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Abstract 

 
This paper aims to solve On-Line Optimal Power Flow (ON-OPF) to minimize fuel 

cost using Evolutionary Programming Techniques. The solution of that optimization problem 

is based on using the Particle Swarm Optimization (PSO) technique for each loading 

condition with minimum fuel cost. All previous obtained results are used as a database for 

training an Artificial Neural Network (ANN) to obtain an on line solution (decision) to control 

output power of each generating unit at different loading conditions while satisfying minimum 

fuel cost. 
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1. Introduction 
 

Throughout the entire world, the 

electric power industry has undergone a 

considerable change in the past decade and 

will continue to do so for the next several 

decades. In the past, the electric power 

industry has been either a government-

controlled or a government-regulated Indus-

try which existed as a monopoly in its 

service region. All people, businesses, and 

industries were required to purchase their 

power from the local monopolistic power 

company. This was not only a legal 

requirement, but a physical engineering 

requirement as well. It just did not appear 

feasible to duplicate the resources required 

to connect everyone to the power grid. Over 

the past decade, however, countries have 

begun to split up these monopolies in favor 

of the free market [1 -3]. 

Optimal Power Flow (OPF) solu-

tion methods have been developed over the 

years to meet this very practical 

requirement of power system operation [4-

7].The optimal power flow problem has 

been discussed since its introduction by 

Carpentier [8]. Because the OPF is a very 

large, non-linear mathematical program-

ming problem, it has taken decades to 

develop efficient algorithms for its solution. 

Many different mathematical techniques 

have been employed for its solution. 

  The majority of the techniques 

discussed in the literature use one of the 

following five methods [9-12]: 

1. Lambda iteration method, also called the 

equal incremental cost criterion (EICC) 

method. 

2. Gradient method.  

3. Newton’s method.  

4. Linear programming method.  

5. Interior point method. 

There are many uncertainties in 

power system problems, because power 

systems are large, complex, and geo-

graphically widely distributed. More recent-

ly, deregulation of power utilities has 
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introduced new issues into the existing 

problems. It is desirable that solutions of 

power system problems should be optimum 

globally, but solutions searched by 

mathematical optimization methods used 

are normally optimum locally. These facts 

make it difficult to deal effectively with 

many power system problems through strict 

mathematical formulation alone. Therefore 

stochastic search techniques such as 

simulated annealing (SA), Genetic Algori-

thms (GAs) Particle Swarm optimization, 

(PSO) and (ANN) are being used to find 

global or near global optimal solutions. 

Although these methods have been 

employed to solve complex nonlinear OPF 

problems, they do not always guarantee a 

globally optimal solution, but they provide a 

reasonable solution in a short computation 

time. 

A network flow algorithm to solve 

multiple area OPF with tie line constrains 

was proposed by [13]. Adaptive Hopfield 

Neural Network has been applied to solve 

OPF problem with piecewise quadratic cost 

function [14]. GAs with fuzzy logic 

controllers to adjust crossover, and mutation 

probabilities to solve combined environ-

mental economic dispatch, have been 

applied [15].  

With different loading conditions, 

different OPF solutions using PSO are 

obtained. ANN database is formed with 

these load values to be the input to the 

network and the output power of each 

generator is the output of that network while 

satisfying OPF. In this way, the results of 

the economic and control operations of the 

ON-OPF can easily be implemented in the 

network. 

 

 

 

2. Problem Formulation 
 

Optimization of the generating fuel 

cost can be described as: 

The objective function F is to 

determine the generation levels and the 

interchange power between each generating 

unit while satisfying a set of constrains as: 

)(Min Min(F)

1
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N
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                             (1) 

Where )( nn Pf is the fuel cost (operation 

cost) of unit n, in terms of active power 

generated by this unit, Pn, and N is the 

number of generators in the system. 

The cost function of the fuel cost has been 

approximated as a quadratic function given 

as: 

nnnnnnn cPbPaPf  2)(
                         (2) 

 

Where an, bn and cn are the fuel cost 

coefficients in $/MW
2
 per hr, $/MW per hr 

and $ per hr, respectively, and are given in 

Appendix 1.  

Subjected to the following constrains: 

i-Power balance constraint: 

 

 (3) 

                                              

Where 
klP are the transmission line losses 

and k is the number of the lines in the 

system  

ii-Generation active power  constraint: 

maxmin nPnPnP 
                                  (4) 

iii-Generation reactive power constraint: 

maxmin nQnQnQ 
                                (5)  

 

Where Qn is the reactive power at each 

generation unit n 

iv-Line limits constraint: 

                                                               (6) 

 

Where Ik is the current at each line k .   

v- Bus voltage constraint  

maxmin VVV 
                                          (7) 

Where V is the voltage magnitude at each 

bus . 
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3. Optimization Algorithems 
 

OPF is a tool used for both the 

operation and planning of a power system. 

There are different methods to solve OPF 

problems. Heuristic methods may be used to 

solve combinatorial optimization problems. 

These methods are called “intelligent,” 

because the move from one solution to 

another is done using rules close to human 

reasoning. The heuristic algorithms search 

for a solution inside a subspace of the total 

search space. Thus, they are able to give a 

good solution of a certain problem in a 

reasonable computation time, but they are 

not assured to reach the global optimum. 

The most important advantage of heuristic 

methods lies in the fact that they are not 

limited by restrictive assumptions about the 

search space like continuity, existance of 

derivative of objective function, etc. 

Several heuristic methods exist. 

Among them, we may quote Tabu Search 

method (TS) [16], Simulated Annealing 

(SA) [17], Genetic Algorithms (GAs) [18], 

and Particle Swarm Optimization (PSO) 

algorithms [19]. Each one has its own 

properties and drawbacks. The TS is 

basically a deterministic method, and 

experience shows that no random process 

might restrict the search in the set of 

solutions. The SA needs long computation 

time. Further, there are an important 

number of parameters that are difficult to 

determine, such as the cooling schedule. 

In this research PSO algorithm is 

used to achieve OPF solution of power 

system with different load conditions. ANN 

database is formed with results obtained 

from PSO to achieve ON-OPF. 

 

Particle Swarm Optimization Techniques 

In 1995, Kennedy and Eberhart first 

introduced the PSO algorithm [20], 

motivated by social behavior of organisms 

such as fish schooling and bird flocking. 

PSO, as an optimization tool, provides a 

population-based search procedure in which 

individuals called particles change their 

positions (states) with time. The basic 

assumption behind the PSO algorithm is 

birds find food by flocking and not 

individually. 

This leads to the assumption that 

information is owned jointly during 

flocking. Basically, PSO was developed for 

two-dimension solution space [20]. 

Let x and y denote a particle 

coordinates (position) and its corresponding 

flight speed (velocity) Vx in the x direction 

and Vy in the y direction. Modification of 

the individual position is realized by 

velocity and position information. 

PSO algorithm for N-dimensional 

problem formulation can be described as 

follows. Let P be the particle position and V 

is the velocity in a search space. 

Consider i as a particle in the total 

population (swarm).The i
th
 particle position 

can be represented as Pi= (Pi1, Pi2, Pi3, PiN) 

in the N-dimensional space. The best 

previous position of the i
th
 particle is 

recorded and represented as: 

Pbesti= (Pbesti1, Pbesti2, Pbesti3,…..Pbestij).  

The index of the best particle 

among all the particles in the group is 

represented by gbest. The velocity i
th
 particle 

is represented as Vi= (Vi1, Vi2, Vi3,.....Vij ) . 

The modified velocity and position 

of each particle can be calculated using the 

current velocity and the distance from Pbest 

to gbest as indicated in following formulas: 

 (8) 
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N number of dimensions in a 

particle. 

I number of particles. 

W inertia weight factor. 
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T pointer of iterations. 

c1, c2     accelerating constant. 

rand1,rand2 are uniform random values in    

the range of  [0,1]. 

v
t

ij
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velocity of the j

th
 dimension in 

the i
th 

particle. 

p
t

ij

)(

 
current position of the j

th
 

dimension in the i
th
 particle at 

iteration t. 

 

Inertia weighting factor w has 

provided improved performance when using 

linearly decreasing [19]. Its value decreases 

linearly from about 0.9 to 0.4 during a run. 

Suitable selection of w provides a balance 

between global and local exploration and 

exploitation, and results in fewer iterations 

on average to find a sufficiently optimal 

solution. Its value is set according to the 

following equation: 

max min
max

max

w - w
w= w - * t

t
                    (10) 

Where 

 

wmax and wmin are both random numbers 

 called initial and final 

 weights respectively 

  tmax         maximum number of  ite-

 rations .  

  t                the current iteration 

 number. 

 

In equation (8), the first term 

indicates the current velocity of the particle, 

and the second term represents the cognitive 

part of PSO where the particle changes its 

velocity based on its own thinking and 

memory. The third term represents the 

social part of PSO where the particle 

changes its velocity based on the social-

psychological adaptation of knowledge 

[20]. 

 

 

4. Development of the Proposed 

Methods  

 

In this paper, the process of 

determining the generation levels and the 

interchange power between each generating 

unit in order to minimize the overall 

generating cost using PSO, is developed to 

obtain efficiently a high quality solution, 

within practical power system operation. 

 

Implementation of PSO Algorithm in 

OPF Problem 

In this paper the solution to ED 

using PSO algorithm is introduced. The 

PSO algorithm is utilized mainly to 

determine the optimal generation power of 

each unit, to minimize the total generation 

cost. Its implementation consists of the 

following six steps: 

Step 1 Specify the number of 

generating units as the dimension. The 

particles are randomly generated between 

the maximum and minimum limits of the 

generators. If there are N units, the i
th
 

particle is represented as follows:  Pi= (Pi1, 

Pi2, Pi3… PiN). 

Step 2 The particles velocities are 

generated randomly in the range of 

],[
maxmax

vv jj
   

The maximum velocity limit is set 

at 10-20 % of the dynamic range of the 

variables on each dimension [17, 21]. 

Step 3 Objective function values of 

the particles are evaluated using equation 

(1).These determined values are set as Pbest 

value of the particles. 

Step 4 The best value among all the 

Pbest values is identified and denoted as gbest. 

Step 5 New velocities for all the 

dimensions in each particle are calculated 

using equation (8). Then the position of 

each particle is updated using equation (9). 

Step 6 The objective function values 

are calculated for the updated positions of 

the particles. If the new value is better than 

the previous Pbest, the new value is set to 

Pbest, If the stopping criteria are met, the 

positions of particles represented by gbest are 

the optimal solution, otherwise the 

procedure is repeated from step 4. 
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Artificial Neural Network 

ANN is considered as a relatively 

new information processing technique. It 

can be defined as a computing system made 

up of a number of simple, highly 

interconnected processing elements, which 

process information by its dynamic state 

response. A neural network consists of a 

number of very simple and highly 

interconnected processors called neurons, 

which are the analogs of the neurons in the 

brain [22]. The neurons are connected by a 

large number of weighted links, over which 

signals can pass [23]. In the present 

application, a three- layer neural network 

(having an input layer, a hidden layer and 

an output layer) has been used, together 

with a tansigmoidal activation function and 

supervised training via a back-propagation 

technique. The well known enhancement of 

introducing a momentum term in the weight 

updating formula has also been successfully 

applied to reduce training times and to help 

in avoiding premature convergence. 

The weights of the neural network 

are adapted depending on the error signal 

coming from the difference between desired 

and actual output power of each generator. 

To optimize the network, its error function 

is formulated in such a way that it is 

quadratic in terms of the parameters to be 

estimated. 

The error function E is defined as: 

      
2

2

12

2
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L
pmrpE         (11)  

 

Where pr is the actual output power and pL 

is the desired target at any time k. During 

each time interval from m-1 to m, the back-

propagation algorithm is used to update the 

connective weights w according to the 

relation: 

   
 

 11 



 nijw

nijw

E
nijwnijw     (12) 

Where  is the learning rate,  is the 

momentum factor, and n indicates the 

number of training iterations. A three-layer 

(input, hidden, and output) network is used 

for the neural controller. 

 

5. Simulation Results  
 

Solutions for OPF problem were 

obtained for IEEE 14 bus system using PSO 

for each loading conditions.  

For implementing PSO method in 

the OPF problem, the population size of 100 

was taken and the maximum number of 

generations was taken as 100. The inertia 

weight factor is set by (10), where wmax and 

wmin are 0.9 and 0.2, respectively. 

Acceleration constants c1, c2 are assumed 

to be equal (c1= c2 =2).   

 

IEEE 14 bus system 

In this case an IEEE 14 bus system 

containing three generating units, eleven 

loads and sixteen lines are shown in Figure 

1. The cost coefficients of the three 

generating units are given in Appendix 1. 

 
Figure 1 IEEE 14-bs system 

 

Case 1: Conventional case, the total load of 

the system is 259 MW, and the loading 

conditions for this case are given in Table 1. 

Table 2 depicts the output power of each 

generator, while satisfying OPF. 
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Table 1. IEEE 14 bus system loading data 

 

       

Table 2. Simulation results of OPF using 

PSO for IEEE 14 bus system (1
st
 case). 

 

Generating Unit Pg (MW) 

G1 185.3 

G2 35.22 

G3 46.41 

 

Case 2 : Increase the active load power P at 

buses # 2, 3, 4 and 5 by 10% . Table 3 

depicts the output power of each generator, 

while satisfying OPF. 

 

Table 3. Simulation results of OPF using 

PSO for IEEE 14 bus system (2
nd

 case). 

 

Generating Unit Pg (MW) 

G1 190.971 

G2 40.94 

G3 52.77 

 

Case 3: Decrease the active load power P at 

buses # 2, 3, 4 and 5 by 10% .Table 4 

depicts the output power of each generator, 

while satisfying OPF. 

 

Table 4. Simulation results of OPF using 

PSO for IEEE 14 bus system (3
rd

 case). 

 

Generating Unit Pg (MW) 

G1 179.6764 

G2 29.4998 

G3 40.089 

 

Case 4: Increase the load active and 

reactive power P at buses #6, 9, 10, 11, 12, 

13 and 14 by 10%.  Table 5 depicts the 

output power of each generator, while 

satisfying OPF. 

 

Table 5. Simulation results of OPF using 

PSO for IEEE 14 bus system (4
th
 case). 

 

Generating Unit Pg (MW) 

G1 188.5552 

G2 38.3778 

G3 49.26 

 

Case 5: Decrease the load active and 

reactive power P at buses #6, 9, 10, 11, 12, 

13 and 14 by 10%. Table 6 depicts the 

output power of each generator, while 

satisfying OPF. 

 

Table 6. Simulation results of OPF using 

PSO for IEEE 14 bus system (5
th
 case). 

 

Generating Unit Pg (MW) 

G1 182.1124 

G2 32.0768 

G3 43.5846 

Bus # P (MW) Q (MVAr ) 

2 21.7 12.7 

3 94.2 19.0 

4 47.8 4.0 

5 7.6 1.6 

6 11.2 7.5 

9 29.5 16.6 

10 9.0 5.8 

11 3.5 1.8 

12 6.1 1.6 

13 13.5 5.8 

14 14.9 5.0 
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Case 6: Decrease the load active and 

reactive power P at buses #2, 3, 4, 5, 6, 9, 

10, 11, 12, 13 and 14 by 10% .Table 7 

depicts the output power of each generator, 

while satisfying OPF. 

 

Table 7. Simulation results of OPF using 

PSO for IEEE 14 bus system (6
th
 case) 

 

Generating Unit Pg (MW) 

G1 176.46 

G2 26.3616 

G3 37.2643 

 

Using the results obtained from 

cases one to six to be the training data of the 

neural network with eleven inputs (loads) 

and three outputs (generated power) . 

The number of units of hidden layer 

is eight units. The number of output units of 

neural controller is three units, that control 

generation level of each generator of the 

system in order to handle ON-OPF . 

The parameters used in this case are 

error is 2e
-8

% of the load power, and the 

maximum epochs for training are set to be 

4000. 

Tables from 8-10 depicts the 

difference between actual output power 

(desired) and output power obtained from 

NN training and the error of each one in six 

loading cases for the three generated power. 

 

Table 8. Actual output power and trained 

power for generator #1. 

 

Loading 

Cases 

P1 

actual 

P1 

Train 

Abs 

(Error)   % 

1 185.3 185.647 0.1873 

2 190.971 189.750 0.6394 

3 179.676 180.063 0.2154 

4 188.555 188.173 0.2026 

5 182.112 182.825 0.3915 

6 185.3 185.647 0.1873 

   

Table 9. Actual output power and trained 

power for generator #2. 

 

Loading 

Cases 

P2 

Actual 

P2 

Trained 

Abs 

(Error)   % 

1 35.22 35.4246 0.5809 

2 40.94 38.9749 4.8000 

3 29.4998 31.0191 5.1502 

4 38.3778 38.9964 1.6119 

5 32.0768 31.4965 1.8091 

6 35.22 35.4246 0.5809 

 

Table 10. Actual output power and trained 

power for generator #3.      

 

Loading 

Cases 

P3 

actual 

P3 

Trained 

Abs 

(Error)   % 

1 46.41 47.1665 1.6300 

2 52.77 52.6651 0.1988 

3 40.089 39.4818 1.5146 

4 49.26 49.6995 0.8922 

5 
43.584

6 
44.3983 1.8669 

6 46.41 47.1665 1.6300 
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6. Conclusions 
 

In this paper, we have successfully 

employed PSO and ANN methods to solve 

the ON-OPF problem with the power flow 

constraints. Fuel cost function has been 

approximated as a quadratic function. 

Results showed that PSO methods are well 

suited for obtaining the best solutions for 

fuel cost functions of differentiable, non-

smooth, and non-differentiable functions of 

the test system. Training ANN used in this 

paper has taken a long time but this is 

performed off-line. When implementing this 

network in a real system, it gives fast 

response time on-line. 

 

7. Appendix  
 

Fuel cost coefficients of IEEE 14 bus 

system. 

 

Generator A B C 

1 0.0050 1.89 150 

2 0.0055 3.5 115 

3 0.0060 3.5 40 
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