is said to be a modular element of L  
if for all a, b∈L with a ≤ b implies a ∨ (m ∧ 
b) = (a ∨ m) ∧ b. An element d∈L is said to 
be a distributive element of L  if for all a, 
b∈L implies (a ∧ b) ∨ d = (a ∨ d) ∧ (b ∨ d). 
An element s∈L is to be a standard 
element of L  if for all a, b∈L implies a ∧(s 
∨ b) = (a ∧ s) ∨ (a ∧ b). In Section 5 we 
generalize the idea of modular, distributive 
and standard elements in a lattice to o-
modular, o-distributive and o-standard ele-
ments in a join-semilattice. 
 
 
2. Convex subordered sets          

 
Let P be an ordered set. A subset 

Q  of P  is said to be a subordered set of P 

if Q is itself an ordered set where the order 
in Q  is induced by the order of P. A 
subordered set Q of P is said to be convex if 
x, y ∈ Q with x ≤ z ≤ y implies z ∈ Q. A 
subordered set Q of P is said to be a down-
set if x∈Q, y ≤ x implies y ∈ Q. Dually, Q 
is said to be up-set if x ∈Q, y ≥ x implies 
y∈Q. For Q ⊆ P, define: 
↓Q: = {x ∈ P x ≤  y for some y∈ Q}, 
↑Q: = {x ∈ P y ≤ x for some y∈ Q}. 
Then ↓Q is the down-set and ↑Q is the up-
set. 
 The following Theorem is the 
generalization of the result in case of 
lattices (see [2]) and as well as semilattices. 
 
Theorem 2.1  Let P be an ordered set, I be 
a down-set and D be an up-set such that I ∩ 
D ≠ φ. Then I ∩ D is a convex subordered 
set of P. Moreover, every convex 
subordered set of P can be written as an 
intersection of a down-set and an up-set. 
 
Proof. Let C = I ∩ D and let x, y∈ C and 
z∈ P such that x ≤ z ≤ y. Then clearly z ∈ C 
as I is a down-set and D is an up-set. Hence 
C is convex. Since both I and D are 
subordered sets. So, C is a subordered set. 
Therefore C is a convex subordered set of 
P.  

Suppose C is a convex subordered 
set of P. We show that C = ↓C ∩↑C. 
Clearly, C ⊆ ↓C ∩↑C. Let x∈↓C∩↑C, then 
c1 ≤ x ≤ c2 for some c1, c2 ∈ C. Now since C 
is convex, we have x ∈ C. Therefore C = 
↓C ∩↑C.  

Observe that the intersection of the 
above theorem is not uniquely determined  
as the result of lattices. For example, 
consider the ordered set given in Figure 1. 
Let C = {a, b}, A = {a, b, 1}, B = {b, a, 0} 
and D = {c, b, a, 0}. Then C = A∩B = 
A∩D. 
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3. O-modular and O-distributive 
semilattices 

 
An ordered set P is called modular 

ordered set if for all a, b, c∈ P with a ≤ c 
implies: 
L(U(a, L(b, c))) = L(U(a, b), c). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1 
 
For any ordered set P, it is easy to 

verify that for all a, b, c ∈ P  with a ≤ c 
implies:  

L(U(a ,L(b, c))) ⊆ L(U(a, b), c). 
So, an ordered set P  is modular if for all  
a, b, c ∈ P with a ≤ c implies : 

L(U(a, b), c) ⊆ L(U(a, L(b, c))). 
A semilattice S = 〈S; ∨〉  is said to be o-
modular if it is modular as an ordered set. 
That is, if for all a, b, c ∈ S with  a ≤ c 
implies: 

L(a∨ b, c) ⊆ L(U(a, L(b, c))). 
An ordered set P is said to be distributive 
ordered set if for all a, b, c ∈ P 

L(U(L(a, c),L(b, c))) = L(U(a, b), c). 
For any ordered set P, we have: 

L(U(L(a, c),L(b, c))) ⊆ L(U(a, b), c), 
for all  a, b, c ∈ P. So, an ordered set P is 
distributive if: 

L(U(a, b), c) ⊆ L(U(L(a, c),L(b, c))), 
for all  a, b, c ∈ P. A semilattice S = 〈S; ∨〉 
is said to be o-distributive if it is 

distributive as an ordered set. That is, if for 
all a, b, c ∈ S, 

L(a ∨ b, c) ⊆ L(U(L(a, c),L(b, c))). 
Clearly, every o-distributive semi-

lattice is o-modular. The converse is not 
true. For example, the semilattices M4 and 
M5 given in Figure 3 are o-modular but not 
o-distributive. In the case of lattices, the 
notion of modularity (distributivity) and o-
modularity (o-distributivity) are the same 
(see [4]). Every modular (distributive) 
semilattice is o-modular (o-distributive), but 
the converse is not true. For example, 
consider the semilattice M3 given in Figure 
2. The semilattice M3 is not modular  
(distributive), as it is not directed below. 
But it can be easily seen that M3 is o-
modular (o-distributive). 
 
 
 
 

 

 
 
 

Figure 2 
 
It is easy to show, a subsemilattice 

of an o-modular (o-distributive) semilattice 
is o-modular (o-distributive). Let A be a 
subsemilattice of  a semilattice S. For a, b 
∈A, define LA(a, b) = {x∈A|x ≤ a, b}. If A 
= S, then we write L(a, b) instead of  LS(a, 
b). A subsemilattice A is said to be an                            
LU-subsemilattice of S if for all a, b  ∈A, 
LA (a, b) = φ ⇔ L(a, b) = φ   and A is said 
to be a strong subsemilattice of S if 
U(LA(a, b)) = U(L(a, b)) for all a, b∈A.  

The following results (Theorem 3.1 
and Theorem 3.2) are due to Rachunek [5, 
6]. 
 
Theorem 3.1 Let S be a semilattice. 
(a) If S is not o-modular, then it contains an  
LU-subsemilattice isomorphic to one of the 
ordered sets P4, P5 given in Figure 3. 
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(b) If S is not o-distributive, then it contains 
an LU-subsemilattice isomorphic to one of 
the ordered sets P4, P5, M4, M5 given in 
Figure 3. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 
The following theorem is the 

converse of the above theorem. 
 
Theorem 3.2 Let S be a semilattice. 
(a) If S contains an LU-subsemilattice 
isomorphic to the ordered set P4, or it 
contains a strong subsemilattice isomorphic 
to the ordered set P5, then S is not o-
modular. 
(b) If S contains an LU-subsemilattice 
isomorphic to the ordered sets P4 or M4, or 
it contains a strong subsemilattice isomor-
phic to the ordered set P5 or M5, then S is 
not o-distributive. 
 
4. Ideals of o-modular and o-

distributive  semilattices 
 
The semilattice I(S) of all ideals of 

a semilattice S is not necessarily a lattice. 

Define I0(S) = I(S) ∪{φ}. If I 0(S)  is ordered 
by set inclusion, then I0(S) is a lattice where 
the supremum and infimum are set-theoretic 
union and intersection, respectively. 
Moreover, if S is modular (distributive), 
then, I0(S) is a modular (distributive) lattice.  
Rachunek [6] has proved the following 
result.  
 
Theorem 4.1 Let S be a semilattice. 
(a) If I0(S) is modular, then S is an o-
modular semilattice. 
(b) If I0(S) is distributive, then S is an o-
distributive semilattice. 
We have the following result. 
 
Theorem 4.2 Let S be a semilattice. 
(a) If I(S) is o-modular, then I0(S) is 
modular. 
(b) If I(S) is o-distributive, then I0(S) is 
distributive. 
 
Proof.  
(a) Let I0(S) not be modular, then it has a 
sublattice isomorphic to the pentagon 
lattice. Thus I(S) contains either a LU-
subsemilattice isomorphic to P4, or a strong 
subsemilattice isomorphic to P5. Hence by 
Theorem 3.2, we have I(S) is not o-
modular. Therefore if I(S) is o-modular, 
then I0(S) is modular.  
(b) Let I0(S) not be distributive, then it has a 
sublattice isomorphic to the diamond lattice 
or pentagon lattice. Thus I(S) contains 
either a  LU-subsemilattice isomorphic to 
P4 or M4 or an strong subsemilattice 
isomorphic to P5 or M5. Hence by Theorem 
3.2, we have I(S) is not o-distributive. 
Therefore if I(S) is o-distributive, then I0(S) 
is distributive.  

By Theorem 4.1 and Theorem 4.2 
we have the following result. 
 
Corollary 4.3  Let S be a semilattice. 
(a) If I(S) is o-modular, then S is an  o-
modular semilattice. 
(b) If I(S) is o-distributive, then S is an                  
o-distributive semilattice. 
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By S0 we mean S⊕ {0}, the linear 
sum of S with a bottom element 0. 
 
Remark 4.1 Let S be a semilattice. If S is         
o-modular (o-distributive), then it is not 
necessary that S0 is modular (distributive). 
But if S is o-modular (o-distributive) such 
that S0 is a lattice, then S0 is modular (o-
distributive). 

The converse of the above 
Corollary 4.3 is not necessarily true. For 
example, consider the semilattice M (N) 
given in the Figure 4. It can be easily seen 
that the ideal lattice I(M) (I(N)) is not 
modular (distributive), and hence is not              
o-modular (o-distributive). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
Figure 4  a o-modular join semilattice and 
its ideal lattice 

 
It is well known that if S is a 

distributive semilattice and I, J ∈∈∈∈I(S), then 
each    x∈ I ∨ J. We have x = i∨  j for some 
i ∈ I and j∈ J. This is not true for a o-
distributive semilattice. For example, in the 
o-distributive semilattice N given in the 
above  Figure 4, observe that c ∈ B∨   D0 

but there is no b∈  B and d ∈ D0 such that c 
= b∨ d. Now we have the following 
important result. By sup{A, B} we mean the 
least upper bound of A ∪ B.  
 
Theorem 4.4 Let S be a semilattice. Then 
the followings are equivalent : 
(a) S is o-distributive; 
(b) for I, J ∈ I(S) we have  
 I ∨ J = {x x = sup{L(i, x), L(j, x)} 

for some i∈I and j ∈ J}; 
(c) for any principal ideals I, J of S we have: 

 I∨ J = {x x = sup{L(i, x), L(j,x)} 
for some i∈I and j ∈ J}. 

 
Proof. (a) ⇒(b). Let x ∈ I ∨ J. Then x ≤  i ∨ 
j for some i ∈ I and j ∈ J. Hence x ∈ L(i ∨ j, 
x) = L(U(L(i, x),L(j, x))). This implies x≤  y 
for all y ∈ U(L(i, x), L(j, x)). Suppose A = 
L(i, x) and B = L(j, x). Then clearly A ⊆ I 
and B⊆ J and y is an upper bound of {A, B}. 
Moreover, x be an upper bound of {A, B}. 
Since x≤  y for all y∈ U(A,B), we have x = 
sup{A, B}. 
(b) ⇒ (c) is trivial. 
(c) ⇒ (a). Assume (c) holds. Let x∈ 
L(a∨_b, c). Then x≤ a∨ b and x≤  c. Thus x 
∈ (a∨ b] = (a]∨(b] and hence x = sup{L(a1, 
x), L(b1, x)} for some a1 ≤ a and b1 ≤ b. 
Therefore, x≤  U(L(a1, x), L(b1, x)). Hence x 
∈ L(U(L(a1, x), L(b1,  x))) ⊆ L(U(L(a, c), 
L(b, c))).  
 
5. O-modular, o-distributive, o-stand-

ard elements in semilattices 
 
Let S be a semilattice. An element 

m ∈ S is said to be an o-modular element 
of S if for all a, b∈ S with a≤  b implies 
L(U(a, L(m, b))) = L(a ∨ m, b). An element 
d∈ S is said to be a o-distributive element 
of S if for all a, b∈ S implies    U(d,L(a, b)) 
= U(L(d∨ a, d∨ b)). An element  s ∈ S is 
said to be a o-standard element of S if for all 
a, b ∈ S implies L(a, s ∨ b) = L(U(L(a, 
s),L(a, b))). Clearly, a semilattice S is o-
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modular (o-distributive) if and only if its 
every element is o-modular (o-distributive).  
 
Theorem 5.1 In a lattice the notion of 
modular element, distributive element and 
standard element coincide with the notion 
of o-modular element, o-distributive 
element and o-standard element, 
respectively. 
 
Proof. Let L be a lattice and let m ∈ L. 
Then 

m is o-modular  ⇔ for all a, b ∈ L with a≤  
b, L(U(a, L(m, b))) = L(a ∨ m, b) 

 ⇔ L(U(a, m ∧ b)) = L(a∨ m, b)  
for all a,b∈L 

 ⇔ L(a ∨ (m ∧ b)) = L(a ∨ m, b)  
for all a,b∈L 

 ⇔ (a ∨ (m ∧ b)] = ((a∨ m) ∧ b]  
for all a,b∈L 

 ⇔  a ∨ (m∧ b) = (a ∨ m) ∧ b 
for all a, b ∈ L with a≤  b, 

 ⇔  m is modular. 
m is o-distributive ⇔ for all a, b ∈ L; 

L(a ∨ b, m) = L(U(L(a, m), L(b, m))) 
 ⇔((a ∨ b) ∧ m)] = ((a∧  m) ∨ (b ∧  
m)]  

for all a,b∈L 
 ⇔ (a ∨ b) ∧  m = (a ∧  m) ∨ (b ∧  
m)  

for all a, b ∈ L, 
 ⇔ m is distributive. 
m is o-standard  ⇔ for all a ,b∈ L, 

L(a ,m ∨ b) = L(U(L(a, m),L(a, b))) 
 ⇔ (a ∧ (m ∨ b)] = ((a ∧ m) ∨ (a∧ 
b)] 
 ⇔ a ∧ (m ∨ b) = (a∧ m) ∨ (a ∧ b) 

for all a, b ∈ L, 
 ⇔ m is standard.  

Let S be a semilattice. An element 
m ∈ S is said to be an modular element of 
S if for all a, b ∈ S with b ≤  a ≤ m∨ b 
implies the existence of m1 ≤ m such that a 
= m1 ∨ b. An element d∈ S is said to be a 
distributive element of S if for all x, a, b ∈ 
S with x ≤ d∨ a and x ≤ d∨ b implies the 

existence of c ≤ a, b such that x ≤ d∨ c. An 
element s∈ S is said to be a standard 
element of S if for all a, b∈ S with a ≤ s∨ b 
implies the existence of s1   ≤  s, b1 ≤ b such 
that a = s1∨  b1. 
 
Theorem 5.2 In a semilattice S, 
    (a) every modular element of S is  
o-modular, 
    (b) every distributive element of S 
is  
 o-distributive, 
    (c) every standard element of S is  
o-standard. 

The converse of (a), (b) and (c) 
need not be true. 
 
Proof.  (a) Let m be a modular element of S 
and let a, b∈S with a ≤ b. We have to show 
that L(a∨ m, b) = L(U(a ,L(m, b))). Let x∈ 
L(a∨ m, b). Then   x ≤ a∨ m and x ≤ b. Thus 
a ≤ a ∨ x ≤ a∨ m. Since m is modular, there 
exists m1 ≤ m such that a∨ x = a∨ m1. If y ∈ 
U(a, L(m, b)), then y ≥ a ∨ r for all r≤  m, b. 
Now m1 ≤ a∨ x≤  b∨ x = b and m1 ≤ m. Thus 
x≤  a ∨ x = a∨ m1 ≤  y. Hence x∈ L(U(a, 
L(m, b))). Therefore L(a∨ m, b) ⊆ L(U(a, 
L(m, b))). The reverse inclusion is trivial for 
any semilattice. 
           (b) Let d be a distributive element 
of S. We have to prove that for all a, b ∈ S 
implies  
U(d, L(a, b)) = U(L(d∨_a, d∨ b)).  
Let x ∈ (U(d, L(a, b)). Then x ≥ d∨ c for all 
c≤  a, b. If y ∈ L(d∨ a, d ∨ b), then y ≤ d∨ a 
and y ≤ d∨b. Since d is distributive, there 
exists  r≤  a, b such that y≤  d∨ r. Hence y≤  
x. Thus x∈ U(L(d∨ a, d∨ b)). Hence U(d, 
L(a, b)) ⊆ U(L(d∨ a, d ∨ b)). The reverse 
inclusion is trivial for any semilattice. 
           (c) Let s be a standard element of S 
and let a, b ∈ S. We have to show that L(a, 
s∨ b) = L(U(L(a, s), L(a, b))). Let x ∈ L(a, 
s∨ b). Then x≤  a and x≤  s∨ b. Since s is 
standard, there exists s1 ≤ s and b1 ≤  b such 
that x = s1 ∨ b1. If y ∈ U(L(a, s), L(a,  b)), 
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then y ≥ p ∨ q for all p≤  a, s and q ≤ a, b. 
Since s1≤  x ≤  a, s1 ≤ s and b1 ≤ x ≤ a, b1≤  
b, 
we have y ≥ s1 ∨ b1 = x. Hence x ∈ L(U(L(a, 
s), L(a, b))). Therefore, L(a, s ∨ b) ⊆ 
L(U(L(a, s), L(a, b))). The reverse inclusion 
is trivial for any semilattice. 

Consider the o-modular semilattice 
M in the Figure 4. Here a is o-modular, as 
every element of o-modular semilattice is o-
modular, but a is not modular as b2≤  b≤  a 
∨ b2, but there is no a1 ≤ a such that b = a1∨ 
b2. Hence the converse of (a) is not true. 
Now consider the o-distributive semilattice 
N in the Figure 4. Here, d0 is o-modular, as 
every element of o-distributive semilattice 
is o-distributive, but d0 is not distributive as 
c≤  d0 ∨ b and c≤  d0 ∨ c, but there is no a≤  
b, c such that c≤  d0 ∨ a. Hence, the 
converse of (b) is not true. By a similar 
argument we can show that b is o-standard, 
but not standard.  
 
Theorem 5.3 Let S be a semilattice and let          
s ∈ S. Then the following are equivalent: 
(a) s is o-standard , 
(b) s is o-modular and o-distributive, 
 
Proof. Suppose s is o-standard. Let a, b ∈ S 
with a ≤  b. Then 
L(a ∨ s, b) = L(U(L(a, b), L(s, b)))  
                                        as s is o-standard                                                                 

                  = L(U(a, L(s, b))). 
Therefore, s is o-modular. To prove s is                   
o-distributive, we have to show that for all              
a, b ∈ S implies  

U(s, L(a, b)) = U(L(a ∨ s, b ∨ s)). 
We have U(L(a∨ s, b∨ s))  

= U(L(U(L(a∨ s, b), L(a∨ s, s))))  
as s is o-standard 

⊇ U(L(a ∨ s, b), L(a ∨ s, s))  
as U(L(A))⊇ A 

= U(L(s), L(U(L(a, b), L(s, b))))  
as s is o-standard 

⊇ ULU(L(a, b), s) 
⊇ U(L(a, b), s). 

The reverse inclusion is trivial for 
any semilattice. Hence s is o-distributive. 
Conversely, let (b) hold. To prove (a), it is 
enough to show that L(a∨ s, b) ⊆ L(U(L(a, 
b), L(s, b))) for all a, b∈ S. We have: 
L(a∨ s, b) ⊆ LU(L(a ∨ s, b), s) 

⊆ LUL(a ∨ s, b∨ s) (trivial) 
= L(a ∨ s, b∨ s) 

 = LU(L(a, b), s), as s is o-distributive 
Taking the intersection with L(b) on 

both sides, we have L(a∨ s, b) ⊆ L(U(L(a, 
b), s), b). 
Now we shall show that U(L(a, b), L(b, s)) 
⊆ UL(U(L(a, b), s), b). To prove this, let: 
x∈ U(L(a, b), L(b, s)) 
⇒ x ≥  p, q for all p≤  a, b and q ∈ L(b, s) 
⇒  x∈  U(L(b, s), p) for all p≤  a, b                
⇒ x ∈ ULU(L(b, s), p) 
⇒ x ∈ UL(U(p, s), b) as s is o-modular 
⇒ x≥   y for all y≤  b, z for all z ≥  p, s 
⇒ x ≥   y for all y≤  b, z for all z ∈ U(L(a, 
b), s) 
⇒ x ≥   y for all y ∈ L(U(L(a, b), s), b) 
⇒ x ∈ UL(U(L(a, b), s), b). 
Hence L(U(L(a, b), s), b) = LUL(U(L(a, b), 
s), b) ⊆ LU(L(a, b), L(b, s)). 
Thus, L(a∨ s, b) ⊆ L(U(L(a, b), L(b, s))). 
The reverse inclusion is trivial for any 
ordered set. Hence the theorem.  
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