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Abstract 

A Load sharing strategy is one of important keys to improve the performance 

of computing systems. Nowadays, large scale computing system can be created by 

aggregating multiple computing clusters from different organizations using Grid 

technology. However, it is difficult to define a practical load sharing strategy due to 

the computing heterogeneity and dynamic behavior of Grid resources.  In this work, 

we introduce a load sharing strategy for distributing workloads among participating 

clusters. The proposed strategy implements a new job-stealing technique called 

“stage-warping”, for dynamically adjusting the amount of assigned workloads for 

each cluster during an execution. In our strategy, the entire workloads are divided into 

stages which enable the total control of workload assignment during an execution, 

while still being highly robust against performance fluctuation and information 

inaccuracy of the computing resources. During execution, faster-than-expected 

clusters which will finish the assigned workloads during each stage before other 

clusters will steal left-over workloads from other clusters and let them skip or warp to 

the foremost stage. This will make all clusters to be fully utilized by finishing their 

assigned workloads almost at the same time near the end of each stage, resulting in a 

better overall parallel performance of load sharing strategy. We evaluate our proposed 

strategy using a set of simulation experiments based on the parameters from the 

available computing resources in Thaigrid, as well as, fine-grain applications which 

can serve as an example of computationally intensive applications. The results show 

that our proposed strategy can achieve better parallel runtimes when being compared 

to other existing methods, especially when the estimator of the underlying system is 

not accurate. 
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1. Introduction 

 
       The current trend of parallel 

processing is to create a low-cost 

supercomputer by aggregating multiple PCs 

together. For example, Grid computing 

focuses on aggregating the computing 

resources geographically distributed across 

different organizations [1]. Therefore, the 

number of computing nodes and the 

complexity of the underlying system will be 

dramatically increased. In addition, the 
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performance of Grid resources can change 

abruptly because they are not dedicated 

resources and are subject to the local 

resource policy. In order to utilize this vast 

amount of computing power effectively, we 

must employ a load sharing strategy in 

order to keep every computing resource 

busy until the end of an execution. 

Although many load sharing strategies have 

been proposed in the past [2-3], these 

strategies are aimed for single cluster 

computing environments only. Therefore, 

they fail to address new characteristics in 

multiple-cluster environments [4] such as 

communication structure between clusters, 

large overhead over WAN, high computing 

heterogeneity, and the dynamic behavior of 

non-dedicated resources. Moreover, most 

load sharing strategies proposed for large 

scale computing environments [5-6] still 

require some specific performance 

indicators of computing resources for 

making load decisions. These indicators are 

difficult to derive as there are various 

parameters which can affect the overall 

runtime such as processor speed, system 

architecture, communication bandwidth, 

and submitted applications. Thus, it is very 

difficult to collect all necessary internal 

information within each cluster and define a 

sophisticated resource model that can truly 

predict the performance of the computing 

system [7-8]. Given the growing complexity 

in computing environments and 

applications, the traditional methodologies 

are no longer practical. 

       To address this foreseeable 

problem, we propose a load sharing strategy 

with new job-stealing technique for 

distributing workloads among participating 

clusters. Our strategy first divides total 

workloads into different stage sizes before 

further assigning workloads allocated 

within each stage to the participating 

clusters according to their performance 

indicators. By implementing our new job-

stealing technique called “stage-warping”, 

faster-than-expected clusters can execute 

additional tasks by stealing workloads to be 

executed by other clusters. Hence, those 

clusters can catch up with the faster-than-

expected clusters by skipping or warping to 

the same current stage. This behavior will 

give additional robustness against the 

performance fluctuation of highly heteroge-

neous resources in Grid environments. In 

addition, our performance indicator is just a 

rough performance estimator of the 

underlying system, which a global 

coordinator can calculate during an 

execution. Therefore, there is no need to 

implement any monitoring services to 

gather information from the computing 

clusters at all. To increase the accuracy of 

this performance indicator, our strategy 

consists of increasing stages and decreasing 

stages. The increasing stages are for 

obtaining accurate performance indicators 

of the underlying systems and the 

decreasing stages are for reducing load 

imbalance near the end of an execution. 

       Although the proposed strategy in 

[9] makes load decision based on the 

performance indicators obtained during an 

execution like our proposed strategy, it uses 

job replication to address dynamic behavior 

of Grid resources, which is more suitable 

for coarse grain applications. Moreover, 

given a fine grain computing application, 

our proposed strategy can balance the 

workloads between each cluster 

dynamically which eliminates load 

imbalance near the end of an execution. 

Therefore, we do not have to implement job 

replication, and we can also save some 

computing cycles by doing so. The 

organization of this paper is as follows. 

Section 2 provides the details about the 

models within our work. Section 3 describes 

other related works. In section 4, we 

propose our stage-warping load sharing 

strategy. The performance evaluations are 

shown in section 5. And finally, we 

conclude our work in section 6. 
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2. Models 
 

2.1 Grid Model 

       We assume that the computing 

system is a multiple-cluster computing 

environment. It consists of N computing 

nodes which will be grouped together into L 

clusters {C1, C2 … CL}. These computing 

clusters communicate with each other over 

WAN while the intra-cluster communi-

cation will be made over LAN. The 

computing nodes within the same cluster 

will be considered homogeneous and have 

the same computing power. With this 

assumption, we can increase the computing 

heterogeneity within our system by 

specifying some clusters to have more total 

computing power than the others. Within 

each cluster, there is one local gateway 

which is responsible for distributing 

workloads submitted by Grid users to other 

computing nodes in the same cluster and 

also handles the inter-cluster communi-

cations. In addition, one of the local 

gateways will also serve as the global 

coordinator which manages submitted jobs 

and assigns workloads to the other clusters. 

Global strategy will be used for assigning 

workloads among participating clusters 

while local strategy is for assigning 

workloads within each cluster. Note that the 

local strategy can be specified differently 

depending on the local administrator of that 

cluster. 

WAN

Cluster C1

Cluster C2

Cluster C3

Cluster CL

…..

LAN

Global 

Coordinator

Figure 1 The system model of Grid 

environment. 

2.2 Application Model 

       We define an application model 

based on fine-grain computationally 

intensive application which consists of U 

unit tasks where the computation and 

communication size of each task can be 

specified differently. This model represents 

parameter sweeping applications which are 

considered as the killer applications for 

Grid technology [10]. The examples of real 

life applications that belong to this type are 

radiation equipment calibration analysis, 

searching for extra-terrestrial intelligence, 

protein folding, molecular modeling for 

drug design, human-genome sequence 

analysis, brain activity analysis, high-

energy physics event analysis, ad hoc 

network simulation, crash simulation, 

tomography, financial modeling, and M-cell 

simulations. Moreover, we also further 

divide the fine-grain applications into four 

distinct classes of applications, including 

uniform, increasing, decreasing, and 

random distribution [11]. These classes can 

represent popular applications where the 

computation size of each unit task can be 

different during an execution such as Matrix 

Multiplication, SOR, Reverse Adjoint 

Convolution, LU Decomposition, and 

Gauss Jordan Elimination.  

 

 3. Related Works 

 
       The Self-Scheduling strategy (SS) 

[12] dynamically assigns only one unit task 

per each request for an idle computing 

resource. With this behavior, it can achieve 

almost perfect load balancing because every 

computing resource will finish within one 

task of each other. However, this strategy 

also suffers from high communication 

overhead. To address this problem while 

keeping its simplicity, many variations of 

SS have been proposed [13-14]. One of 

them, which is famous for robustness is 

called “Factoring” (FSS) [15]. This strategy 

assigns workloads into multiple stages. In 

the first stage, FSS distributes the largest 
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chunk and decreases the chunk size in the 

subsequence stages proportionally. During 

each stage, every processor will receive an 

equal chunk size of workloads. FSS can 

reduce communication overhead by sending 

large chunks at the beginning while it 

achieves sub-optimal runtime by sending 

small chunks near the end of computation. 

To address heterogeneity within the 

computing system, “Weighted Factoring” 

(WFSS) [16] is proposed as an extension of 

FSS. In this strategy, the amount of total 

unit tasks allocated during each stage is the 

same as in FSS. However, unlike FSS, 

WFSS utilizes pre-execution information of 

the computing resources as weighted values 

to assign workloads allocated within each 

stage.  We will call a strategy that utilizes 

pre-execution information an “explicit 

strategy”. 

       One of the major weaknesses of 

explicit strategies is that these strategies 

rely on static knowledge. Thus, they 

perform quite poor in a dynamic 

environment like Grid computing.  One of 

the descendants of FSS called “Adaptive 

Weighted Factoring” (AWF) [17], addresses 

this problem by further extending WFSS 

with an adaptive weighted value called 

“Weighted Average Performance” (WAP). 

This weighted value will be re-calculated 

every stage using the newly obtained 

computing rates of each resource. 

Therefore, the explicit information will be 

used as a weighed value during the first 

stage only. With this average value, AWF 

can address the dynamic behavior of the 

heterogeneous computing system. However, 

since AWF assigns half of the available 

workloads during the first stage, the 

problem of inaccurate explicit information 

can still affect the performance of this 

strategy. 

 

4. Proposed Load Sharing Strategy 

 
      In this work, we propose a new 

strategy called “stage-warping load sharing 

strategy” (SWS). Our proposed strategy is 

aimed to address the computing 

heterogeneity and dynamic behavior of Grid 

resources by dynamically adjusting 

workload assignment based on the 

estimation of the computing power of the 

participating clusters. However, the 

estimation can be inaccurate since the 

performance of Grid resources can change 

dramatically.  To address this problem, our 

proposed strategy requires a job-stealing 

technique in order to minimize the 

inefficiency from inaccurate estimation.  To 

define a practical job-stealing technique, we 

divide the entire workloads into different 

stages. The workloads in each stage will be 

further divided for the participating clusters 

according to their computing power. In an 

ideal case, all computing clusters are 

supposed to finish their assigned workloads 

nearly at the same time during the end of 

each stage. This will fully utilize all 

computing resources and leads to the 

minimal execution time.  In reality, 

however, some clusters will finish their 

assigned workloads before other clusters 

and request more workloads by entering the 

next stage immediately. This behavior will 

result in differences of stage numbers of 

these clusters which will make clusters 

complete their execution at different times.  

Thus, this will lead to underutilization of 

the computing resources and eventually 

decrease overall parallel performance. To 

address this problem, we introduce the 

stage-warping technique that allows faster-

than-expected clusters to execute additional 

tasks by stealing workloads to be executed 

by other clusters.  Slower-than-expected 

clusters can then catch up with the other 

clusters by skipping or warping to the same 

current stage. With this approach, the 

completion time of each cluster can be 

controlled to be finished almost at the same 

time near the end of each stage despite the 

dynamic behavior of the underlying 

resources. We can see this behavior as 

another form of job-stealing technique since 
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the faster-than-expected clusters steal 

workloads which are supposed to be 

executed by other clusters. 

       Our proposed strategy uses rough 

performance estimation, called “consuming 

rate” (cr), which is calculated from the 

amount of assigned workloads and the 

interval time between requests.  Thus, 

overall execution aspects including the 

relationship between the submitted 

application and the underlying system, in 

term of performance, can be evaluated 

through this performance indicator during 

the execution. Therefore, the problem of 

misleading parameters like assigning I/O 

intensive applications to the computing 

cluster with fast processing speed can be 

avoided. Moreover, this indicator can be 

calculated at the coordinator node that is 

responsible for assigning workloads. Hence, 

our strategy can make load decisions 

without implementing the monitoring 

service within the participating clusters. 

  

4.1 Stage Size Assignment 

       In our proposed strategy, 

application workloads are divided into 

stages. The amount of workloads assigned 

to the participating clusters during each 

stage will be further adjusted with respect to 

the performance of the requesting cluster 

and the performance of other clusters. 

Moreover, we also divide entire computing 

stages into two groups, which are the 

increasing stages and the decreasing stages.  

The purpose of the increasing stages is to 

obtain accurate performance indicators 

before entering the decreasing stages. 

Although we can obtain accurate consuming 

rate from the beginning of an execution by 

sending a large chunk of workloads, it is 

also too risky to assign workloads without 

having an accurate estimator of the 

requesting cluster first. To address this 

problem, our strategy sends small 

workloads during the first stage and 

increases the stage size exponentially. After 

that, the remaining half of the total 

workloads will be used to balance the 

workloads between each cluster. The stage 

number of every cluster starts from a 

negative value specified as 

















2
log 2

U
. 

Then the stage number of each cluster will 

be gradually increased by one value every 

time that cluster requests more workloads 

until it becomes zero, which is the last stage 

of the increasing stages. After that, the 

cluster will enter the decreasing stages, and 

its stage number will still be increased by 

one value for every request until the end of 

an execution. An example of stage number 

sequence from one participating cluster 

during the entire execution can be given as 

{-3,-2,-1,0,1,2,3,4}. Equation (1) describes 

how we allocate workloads during both 

increasing and decreasing stage m (um) 

given the total number of tasks (U) and 

constant ratio ( ) which we specify as 2 

throughout this work. An example of how 

our strategy allocates workload for each 

stage is shown in Fig. 2. 

     
































otherwise
U

mif
U

u

m

m

m





*2

0
*2

1

(1) 

 

 
Figure 2 The number of unit tasks allocated 

for each stage. 

 

       Given the stage size of both 

increasing and decreasing stages, the global 

coordinator can determine mik , , which is 

the chunk size to be assigned for cluster Ci 
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during stage m. This value will be 

calculated from the performance indicator 

of the requesting cluster (cri,m), compared 

with those of the other clusters ,together 

with the predefined stage size ( mu ) as 

shown in Eq. (2). Note that the workloads 

allocated in the first stage will be assigned 

equally to all clusters because there is no 

consuming rate available yet.  

mL

q

mq

mi

mi u

cr

cr
k *

1

1,

,

,






        (2) 

       Keeping all clusters to execute at 

the same stage for the entire execution 

period is very important as it prevents a 

load imbalance, which can lead to poor 

performance.  In an ideal case where the 

estimator of each cluster is always accurate, 

tasks will be assigned to all clusters, such 

that all clusters will enter the same stage, 

complete all tasks in the predefined stage 

chunk, and then move to the next stage at 

the same time throughout the entire 

execution. In reality, this behavior will 

never happen. Given the inaccuracy, some 

clusters will be over-estimated (or slower 

than expected) while the others will be 

under-estimated (or faster than expected). 

Under-estimated clusters will enter the 

following stage and continue requesting 

workloads for the new stage while over-

estimated clusters are still in the previous 

stage. This behavior will create additional 

load imbalance in the system especially 

when there are some clusters still in the 

increasing stages at the end of an execution. 

Moreover, this problem will become worse 

in a multiple-cluster environment as the 

underlying resources can be highly 

heterogeneous. 

 

4.2 Stage-Warping Technique for Grid 

Environment 

       In order to keep every cluster to be 

at the same stage throughout an execution, 

our strategy introduces a job-stealing 

technique called “stage-warping”. This 

technique allows the clusters whose stage 

numbers are behind the others to skip (or 

warp) from their current stages to the 

foremost stage. The newly derived stage 

will include the remaining workloads in the 

previous stages into the foremost stage. 

With this behavior, the leftover workloads 

in the previous stages will be re-assigned 

again to every cluster and the effect of 

inaccurate estimators, which causes some 

clusters to stay behind, can be reduced.  In 

other words, the faster-than-expected 

clusters absorb the load imbalance effects 

by stealing workloads from those clusters 

that warp to catch up to the foremost stage. 

Equation (3) illustrates how we can 

calculate the new stage size ( mu ) with 

stage-warping technique, by first finding the 

number of assigned tasks during the 

previous stages from the remaining tasks at 

the beginning of the current stage m ( m ), 

before combining the leftover tasks with the 

pre-allocated tasks. An example of this 

behavior can be seen in Fig. 3 where the 

tasks inside stage -1 and 0 are moved into 

stage 1 with our stage-warping technique. 
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Figure 3 Behavior of stage-warping 

technique. 
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5. Performance Evaluation 

 
       In this section, we will evaluate the 

performance of load sharing strategies by 

simulating a real computing environment 

with NS2 [18]. We choose two computing 

clusters in Thaigrid[19], TERA and 

PLUTO, as  representatives of computing 

clusters. TERA cluster belongs to Kasetsart 

University while PLUTO cluster is 

belonged to Chulalongkorn University. We 

collect the computing power of each cluster 

by using a simple Matrix-Multiplication 

program with different matrix sizes. The 

communication-related parameters are 

defined based on our preliminary tests and 

the available specifications. The parameters 

that we use to create our test environment 

from the real environment are shown in 

Table 1. Note that the unit time represents 

the computation time for one computing 

node in each cluster to execute only one 

multiplication. Hence, the entire execution 

will consist of M
3
 multiplications where M 

is the matrix size during each run.  

       Figure 4 and 5 illustrate the 

accuracy of our simulation by comparing 

the parallel runtimes from both real and 

simulated single cluster environment using 

SS as load sharing strategy with matrix size 

specified as 2000 x 2000. 

 

Table 1 The parameters from real 

environment 

Variables Values 

Unit time (TERA) 20.834ns 

Unit time (PLUTO) 29.223ns 

LAN Latency 30µs 

LAN Bandwidth 1000Mbps 

WAN Latency 25ms 

WAN Bandwidth 1.5Mbps 

 
Figure 4 The comparison of parallel 

runtime over TERA. 

 
Figure 5 The comparison of parallel 

runtime over PLUTO. 

 

       To simulate heterogeneous compu-

ting environment, we create four clusters 

where one of them consists of 64 nodes 

while the other clusters will consist of only 

16 nodes. The first cluster will use the 

computing power collected from TERA 

cluster and the rest will be from PLUTO 

cluster. Since this work focuses on the 

global strategy which assigns workloads 

among participating clusters, the local 

strategy within each cluster is defined based 

on SS. As for the submitted application, the 

matrix size for the simulated experiments 

will be specified as 10000 x 10000 and the 

communication size of each unit task is 

defined based on data within the Matrix 

Multiplication program, which is in floating 

point. Therefore, our submitted application 

can be considered as a computing-intensive 

application where the communication 

overhead will not affect overall 

performance of load sharing strategies, 

except SS, which assigns only single task 

per request for obtaining better performance 

stability.  
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5.1 Effect of the Computing Hetero-

geneity 

       First, we evaluate the effect of 

computing heterogeneity within an 

underlying system by comparing the 

parallel runtimes of load sharing strategies 

over both homogeneous and heterogeneous 

systems. We create a homogeneous system 

within our simulation by assigning every 

cluster to have the same number of 

computing nodes with the same computing 

power. Note that the homogeneous system 

will have the same total computing power 

as in the heterogeneous system. We choose 

SS to represent the simplest form of load 

sharing strategy that can assign workload 

without using any performance indicators 

about an underlying system. WFSS can be 

considered as an example of explicit 

strategy that uses only the information 

obtained from an external source, where 

AWF will also adjust to the dynamic of the 

computing system by re-calculating the 

weighted value throughout an execution. 

Figure 6 shows the performance of load 

sharing strategies over computing systems 

with different computing heterogeneities. 

 

 
Figure 6 Parallel runtimes over different 

computing systems. 

 

       Experiment results show that SS 

has the worst results on both homogeneous 

and heterogeneous system because of an 

excessive communication overhead for each 

request. As for WFSS and AWF, we can see 

that AWF performs better than WFSS in 

both cases. This behavior is the result of 

how AWF can adjust the performance 

indicator of each computing resource during 

an execution. This is the reason why AWF 

is considered to be one of the best load 

sharing strategies for grid computing 

systems. However, while SWS achieves a 

comparable parallel performance with AWF 

over a homogeneous system, its parallel 

performance will be a lot better than AWF 

over a heterogeneous system. The reason 

behind this behavior is how our strategy can 

reduce the load imbalance between the fast 

and slow clusters better than AWF by 

allowing under-estimated clusters to steal 

workload of other over-estimated clusters. 

Therefore, our strategy can avoid a bad 

situation when there are some tasks left over 

in the slow clusters, while other clusters idle 

near the end of an execution.  

 

5.2 Effect of the Dynamic Behavior of the 

Underlying Resources 

        Since Grid technology allows local 

administrators to have control over their 

resources, the available computing power of 

Grid resources can change abruptly 

throughout an execution because the local 

policy allows other jobs to be executed on 

the same computing nodes. To simulate this 

behavior, we specify the computing power 

of each computing node with normal 

distribution where the max-min boundaries 

are specified as a percentage of the average 

value as mentioned in [20]. 

 

 
Figure 7 Parallel runtimes over different 

fluctuation in available computing power. 

 

       We can see from the results in Fig. 

7 that while the parallel performance of 

both strategies decrease when the 
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fluctuation of the computing power 

increases, our proposed strategy can achieve 

better parallel runtime than AWF. This 

behavior shows that our strategy can 

tolerate a fluctuation of computing power 

more than AWF because we define our 

strategy so that it can address the changes in 

computing system throughout an entire 

execution with our stage-warping technique. 

 

5.3 Effect of Inaccurate Information 

       Our strategy can obtain the 

available computing power by itself. Thus, 

it does not need an estimated value of the 

underlying system prior to execution. This 

behavior not only eliminates the need for 

implementing the monitoring service over 

participating clusters, but also makes our 

strategy independent from information 

inaccuracy of each resource when we start 

the execution. On the contrary, most load 

sharing strategies, such as AWF, rely on the 

estimated performance of the underlying 

systems. Thus, their performances are 

subjected to the accuracy of the estimators. 

To illustrate this effect, we define a random 

variable which represents the estimated 

computing power used by AWF during the 

first stage. The value of this variable will be 

selected from a normal distribution, where 

different max-min boundaries are specified 

as a percentage of the real computing 

power. The effect of inaccurate information 

over the performance of load sharing 

strategies is shown in Fig. 8. 

 

 
Figure 8 Parallel runtimes over different 

fluctuation with information inaccuracy. 

 

       The experiment results show that 

our strategy is not affected by inaccurate 

information like AWF. This behavior is the 

results of how we define our strategy to 

collect and adjust the estimated computing 

power of an underlying resource by itself 

without using an estimated value from other 

sources. We can see that the performance of 

AWF will decrease greatly when the 

estimated information is not accurate. 

  

5.4 Effect of Application Classes 

       Different types of applications can 

also affect the performance of load sharing 

strategy. The computation size of each task 

can be uniform, random, increasing, or 

decreasing throughout the entire execution.  

 

 
Figure 9 Parallel runtimes over different 

application classes. 

 

       Figure 9 shows that our strategy can 

achieve better parallel runtimes than AWF 

on every application, especially when the 

computation size of each task decreases 

during an execution. This is due to the fact 

that for applications with decreasing 

computation size, the correct task 

assignment is very crucial for the first stage, 

as it includes larger tasks, which contribute 

the majority of the execution time. Thus, 

this will greatly impact the system using 

AWF to distribute workloads, as it assigns 

half of the entire workloads during the first 

stage. 
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6. Conclusion 

 
       In this work, we propose a robust 

load sharing strategy for large-scale cluster-

based computing systems. By implementing 

a stage-warping technique, our strategy can 

make load decisions based on a rough 

performance estimator which can be 

collected at the global coordinator during an 

execution, and steal jobs from slower-than-

expected clusters to prevent a load 

imbalance near the end of the execution. 

Hence, there is no need to implement a 

monitoring service or worry about its 

accuracy at all. From our experiments, we 

show that our proposed strategy can address 

computing heterogeneity, fluctuation in 

available computing power, and different 

classes of submitted applications. 

Therefore, our proposed global strategy is 

simple yet efficient in a large scale 

computing environment which definitely 

will serve as the computing platform for the 

next generation. 
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