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Abstract
In this paper we prove that every convex subordeetdof an ordered set can be
written as an intersection of a down-set and arsaip\We characterize o-modular and o-
distributive semilattices in terms of ideals of themilattices. The notion of o-modular, o-
distributive and o-standard elements has been olgeeél We characterize the relation among
the elements.
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1. Introduction say that the ordered sé® is a join-
semilattice as an ordered set. An algebra
The study of semilattices has =(S;v) is said to be a join-semilattice as an
become very important in the study of algebra if the binary operations is
general algebra. The class of semilattices reflexive, commutative and associative. In
has an equivalent pictorial subclass of this paper, by a semilattice we mean join-
ordered sets. A non-empty sét together semilattice. It is a natural question: whether
with an order relation< is said to be an  we can generalize the results of semilattices
ordered set. It is denoted by = (P; < ). (or lattices) to ordered sets. A Convex
The dual order of is denoted by>. That  sublattice play an important role in the

is, x<y if and only if y> x. study of lattice theory (see [2]). In Section 2
Let P be an ordered set and€P. Define we generalize a result of a convex sublattice
L(Q): ={xePlx < a for allac Q} to a convex subordered set.

- ={xeP x> a forall The classes of modular and
4 _.{XE 'x_a or allae Q}. distributive semilattices are very suitable
Then L(Q) is said to be tHewer bound of  subclasses of semilattices. A semilattde

Q and U(Q) is said to be theper bound  called amodular semilattice if for all a, b,
of Q. An element yL(Q) is said to be the  ceS with c< a< bvc implies the existence
greatest lower bound of Q if x <y for all of by< b such that a =;bc.

xelL(Q). Dually, an element yU(Q) is A semilattice S is called a

said to be théeast upper bound of Qify < distributive semilattice if for all a, b, &S
x for all x eU(Q). If the least upper bound ~With a< bvc implies the existence oi b b
of {x, y} exists for each x, ¢P, then we and g < ¢ such that a =k ¢;. A semilattice
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Sis directed below if any pair of element of
S has a common lower bound. It is well
known that all modular and distributive
semilattices are directed below. Larméeov
and Rachuneck [4](see also [1]) introduced
the modularity and distributivity for an
ordered set wusing only set-theoretical
concepts. Rachuneck [5, 6] introduces the
notion of (o-modular) o-distributive semi-
lattices which are a proper superclass of
(modular) distributive semilattices. In
Section 3 we discuss the o-modular and o-
distributive semilattices.

Let Sbe a semilattice. A non-empty
subsetl of S is said to be aideal of Sif

(i)ivj elforall i,j el and
(i) i el, xe S with x<i implies
xel.

The set of all ideals of S is denoted
by I(S). It is well known that a semilatti&
is modular (distributive) if and only if(%$)
is a modular (distributive) lattice. In Section
4 we give some characterizations of o-
modular and o-distributive semilattices in
terms of ideals.

Modular elements, distributive ele-
ments and standard elements in a lattice
have been studied by several authors (see
[3, 2, 7]). LetL be a lattice. An element
melL is said to be anodular element ofL
if for all a, beL with a< b implies av (m A
b) = (av m) A b. An element dL is said to
be adistributive element ofL if for all a,
bel implies (aan b)v d = (avd) A (bv d).

An element sL is to be astandard
element ofL if for all a, beL implies a(s

v b) = (an s)v (aA b). In Section 5 we
generalize the idea of modular, distributive
and standard elements in a lattice to o-
modular, o-distributive and o-standard ele-
ments in a join-semilattice.

2. Convex subordered sets

Let P be an ordered set. A subset
Q of P is said to be aubordered set of P
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if Q is itself an ordered set where the order
in Q is induced by the order of P. A
subordered set Q of P is said to be convex if
X,y € Qwith x<z<yimpliesze Q. A
subordered set Q of P is said to baoan-

set if xeQ, y< x implies ye Q. Dually, Q

is said to baup-set if x €Q, y> x implies
yeQ. For Qc P, define:

1Q: ={x e P| x< y for some ¥ Q},

TQ: = {x e P| y < x for some ¥ Q}.

ThenlQ is the down-set andiQ is the up-
set.

The following Theorem is the
generalization of the result in case of
lattices (see [2]) and as well as semilattices.

Theorem 2.1 Let P be an ordered s¢t, | be
a down-set and D be an up-set such that | »
D = ¢ Then| » D is a convex subordered
set of P. Moreover, every convex
subordered set of P can be written as an
inter section of a down-set and an up-set.

Proof. Let C =1 n D and letx, ye C and

ze Psuch that X z<y. Then clearly z C

as | is a down-set and D is an up-set. Hence
C is convex. Since both | and D are
subordered sets. So, C is a subordered set.
Therefore C is a convex subordered set of

SupposeC is a convex subordered
set of P. We show thatC = {C nTC.
Clearly, Cc 4C nTC. LetxedCnTC, then
< x< ¢, forsome ¢ ¢, € C. Now sinceC
is convex, we have € C. ThereforeC =
lcnTc.

Observe that the intersection of the
above theorem is not uniquely determined
as the result of lattices. For example,
consider the ordered set given in Figure 1.
LetC={a, b}, A={a, b, 1}, B ={b, a, 0}
and D = {c, b, a, 0}. Then C =AB =
AND.
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3. O-modular and O-distributive

semilattices

An ordered seP is calledmodular
ordered set if for all a, b, &= P with a< ¢
implies:

L(U(a, L(b, ¢))) = L(U(a, b), c).

o0

P

Figurel

For any ordered sd, it is easy to
verify that for alla, b, c e P witha <c
implies:

L(U(a,L(b, ¢))) cL(U(a, b), c).
So, an ordered s€t is modular if for all
a, b, c e Pwitha <cimplies :

L(U(a, b), c) cL(U(a, L(b, c))).
A semilatticeS = (S, v/) is said to beo-
modular if it is modular as an ordered set.
That is, if for alla, b, c e Swith a <c
implies:

L(avb, c) cL(U(a, L(b, ©))).

An ordered seP is said to balistributive
ordered set if forall a,b,c e P

L(U(L(a, c),L(b, ¢))) = L(U(a, b), c).
For any ordered sé&, we have:

L(U(L(a, c),L(b, ))) cL(U(a, b), 0),
for all a, b, c € P. So, an ordered sétis
distributive if:

L(U(a, b), ) cL(U(L(a, c),L(b, c))),
for all a, b, ce P. A semilattice S £S; V)
is said to be o-distributive if it is
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distributive as an ordered set. That is, if for
all a, b, ce S,
L(a vb, c) cL(U(L(a, c),L(b, €))).

Clearly, every o-distributive semi-
lattice is o-modular. The converse is not
true. For example, the semilattickk, and
Ms given in Figure 3 are o-modular but not
o-distributive. In the case of lattices, the
notion of modularity (distributivity) and o-
modularity (o-distributivity) are the same
(see [4]). Every modular (distributive)
semilattice is o-modular (o-distributive), but
the converse is not true. For example,
consider the semilattickl ; given in Figure
2. The semilatticeM; is not modular
(distributive), as it is not directed below.
But it can be easily seen thM; is o-
modular (o-distributive).

T

M3
Figure?2

It is easy to show, a subsemilattice
of an o-modular (o-distributive) semilattice
is o-modular (o-distributive). LeA be a
subsemilattice of a semilatti® For a, b
€A, define La(a, b) = {xeAlx < a, b}. If A
= S, then we write L(a, b) instead ofs(&,
b). A subsemilatticeA is said to be an
LU-subsemilattice of Siif for all a, b €A,
La(a, b) =¢ < L(a, b) =¢ andA is said
to be astrong subsemilattice of S if
U(La(a, b)) = U(L(a, b)) for all a, bA.

The following results (Theorem 3.1
and Theorem 3.2) are due to Rachunek [5,
6].

Theorem 3.1 Let S be a semilattice.
(a) If Sisnot o-modular, then it contains an
LU-subsemilattice isomorphic to one of the
ordered sets P4, Ps given in Figure 3.
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(b) If Sis not o-distributive, then it contains
an LU-subsemilattice isomorphic to one of
the ordered sets P4, Ps, My, Msgivenin
Figure 3.

T
T
b
c ° b ¢
a a
P
! L
Ps
T
A\ a ob c
a b .
1

M4

Figure3 Ms

The following theorem is the

converse of the above theorem.

Theorem 3.2 Let Sbhe a semilattice.

(@) If S contains an LU-subsemilattice
isomorphic to the ordered set P4, or it
contains a strong subsemilattice isomorphic
to the ordered set Ps, then S is not o-
modular.

(b) If S contains an LU-subsemilattice
isomorphic to the ordered sets P, or My, or
it contains a strong subsemilattice isomor-
phic to the ordered set Ps or Ms, then Sis
not o-distributive.

4. |deals of o-modular and
distributive semilattices

0_

The semilattice &) of all ideals of
a semilatticeS is not necessarily a lattice.
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Define b(S) = I(S)u{¢}. If I o(S) is ordered
by set inclusion, theny(S) is a lattice where
the supremum and infimum are set-theoretic
union and intersection, respectively.
Moreover, if S is modular (distributive),
then, h(S) is a modular (distributive) lattice.
Rachunek [6] has proved the following
result.

Theorem 4.1 Let Sbe a semilattice.

(&) If 1(S) is modular, thenS is an o-
modular semilattice.

(b) If 1o(S) is distributive, therS is an o-
distributive semilattice.

We have the following result.

Theorem 4.2 Let S be a semilattice.

(@ If I(S) is o-modular, then o(S) is
modular.

(b) If I(S) is o-distributive, then(S) is
distributive.

Proof.
(a) Let K(S) not be modular, then it has a
sublattice isomorphic to the pentagon
lattice. Thus I§) contains either a LU-
subsemilattice isomorphic fy, or a strong
subsemilattice isomorphic 8. Hence by
Theorem 3.2, we have J( is not o-
modular. Therefore if 8 is o-modular,
then K(S) is modular.
(b) Let (S) not be distributive, then it has a
sublattice isomorphic to the diamond lattice
or pentagon lattice. Thus I(S) contains
either a LU-subsemilattice isomorphic to
P, or M, or an strong subsemilattice
isomorphic toPsor Ms. Hence by Theorem
3.2, we have B) is not o-distributive.
Therefore if 1) is o-distributive, theny(S)
is distributive.

By Theorem 4.1 and Theorem 4.2
we have the following result.

Corollary 4.3 LetSbe a semilattice.

(@) If I(S) is o-modular, ther is an o-
modular semilattice.

(b) If I(S) is o-distributive, thenS is an
o-distributive semilattice.
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By Sswe meanS® {0}, the linear
sum ofSwith a bottom element 0.

Remark 4.1 Let S be a semilattice. IE is
o-modular (o-distributive), then it is not
necessary thak, is modular (distributive).
But if S is o-modular (o-distributive) such
that S is a lattice, ther, is modular (o-
distributive).

The converse of the above
Corollary 4.3 is not necessarily true. For
example, consider the semilattidd@ (N)
given in the Figure 4. It can be easily seen
that the ideal lattice M) (I(N)) is not
modular (distributive), and hence is not
o-modular (o-distributive).

A
A
b2 ——CDb
a2 / =9} 2
cp—t—h
by
a /
& — by
O/Obo / do
=)
M % &
N

Figure 4 a o-modular join semilattice and
its ideal lattice

It is well known that ifS is a
distributive semilattice ant, J €1(S), then
each xel vJ.We havex=iv | for some
i el andje J. This is not true for a o-
distributive semilattice. For example, in the
o-distributive semilatticeN given in the
above Figure 4, observe thate Bv Dy
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but there is nbbe B andd e Dy such that
bv d. Now we have the following
important result. By syp\, B} we mean the
least upper bound & U B.

Theorem 4.4 Let S be a semilattice. Then
the followings are equivalent :
(a) S is o-distributive;
(b) for I, Je I(S) we have
I'vJ = {x|x = sup{L(i, ), L(j, X)}
for some &l and je J};
(c) for any principal ideals I, J of S we have:
Iv J = {x| x = sup{L(i, x), L(j,x)}
for some el and je J}.

Proof. (a)=(b). Letx el vJ. Thenx <i v
j for some eI andj € J. Hencex e L(i vj,
X) = L(U(L(i, X),L(j, X))). This impliesx<" y
for all y e U(L(i, x), L(j, X)). SUppOSEA =
L(i, X) andB = L(j, X). Then clearlyA c |
andBc J andy is an upper bound ofX, B}.
Moreover,x be an upper bound ofA{ B}.
Sincex< y for all ye U(A,B), we havex =
sup{A, B}.

(b) = (c) is trivial.

(c) = (a). Assume (c) holds. Leke
L(av_b, c). Thenx<av b andx< c¢. Thusx
€ (avb] = (@v(b] and hence = sup{L(ay,
X), L(by, X)} for somea; < a andb; < b.
Thereforex<” U(L(ay, X), L(by, X)). Hencex
e L(U(L(ay, ), L(by, X)) < L(U(L(a, c),
L(b, ©))).

5. O-modular, o-distributive, o-stand-
ard elementsin semilattices

Let S be a semilattice. An element
m € Sis said to be am-modular element
of Sif for all a, be Swith a< b implies
L(U(a, L(m, b))) = L(a v m, b). An element
de S is said to be a o-distributive element
of Sif for all a, be Simplies U(d,L(a, b))
= U(L(dv a, dv b)). An elements € Sis
said to be a o-standard elemengdffor all
a, b e SimpliesL(a, s v b) = L(U(L(a,
9),L(a, b))). Clearly, a semilattice S is o-



Thammasat Int. J. Sc. Tech., Vol. 15, No. 4, Oetdbecember 2010

modular (o-distributive) if and only if its
every element is o-modular (o-distributive).

Theorem 5.1 In a lattice the notion of
modular element, distributive element and
standard element coincide with the notion

of o-modular element, o-distributive
element and o-standard element,
respectively.

Proof. Let L be a lattice and leh e L.
Then
mis o-modular< for alla, b € L with a<
b, L(U(a, L(m, b))) =L(a vm, b)
< L(U@ mab)) =L(@vm,b)

for alla,belL
<Llav(mab)=L(@avm,b)

for all a,bel
< (@av(mab)] = ((avm) A b]

for all a,bel

s avimb)=@vm aAb
for alla, b € L with a< b,
< mis modular
mis o-distributive= for alla, b L;
L(a vb, m) =L(U(L(a, m), L(b, m)))
<(@vb)yam]=((arn m v(ba
m)]
for all a,bel
< @vba m=@an m v(ba
m)
foralla, b L,
< mis distributive
mis o-standard= for alla ,be L,
L(a,m vb) =L(U(L(a, m),L(a, b)))
< @amvb)]=((aarm) v(an
b)]
sasa(mMvb)=@rm) v(@ab)
foralla,b e L,
< mis standard.
Let S be a semilattice. An element
m e Sis said to be amodular element of
Sifforalla, b eSwithb< a<mvb
implies the existence ofy, < m such thata
=m vb. An elementde Sis said to be a
distributive element of Sif forall x,a,b
Swith x < dv aandx < dv b implies the
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existence ot < a, b such thatx < dvc. An
elementse S is said to be astandard
element of Sif for all a, be Switha<svb
implies the existence &f < s, b; <bsuch
thata=s;v b,.

Theorem 5.2 In a semilattices,

(a) every modular element of S is
o-modular,

(b) every distributive element of S
is
o-distributive,

(c) every standard element of S is
o-standard.

The converse of (a), (b) and (c)
need not be true.

Proof. (a) Letmbe a modular element &f
and leta, beSwith a < b. We have to show
thatL(av m, b) = L(U(a ,L(m, b))). Letxe
L(avm, b). Then x<avmandx<b. Thus
a<a vx<avm. Sincemis modular, there
existsmy < msuch thabvx=avm. Ify e
U(a, L(m, b)), theny >a v r for allr< m, b.
Nowm, <avx< bvx=bandm, <m. Thus
X< avx=avm< Yy Hencexe L(U(a,
L(m, b))). ThereforeL(av m, b) < L(U(a,
L(m, b))). The reverse inclusion is trivial for
any semilattice.

(b) Letd be a distributive element
of S We have to prove that for al b € S
implies
u(d, L(a, b)) = U(L(dv_a, dv b)).

Letx e (U(d, L(a, b)). Thenx >dv c for all
c<a b Ify elL(dva, d vb), theny <dva
andy <dvb. Sinced is distributive, there
exists r< a, b such thay< dvr. Hencey<
X. Thusxe U(L(dv a, dv b)). HenceU(d,
L(a, b)) c U(L(dv a, d v b)). The reverse
inclusion is trivial for any semilattice.

(c) Lets be a standard element &f
and leta, b € S We have to show théaf(a,
svb) = L(U(L(a, 9), L(a, b))). Letx e L(a,
sv b). Thenx< a andx< sv b. Sincesis
standard, there exisgs< sandb; < b such
thatx=s v by If y e U(L(a, 9), L(a, b)),
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theny >p vqforall p< a, s and & a, b.
Since < x< a,s<sand b x< a, b
b,
we havey >s; v by =x. Hencex e L(U(L(a,
s), L(a, b))). Therefore,L(a, s v b) <
L(U(L(a, 9), L(a, b))). The reverse inclusion
is trivial for any semilattice.

Consider the o-modular semilattice
M in the Figure 4. Hera is o-modular, as
every element of o-modular semilattice is o-
modular, buta is not modular ag,< b< a
v by, but there is n@; <asuch thab=a;v
b,. Hence the converse of (a) is not true.
Now consider the o-distributive semilattice
N in the Figure 4. Heral, is o-modular, as
every element of o-distributive semilattice
is o-distributive, butl, is not distributive as
c< dov bandc< dy v ¢, but there is na<
b, ¢ such thatc< d, v a. Hence, the
converse of (b) is not true. By a similar
argument we can show thiais o-standard,
but not standard.

Theorem 5.3 Let S be a semilattice and let
s € S. Then the following are equivalent:
(a) s is o-standard ,

(b) s is o-modular and o-distributive,

Proof. Supposesis o-standard. Led, b € S
with a < b. Then
L(a vs, b) =L(U(L(a, b), L(s, b)))
afs o-standard
3 (U(a, L(s, b))).
Therefore,s is o-modular. To proves is
o-distributive, we have to show that for all
a, b € Simplies
U(s, L(a, b)) =U(L(a vs,b v9).
We havel(L(avs, bv9))
=U(L(U(L(avs, b), L(avs, 9)))
assis o-standard
oU(L(avsb),L(avs,9)
asU(L(A)2 A
= U(L(s), L(U(L(a, b), L(s, b))))
assis o-standard
2> ULU(L(a, b), 9)
2 U(L(a, b), 9).

a7

The reverse inclusion is trivial for
any semilattice. Hencs is o-distributive.
Conversely, let (b) hold. To prove (a), it is
enough to show thdt(av s, b) < L(U(L(a,
b), L(s, b)) for alla, be S. We have:

L(avs b)cLU(L(avs b),9)

< LUL(a vs, bvs) (trivial)

=L(@avs, bvs)

=LU(L(a, b), s), assis o-distributive

Taking the intersection with(b) on
both sides, we havi(av s, b) < L(U(L(a,
b), 9), b).

Now we shall show thdt(L(a, b), L(b, 9))

< UL(U(L(a, b), ), b). To prove this, let:

xe U(L(a, b), L(b, 9))

=x2>p,qforallps a bandqg eL(b, s)

= Xe U(L(b,s),p) forallp< a, b

=X e ULU(L(b, 9), p)

=X e UL(U(p, 9), b) assis o-modular

=x> yforally< b,zforallz> p, s

=x2=> yforally< b, zfor allz e U(L(a,

b), )

=x2 yforally e L(U(L(a, b), s), b)

=X e UL(U(L(a, b), 9), b).

HenceL(U(L(a, b), s), b) = LUL(U(L(a, b),

), b) < LU(L(a, b), L(b, 9)).

Thus,L(av s, b) < L(U(L(a, b), L(b, 9))).
The reverse inclusion is trivial for any
ordered set. Hence the theorem.
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