
Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 43

Stage-Warping Load Sharing Strategy

for Fine Grain Applications over Grid

Environments

Natthakrit Sanguandikul and Natawut Nupairoj
Department of Computer Engineering,

Chulalongkorn University, Bangkok, 10110 Thailand

E-mail: Natthakrit.S@student.chula.ac.th

Abstract

A Load sharing strategy is one of important keys to improve the performance

of computing systems. Nowadays, large scale computing system can be created by

aggregating multiple computing clusters from different organizations using Grid

technology. However, it is difficult to define a practical load sharing strategy due to

the computing heterogeneity and dynamic behavior of Grid resources. In this work,

we introduce a load sharing strategy for distributing workloads among participating

clusters. The proposed strategy implements a new job-stealing technique called

“stage-warping”, for dynamically adjusting the amount of assigned workloads for

each cluster during an execution. In our strategy, the entire workloads are divided into

stages which enable the total control of workload assignment during an execution,

while still being highly robust against performance fluctuation and information

inaccuracy of the computing resources. During execution, faster-than-expected

clusters which will finish the assigned workloads during each stage before other

clusters will steal left-over workloads from other clusters and let them skip or warp to

the foremost stage. This will make all clusters to be fully utilized by finishing their

assigned workloads almost at the same time near the end of each stage, resulting in a

better overall parallel performance of load sharing strategy. We evaluate our proposed

strategy using a set of simulation experiments based on the parameters from the

available computing resources in Thaigrid, as well as, fine-grain applications which

can serve as an example of computationally intensive applications. The results show

that our proposed strategy can achieve better parallel runtimes when being compared

to other existing methods, especially when the estimator of the underlying system is

not accurate.

Keywords: Distributed Computing, Grid Technology, Load Sharing Strategy

1. Introduction

 The current trend of parallel

processing is to create a low-cost

supercomputer by aggregating multiple PCs

together. For example, Grid computing

focuses on aggregating the computing

resources geographically distributed across

different organizations [1]. Therefore, the

number of computing nodes and the

complexity of the underlying system will be

dramatically increased. In addition, the

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 44

performance of Grid resources can change

abruptly because they are not dedicated

resources and are subject to the local

resource policy. In order to utilize this vast

amount of computing power effectively, we

must employ a load sharing strategy in

order to keep every computing resource

busy until the end of an execution.

Although many load sharing strategies have

been proposed in the past [2-3], these

strategies are aimed for single cluster

computing environments only. Therefore,

they fail to address new characteristics in

multiple-cluster environments [4] such as

communication structure between clusters,

large overhead over WAN, high computing

heterogeneity, and the dynamic behavior of

non-dedicated resources. Moreover, most

load sharing strategies proposed for large

scale computing environments [5-6] still

require some specific performance

indicators of computing resources for

making load decisions. These indicators are

difficult to derive as there are various

parameters which can affect the overall

runtime such as processor speed, system

architecture, communication bandwidth,

and submitted applications. Thus, it is very

difficult to collect all necessary internal

information within each cluster and define a

sophisticated resource model that can truly

predict the performance of the computing

system [7-8]. Given the growing complexity

in computing environments and

applications, the traditional methodologies

are no longer practical.

 To address this foreseeable

problem, we propose a load sharing strategy

with new job-stealing technique for

distributing workloads among participating

clusters. Our strategy first divides total

workloads into different stage sizes before

further assigning workloads allocated

within each stage to the participating

clusters according to their performance

indicators. By implementing our new job-

stealing technique called “stage-warping”,

faster-than-expected clusters can execute

additional tasks by stealing workloads to be

executed by other clusters. Hence, those

clusters can catch up with the faster-than-

expected clusters by skipping or warping to

the same current stage. This behavior will

give additional robustness against the

performance fluctuation of highly heteroge-

neous resources in Grid environments. In

addition, our performance indicator is just a

rough performance estimator of the

underlying system, which a global

coordinator can calculate during an

execution. Therefore, there is no need to

implement any monitoring services to

gather information from the computing

clusters at all. To increase the accuracy of

this performance indicator, our strategy

consists of increasing stages and decreasing

stages. The increasing stages are for

obtaining accurate performance indicators

of the underlying systems and the

decreasing stages are for reducing load

imbalance near the end of an execution.

 Although the proposed strategy in

[9] makes load decision based on the

performance indicators obtained during an

execution like our proposed strategy, it uses

job replication to address dynamic behavior

of Grid resources, which is more suitable

for coarse grain applications. Moreover,

given a fine grain computing application,

our proposed strategy can balance the

workloads between each cluster

dynamically which eliminates load

imbalance near the end of an execution.

Therefore, we do not have to implement job

replication, and we can also save some

computing cycles by doing so. The

organization of this paper is as follows.

Section 2 provides the details about the

models within our work. Section 3 describes

other related works. In section 4, we

propose our stage-warping load sharing

strategy. The performance evaluations are

shown in section 5. And finally, we

conclude our work in section 6.

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 45

2. Models

2.1 Grid Model

 We assume that the computing

system is a multiple-cluster computing

environment. It consists of N computing

nodes which will be grouped together into L

clusters {C1, C2 … CL}. These computing

clusters communicate with each other over

WAN while the intra-cluster communi-

cation will be made over LAN. The

computing nodes within the same cluster

will be considered homogeneous and have

the same computing power. With this

assumption, we can increase the computing

heterogeneity within our system by

specifying some clusters to have more total

computing power than the others. Within

each cluster, there is one local gateway

which is responsible for distributing

workloads submitted by Grid users to other

computing nodes in the same cluster and

also handles the inter-cluster communi-

cations. In addition, one of the local

gateways will also serve as the global

coordinator which manages submitted jobs

and assigns workloads to the other clusters.

Global strategy will be used for assigning

workloads among participating clusters

while local strategy is for assigning

workloads within each cluster. Note that the

local strategy can be specified differently

depending on the local administrator of that

cluster.

WAN

Cluster C1

Cluster C2

Cluster C3

Cluster CL

…..

LAN

Global

Coordinator

Figure 1 The system model of Grid

environment.

2.2 Application Model

 We define an application model

based on fine-grain computationally

intensive application which consists of U

unit tasks where the computation and

communication size of each task can be

specified differently. This model represents

parameter sweeping applications which are

considered as the killer applications for

Grid technology [10]. The examples of real

life applications that belong to this type are

radiation equipment calibration analysis,

searching for extra-terrestrial intelligence,

protein folding, molecular modeling for

drug design, human-genome sequence

analysis, brain activity analysis, high-

energy physics event analysis, ad hoc

network simulation, crash simulation,

tomography, financial modeling, and M-cell

simulations. Moreover, we also further

divide the fine-grain applications into four

distinct classes of applications, including

uniform, increasing, decreasing, and

random distribution [11]. These classes can

represent popular applications where the

computation size of each unit task can be

different during an execution such as Matrix

Multiplication, SOR, Reverse Adjoint

Convolution, LU Decomposition, and

Gauss Jordan Elimination.

 3. Related Works

 The Self-Scheduling strategy (SS)

[12] dynamically assigns only one unit task

per each request for an idle computing

resource. With this behavior, it can achieve

almost perfect load balancing because every

computing resource will finish within one

task of each other. However, this strategy

also suffers from high communication

overhead. To address this problem while

keeping its simplicity, many variations of

SS have been proposed [13-14]. One of

them, which is famous for robustness is

called “Factoring” (FSS) [15]. This strategy

assigns workloads into multiple stages. In

the first stage, FSS distributes the largest

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 46

chunk and decreases the chunk size in the

subsequence stages proportionally. During

each stage, every processor will receive an

equal chunk size of workloads. FSS can

reduce communication overhead by sending

large chunks at the beginning while it

achieves sub-optimal runtime by sending

small chunks near the end of computation.

To address heterogeneity within the

computing system, “Weighted Factoring”

(WFSS) [16] is proposed as an extension of

FSS. In this strategy, the amount of total

unit tasks allocated during each stage is the

same as in FSS. However, unlike FSS,

WFSS utilizes pre-execution information of

the computing resources as weighted values

to assign workloads allocated within each

stage. We will call a strategy that utilizes

pre-execution information an “explicit

strategy”.

 One of the major weaknesses of

explicit strategies is that these strategies

rely on static knowledge. Thus, they

perform quite poor in a dynamic

environment like Grid computing. One of

the descendants of FSS called “Adaptive

Weighted Factoring” (AWF) [17], addresses

this problem by further extending WFSS

with an adaptive weighted value called

“Weighted Average Performance” (WAP).

This weighted value will be re-calculated

every stage using the newly obtained

computing rates of each resource.

Therefore, the explicit information will be

used as a weighed value during the first

stage only. With this average value, AWF

can address the dynamic behavior of the

heterogeneous computing system. However,

since AWF assigns half of the available

workloads during the first stage, the

problem of inaccurate explicit information

can still affect the performance of this

strategy.

4. Proposed Load Sharing Strategy

 In this work, we propose a new

strategy called “stage-warping load sharing

strategy” (SWS). Our proposed strategy is

aimed to address the computing

heterogeneity and dynamic behavior of Grid

resources by dynamically adjusting

workload assignment based on the

estimation of the computing power of the

participating clusters. However, the

estimation can be inaccurate since the

performance of Grid resources can change

dramatically. To address this problem, our

proposed strategy requires a job-stealing

technique in order to minimize the

inefficiency from inaccurate estimation. To

define a practical job-stealing technique, we

divide the entire workloads into different

stages. The workloads in each stage will be

further divided for the participating clusters

according to their computing power. In an

ideal case, all computing clusters are

supposed to finish their assigned workloads

nearly at the same time during the end of

each stage. This will fully utilize all

computing resources and leads to the

minimal execution time. In reality,

however, some clusters will finish their

assigned workloads before other clusters

and request more workloads by entering the

next stage immediately. This behavior will

result in differences of stage numbers of

these clusters which will make clusters

complete their execution at different times.

Thus, this will lead to underutilization of

the computing resources and eventually

decrease overall parallel performance. To

address this problem, we introduce the

stage-warping technique that allows faster-

than-expected clusters to execute additional

tasks by stealing workloads to be executed

by other clusters. Slower-than-expected

clusters can then catch up with the other

clusters by skipping or warping to the same

current stage. With this approach, the

completion time of each cluster can be

controlled to be finished almost at the same

time near the end of each stage despite the

dynamic behavior of the underlying

resources. We can see this behavior as

another form of job-stealing technique since

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 47

the faster-than-expected clusters steal

workloads which are supposed to be

executed by other clusters.

 Our proposed strategy uses rough

performance estimation, called “consuming

rate” (cr), which is calculated from the

amount of assigned workloads and the

interval time between requests. Thus,

overall execution aspects including the

relationship between the submitted

application and the underlying system, in

term of performance, can be evaluated

through this performance indicator during

the execution. Therefore, the problem of

misleading parameters like assigning I/O

intensive applications to the computing

cluster with fast processing speed can be

avoided. Moreover, this indicator can be

calculated at the coordinator node that is

responsible for assigning workloads. Hence,

our strategy can make load decisions

without implementing the monitoring

service within the participating clusters.

4.1 Stage Size Assignment

 In our proposed strategy,

application workloads are divided into

stages. The amount of workloads assigned

to the participating clusters during each

stage will be further adjusted with respect to

the performance of the requesting cluster

and the performance of other clusters.

Moreover, we also divide entire computing

stages into two groups, which are the

increasing stages and the decreasing stages.

The purpose of the increasing stages is to

obtain accurate performance indicators

before entering the decreasing stages.

Although we can obtain accurate consuming

rate from the beginning of an execution by

sending a large chunk of workloads, it is

also too risky to assign workloads without

having an accurate estimator of the

requesting cluster first. To address this

problem, our strategy sends small

workloads during the first stage and

increases the stage size exponentially. After

that, the remaining half of the total

workloads will be used to balance the

workloads between each cluster. The stage

number of every cluster starts from a

negative value specified as 

















2
log 2

U
.

Then the stage number of each cluster will

be gradually increased by one value every

time that cluster requests more workloads

until it becomes zero, which is the last stage

of the increasing stages. After that, the

cluster will enter the decreasing stages, and

its stage number will still be increased by

one value for every request until the end of

an execution. An example of stage number

sequence from one participating cluster

during the entire execution can be given as

{-3,-2,-1,0,1,2,3,4}. Equation (1) describes

how we allocate workloads during both

increasing and decreasing stage m (um)

given the total number of tasks (U) and

constant ratio () which we specify as 2

throughout this work. An example of how

our strategy allocates workload for each

stage is shown in Fig. 2.

































otherwise
U

mif
U

u

m

m

m





*2

0
*2

1

(1)

Figure 2 The number of unit tasks allocated

for each stage.

 Given the stage size of both

increasing and decreasing stages, the global

coordinator can determine mik , , which is

the chunk size to be assigned for cluster Ci

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 48

during stage m. This value will be

calculated from the performance indicator

of the requesting cluster (cri,m), compared

with those of the other clusters ,together

with the predefined stage size (mu) as

shown in Eq. (2). Note that the workloads

allocated in the first stage will be assigned

equally to all clusters because there is no

consuming rate available yet.

mL

q

mq

mi

mi u

cr

cr
k *

1

1,

,

,






 (2)

 Keeping all clusters to execute at

the same stage for the entire execution

period is very important as it prevents a

load imbalance, which can lead to poor

performance. In an ideal case where the

estimator of each cluster is always accurate,

tasks will be assigned to all clusters, such

that all clusters will enter the same stage,

complete all tasks in the predefined stage

chunk, and then move to the next stage at

the same time throughout the entire

execution. In reality, this behavior will

never happen. Given the inaccuracy, some

clusters will be over-estimated (or slower

than expected) while the others will be

under-estimated (or faster than expected).

Under-estimated clusters will enter the

following stage and continue requesting

workloads for the new stage while over-

estimated clusters are still in the previous

stage. This behavior will create additional

load imbalance in the system especially

when there are some clusters still in the

increasing stages at the end of an execution.

Moreover, this problem will become worse

in a multiple-cluster environment as the

underlying resources can be highly

heterogeneous.

4.2 Stage-Warping Technique for Grid

Environment

 In order to keep every cluster to be

at the same stage throughout an execution,

our strategy introduces a job-stealing

technique called “stage-warping”. This

technique allows the clusters whose stage

numbers are behind the others to skip (or

warp) from their current stages to the

foremost stage. The newly derived stage

will include the remaining workloads in the

previous stages into the foremost stage.

With this behavior, the leftover workloads

in the previous stages will be re-assigned

again to every cluster and the effect of

inaccurate estimators, which causes some

clusters to stay behind, can be reduced. In

other words, the faster-than-expected

clusters absorb the load imbalance effects

by stealing workloads from those clusters

that warp to catch up to the foremost stage.

Equation (3) illustrates how we can

calculate the new stage size (mu) with

stage-warping technique, by first finding the

number of assigned tasks during the

previous stages from the remaining tasks at

the beginning of the current stage m (m),

before combining the leftover tasks with the

pre-allocated tasks. An example of this

behavior can be seen in Fig. 3 where the

tasks inside stage -1 and 0 are moved into

stage 1 with our stage-warping technique.














































































1
*22*2

1
2*2

1
*2

2

1

1

1

mifU
UUU

mifU
UU

mifU
U

u

m

m

q qm

mm

mm

m








 (3)

Figure 3 Behavior of stage-warping

technique.

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 49

5. Performance Evaluation

 In this section, we will evaluate the

performance of load sharing strategies by

simulating a real computing environment

with NS2 [18]. We choose two computing

clusters in Thaigrid[19], TERA and

PLUTO, as representatives of computing

clusters. TERA cluster belongs to Kasetsart

University while PLUTO cluster is

belonged to Chulalongkorn University. We

collect the computing power of each cluster

by using a simple Matrix-Multiplication

program with different matrix sizes. The

communication-related parameters are

defined based on our preliminary tests and

the available specifications. The parameters

that we use to create our test environment

from the real environment are shown in

Table 1. Note that the unit time represents

the computation time for one computing

node in each cluster to execute only one

multiplication. Hence, the entire execution

will consist of M
3
 multiplications where M

is the matrix size during each run.

 Figure 4 and 5 illustrate the

accuracy of our simulation by comparing

the parallel runtimes from both real and

simulated single cluster environment using

SS as load sharing strategy with matrix size

specified as 2000 x 2000.

Table 1 The parameters from real

environment

Variables Values

Unit time (TERA) 20.834ns

Unit time (PLUTO) 29.223ns

LAN Latency 30µs

LAN Bandwidth 1000Mbps

WAN Latency 25ms

WAN Bandwidth 1.5Mbps

Figure 4 The comparison of parallel

runtime over TERA.

Figure 5 The comparison of parallel

runtime over PLUTO.

 To simulate heterogeneous compu-

ting environment, we create four clusters

where one of them consists of 64 nodes

while the other clusters will consist of only

16 nodes. The first cluster will use the

computing power collected from TERA

cluster and the rest will be from PLUTO

cluster. Since this work focuses on the

global strategy which assigns workloads

among participating clusters, the local

strategy within each cluster is defined based

on SS. As for the submitted application, the

matrix size for the simulated experiments

will be specified as 10000 x 10000 and the

communication size of each unit task is

defined based on data within the Matrix

Multiplication program, which is in floating

point. Therefore, our submitted application

can be considered as a computing-intensive

application where the communication

overhead will not affect overall

performance of load sharing strategies,

except SS, which assigns only single task

per request for obtaining better performance

stability.

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 50

5.1 Effect of the Computing Hetero-

geneity

 First, we evaluate the effect of

computing heterogeneity within an

underlying system by comparing the

parallel runtimes of load sharing strategies

over both homogeneous and heterogeneous

systems. We create a homogeneous system

within our simulation by assigning every

cluster to have the same number of

computing nodes with the same computing

power. Note that the homogeneous system

will have the same total computing power

as in the heterogeneous system. We choose

SS to represent the simplest form of load

sharing strategy that can assign workload

without using any performance indicators

about an underlying system. WFSS can be

considered as an example of explicit

strategy that uses only the information

obtained from an external source, where

AWF will also adjust to the dynamic of the

computing system by re-calculating the

weighted value throughout an execution.

Figure 6 shows the performance of load

sharing strategies over computing systems

with different computing heterogeneities.

Figure 6 Parallel runtimes over different

computing systems.

 Experiment results show that SS

has the worst results on both homogeneous

and heterogeneous system because of an

excessive communication overhead for each

request. As for WFSS and AWF, we can see

that AWF performs better than WFSS in

both cases. This behavior is the result of

how AWF can adjust the performance

indicator of each computing resource during

an execution. This is the reason why AWF

is considered to be one of the best load

sharing strategies for grid computing

systems. However, while SWS achieves a

comparable parallel performance with AWF

over a homogeneous system, its parallel

performance will be a lot better than AWF

over a heterogeneous system. The reason

behind this behavior is how our strategy can

reduce the load imbalance between the fast

and slow clusters better than AWF by

allowing under-estimated clusters to steal

workload of other over-estimated clusters.

Therefore, our strategy can avoid a bad

situation when there are some tasks left over

in the slow clusters, while other clusters idle

near the end of an execution.

5.2 Effect of the Dynamic Behavior of the

Underlying Resources

 Since Grid technology allows local

administrators to have control over their

resources, the available computing power of

Grid resources can change abruptly

throughout an execution because the local

policy allows other jobs to be executed on

the same computing nodes. To simulate this

behavior, we specify the computing power

of each computing node with normal

distribution where the max-min boundaries

are specified as a percentage of the average

value as mentioned in [20].

Figure 7 Parallel runtimes over different

fluctuation in available computing power.

 We can see from the results in Fig.

7 that while the parallel performance of

both strategies decrease when the

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 51

fluctuation of the computing power

increases, our proposed strategy can achieve

better parallel runtime than AWF. This

behavior shows that our strategy can

tolerate a fluctuation of computing power

more than AWF because we define our

strategy so that it can address the changes in

computing system throughout an entire

execution with our stage-warping technique.

5.3 Effect of Inaccurate Information

 Our strategy can obtain the

available computing power by itself. Thus,

it does not need an estimated value of the

underlying system prior to execution. This

behavior not only eliminates the need for

implementing the monitoring service over

participating clusters, but also makes our

strategy independent from information

inaccuracy of each resource when we start

the execution. On the contrary, most load

sharing strategies, such as AWF, rely on the

estimated performance of the underlying

systems. Thus, their performances are

subjected to the accuracy of the estimators.

To illustrate this effect, we define a random

variable which represents the estimated

computing power used by AWF during the

first stage. The value of this variable will be

selected from a normal distribution, where

different max-min boundaries are specified

as a percentage of the real computing

power. The effect of inaccurate information

over the performance of load sharing

strategies is shown in Fig. 8.

Figure 8 Parallel runtimes over different

fluctuation with information inaccuracy.

 The experiment results show that

our strategy is not affected by inaccurate

information like AWF. This behavior is the

results of how we define our strategy to

collect and adjust the estimated computing

power of an underlying resource by itself

without using an estimated value from other

sources. We can see that the performance of

AWF will decrease greatly when the

estimated information is not accurate.

5.4 Effect of Application Classes

 Different types of applications can

also affect the performance of load sharing

strategy. The computation size of each task

can be uniform, random, increasing, or

decreasing throughout the entire execution.

Figure 9 Parallel runtimes over different

application classes.

 Figure 9 shows that our strategy can

achieve better parallel runtimes than AWF

on every application, especially when the

computation size of each task decreases

during an execution. This is due to the fact

that for applications with decreasing

computation size, the correct task

assignment is very crucial for the first stage,

as it includes larger tasks, which contribute

the majority of the execution time. Thus,

this will greatly impact the system using

AWF to distribute workloads, as it assigns

half of the entire workloads during the first

stage.

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 52

6. Conclusion

 In this work, we propose a robust

load sharing strategy for large-scale cluster-

based computing systems. By implementing

a stage-warping technique, our strategy can

make load decisions based on a rough

performance estimator which can be

collected at the global coordinator during an

execution, and steal jobs from slower-than-

expected clusters to prevent a load

imbalance near the end of the execution.

Hence, there is no need to implement a

monitoring service or worry about its

accuracy at all. From our experiments, we

show that our proposed strategy can address

computing heterogeneity, fluctuation in

available computing power, and different

classes of submitted applications.

Therefore, our proposed global strategy is

simple yet efficient in a large scale

computing environment which definitely

will serve as the computing platform for the

next generation.

7. Reference

[1] Foster, I. et al., The Anatomy of the

Grid, Int. J. Supercomput. Appl. High

Perform. Comput., Vol. 15, pp. 200-

222, 2001.

[2] Kruskal, C. P. and Weiss, A.,

Allocating Independent Subtasks on

Parallel Processors, IEEE Trans.

Software Eng., Vol. 11, pp. 1001-

1016, 1985.

[3] Balasubramanian, J. et al., Evaluating

the Performance of Middleware Load

Balancing Strategies, EDOC, pp.

135-146, 2004.

[4] Shen, K. et al., Cluster Load

Balancing for Fine-grain Network

Services, IPDPS, pp. 51-58, 2002.

[5] Chronopoulos, A. T. et al., Scalable

Loop Self-scheduling Schemes for

Heterogeneous Clusters, Int. J.

Comput. Eng. Sci., pp. 353-359,

2002.

[6] Shih, W. C. et al., A Performance-

based Parallel Loop Self-scheduling

on Grid Environments, Lect. Notes

Comput. Sci., Vol. 3779, pp. 48-55,

2005.

[7] Biswas, R. et al., Tools and

Techniques for Measuring and

Improving Grid Performance, Lect.

Notes Comput. Sci., Vol. 2571, pp.

45-54, 2002.

[8] Wolski, R., Experiences with

Predicting Resource Performance

On-line in Computational Grid

Settings, Perform. Eval. Rev., Vol.

30, pp. 41-49, 2003.

[9] Lee, Y. C. and Zomaya, A. Y.,

Practical Scheduling of Bag-of-Tasks

Applications on Grids with Dynamic

Resilience, IEEE Trans. Comput.,

Vol. 56, pp. 815-825, 2007.

[10] Buyya, R. et al., Scheduling

Parameter Sweep Applications on

Global Grids: a Deadline and Budget

Constrained Cost-time Optimization

Algorithm, Software Pract. Ex., Vol.

35, pp. 491-512, 2005.

[11] Fann, Y. W. et al., IPLS: An

Intelligent Parallel Loop Scheduling

for Multiprocessor Systems,

ICPADS, pp. 775-782, 1998.

[12] Tang, P. and Yew, P. C., Processor

Self-scheduling for Multiple-nested

Parallel Loops, ICPP, pp. 528-535,

1986.

[13] Polychronopoulos, C. D. and Kuck,

D. J., Guided Self-scheduling: A

Practical Scheduling Scheme for

Parallel Supercomputers, IEEE

Trans. Comput., Vol. 36, pp. 1425-

1439, 1987.

[14] Tzen, T. H. and Ni, L. M., Trapezoid

Self-scheduling: A Practical

Scheduling Scheme for Parallel

Compilers, TPDS, Vol. 4, pp. 87-98,

1993.

[15] Hummel, S. F. et al., Factoring: A

Method for Scheduling Parallel

Loops, Comm. ACM, Vol. 35, 1992.

Thammasat Int. J. Sc. Tech., Vol. 15, No. 2, April-June 2010

 53

[16] Hummel, S. F. et al., Load-sharing in

Heterogeneous Systems via Weighted

factoring, SPAA, pp. 318-328, 1996.

[17] Banicescu, I. and Velusamy, V.,

Performance of Scheduling Scientific

Applications with Adaptive Weighted

Factoring, IPDPS, pp. 84, 2001.

[18] McCanne, S. and Floyd, S., VINT

Network Simulator - ns (version 2),

http://www.mash.CS.Berkeley.EDU/

ns/.

[19] Varavithya, V. and Uthayopas, P.,

ThaiGrid: Architecture and

Overview, NECTEC Tech. J., Vol. 2,

2000.

[20] Casanova, H., Simgrid: A Toolkit for

the Simulation of Application

Scheduling, CCGrid, pp. 430-441,

2001.

