
Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 38

An Improvement of Total Flowtime and

Makespan for the General Flow Shop

Scheduling Problem Via O(n
4
m)

Algorithm

Sawat Pararach

Department of Industrial Engineering, Faculty of Engineering,

Thammasat University, Pathum Thani 12121

E-mail: psawat@engr.tu.ac.th

Abstract

In general flowshop scheduling problems, n jobs are arranged on m machines in a

series and follow the same routing. To obtain the best schedule, minimizing the flowtime and

makespan in a general flow shop has been demonstrated. When the number of job little

increases, the computational time to find the best schedule is time consuming or non-

polynomial hard (NP-hard) in complexity. This study proposes a polynomial time heuristic,

which is complex in O(n
4
m), to obtain the solution. From experimental instances (640), the

results show that the proposed algorithm yields better performance in terms of the average

relative percentage deviation in both flowtime and makespan values than the well-known

Framinan and Leisten method, while its time complexity is the same.

Keywords: Flowshop, Total flowtime, heuristic

1. Introduction

For a general flowshop, multi-

operation processing concerns a set of n

jobs and m machines. All the jobs are

arranged and feed into a fixed sequence of

machines. For each machine, the jobs are

performed in their processing time. The

obtained solution is the schedule that

minimizes the total flow time of all jobs.

The total flow time is not the makespan

objective, but it represents the difference

between completion time and release time

for each job. The advantage of a total flow

time objective is minimization of work-in-

process, but is not restricted to no inter-

mediate storage inventory. In the case of the

makespan objective, it considers the routing

that minimizes the completion time of the

last job in the last machine, but does not

determine the waiting time for each job in

the process. The sequence that minimizes

total flow time may not be the same as the

minimized-makespan sequence.

 The Solution for scheduling of n

jobs in flow shop relies on a set of

restrictive assumptions as follows [3]:

-Single part or batch of parts is

always treated as a single job,

-Preemption and job cancellation

are not allowed.

-Processing times are independent

of the schedule,

-Work-in-process is allowed,

-Machines are able to process one

job at a time,

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 39

-Each job visits all machines

exactly once,

-Machines are always available and

the only resource modeled,

-Jobs are all known in advance,

-The scheduling is purely determi-

nistic.

 Flow shop scheduling has been

proved to be NP-hard [5]. For several years,

many heuristics for solving these problem

have been considered. Averbakh [2] studied

the flow-shop problem with two jobs and m

machines, and the uncertainly interval

processing times of operations. Soukhal et.

al [9] investigated two-machine flow shop

scheduling problems taking transportation

into account. Koulamas and Kypasiris [6]

studied the two-stage assembly flow shop

scheduling with concurrent operations in the

first stage and a single assembly operation

in the second stage. Yokoyama [10] con-

sidered a flow shop scheduling model with

partition machining setups, and assembly

operations into blocks.

On the improved-heuristics for total

flow time minimization, Agarwal et al. [1]

developed a non-polynomial time heuristic

based on the adaptive learning approach.

For polynomial time methods, Framinan

and Leisten [4] developed a constructive

heuristic based on a pairwise interchange

approach, Laha and Sarin [7] improved its

performance by node-insertion procedures.

 The proposed procedure in this

paper is improving the method of Laha and

Sarin [7] while not affecting the time-

complexity of the O(n
4
m) algorithm. The

investigation is presented in Section 2. The

proposed procedure is described in Section

3. Results of the experimentation are

demonstrated in Section 4. Finally, conclud-

ing remarks are made in Section 5.

2. The method of Framinan and

Leisten and its modification by

Laha and Sarin

 The first concept for an O(n

4
m)

polynomial time algorithm was developed

from the NEH heuristic method of Nawaz et

al. [8] by Framinan and Leisten [4] for

solving the minimium total flow time in a

permutation flow shop. From the literature

the steps are given below:

Step 1: For each job i, find the total

processing times, Ti on all machines,

 



m

j

iji tT
1

 for all i=1,2,…,n.

 Step 2: Sort the jobs in ascending

order of their total processing time.

 Step 3: Set k=2. Select the first two

jobs from the sorted list and select the better

between the two possible sequences.

 Step 4: Increment k, k=k+1. Select

the k
th
 job from the sorted list and insert it

into k possible positions of the best partial

sequence obtained so far. Among the k

sequences, the best k-job partial sequence is

selected based on minimum total flow time.

Then, investigate all possible sequences by

interchanging the job in position i and j of

the above partial sequence for all i,j (1 ≤ i

< k, i < j ≤ k) and select the best partial se-

quence among k(k-1)/2 sequences having

minimum total flow time.

 Step 5: If k=n, then STOP; else go

to step 4.

Sorting the jobs from total processing times

Figure 1. Example of sorting jobs in step 1

and 2 of the method of Framinan and

Leisten.

Select the better sequence from the first two

jobs

Figure 2: Example of selecting the starting

sequence in the step 3 of the method of

Framinan and Leisten.

J1 J2 J3 J4 J5 J6

J1 J2

J2 J1

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 40

Select the better on the insertion of jobs from the

list

Figure 3. Example of selecting job into the

current sequence of the method of Framinan

and Leisten.

Ja Jb Jc Jd Jz……………

….

Generating the new sequence

 by Step 4 of Framinan and Lesiten procedure

Figure 4: Example of Step 4 of the method

of Framinan and Leisten.

 Because of the pairwise interchange

performed on the k schedules, this rises to a

total k(k-1)/2 iterations. From placing the k
th

job of the sorted list, it requires k iterations.

Therefore, the operations are performed

k+[k(k-1)/2] =k(k+1)/2. The total flow time

for each schedule of k jobs on m machines

provides O(km). For all k in Step 4, the

overall iteratious of the method of Framinan

and Leisten [4] is k*km*k(k+1)/2. Replac-

ing k with n, the time-complexity is O(n
4
m).

 Laha and Sarin [7] have modified

Step 4 of the Framinan and Leisten proce-

dure by implementing an insertion step

rather than performing pairwise inter-

changes. Step 4 is modified as:

 Step 4: For k=3 to n, do the

following.

 Insert the k
th
 job on the sorted list

into k possible positions of the (k-1)-job

current sequence, thereby generating k, k-

job partial sequences, and select from these

a k-job partial sequence with the best total

flow time value. Designate this as a k-job

current sequence. Place each job (except for

the k
th
 job of the sorted list) of this sequence

into its (k-1) positions and select the best k-

job sequence having the least total flow

time value from among those generated.

This becomes the next k-job current

sequence.

 The calculation to determine the (k-

1)-job into the (k-1)-position requires (k-1)
2

iterations and requires k iterations for

placing the k
th
 job from the sorted list into

the k positions of the (k-1)-job current

sequence. Therefore, the operation is

performed k+(k-1)
2
 iterations.When the

k+(k-1)
2
 operations replaces the k(k+1)/2

operations of the Framina and Leisten

method, the modified Step 4 by Laha and

Sarin method is k*km*[k+(k-1)
2
]. Replace

k with n, giving the time-complexity of

O(n
4
m).

Ja Jb Jc Jd Jz……………

….

Generating the new sequence

by Step 4 of Laha and Sarin

procedure.

Figure 5: Example of Step 4 of the method

of Laha and Sarin.

 For the performance evaluation

between Laha-Sarin method and Framinan-

Leisten method, the experimental report

from Laha and Sarin [7] shows that the

flowtime values of the Laha-Sarin method

outperforms the method of Framinan and

Leisten statistically better at α=0.05 . The

average CPU time value obtained from

Laha-Sarin method takes slightly more time

than (the obtained CPU time value) the

method of Framinan and Leisten.

3. The proposed O(n
4
m) polynomial

time algorithm.

From the literature, the effective

heuristic has been solved for many general

flow shop instances in the time-complexity

of O(n
4
m) considered by Laha and Sarin [9].

J3 J2

J2 J1

J1

J3

J2 J1 J3

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 41

This concept is based on adding the

pairwise interchanges of Framinan and

Leisten[4] into the obtained sequence of

Step 5 of Laha and Sarin[7]. The steps of

this concept are given as:

 Step 1: For each job i, find the total

processing times, Ti on all machines,

 



m

j

iji tT
1

 for all i=1,2,…,n.

 Step 2: Sort the jobs in ascending

order of their total processing time.

 Step 3: Set k=2. Select the first two

jobs from the sorted list and select the better

between the two possible sequences.

 Step 4: For k=3 to n do the follow-

ing.

 Insert the k
th
 job on the sorted list

into k possible positions of the k-1 job

current sequence, thereby generating k, k-

job partial sequences, and then selecting

from these a k-job partial sequence with the

best total flow time value. Then, this

sequence is designated as a k-job current

sequence. Each job (except for the k
th
 job of

the sorted list) of this sequence is placed

into its (k-1) position and the best k-job

sequence having the least objective value

(total flow time or makespan) is selected

from among those generated. This sequence

becomes the next k-job current sequence.

Step 5: If k=n, then go to Step 6;

else, go to Step 4.

 Step 6: Interchane jobs in position i

and j for all i,j ,1≤ i <n, i <j ≤n. Select the

best sequence obtained among the n(n-1)/2

sequences having minimized objective

value.

P1 P2 P3 P4 Pn
……………

….

Generating the new sequence

 by Step 6 of proposed procedure

Figure 6: Example of pairwise interchanges

in Step 6.

From this procedure, Steps 1-4 are

repeated from Steps 1-4 of Laha and Sarin

[7]. The modification in this research is the

adding of a procedure as Step 6. Step 6

determines the pairwise interchanges on the

n-job sequence obtained from STOP mode

in Step 5 of Laha and Sarin [7] by

interchanging jobs in position i and j for all

i,j ,1≤ i <n, i <j ≤n. Select the best sequence

obtained among the n(n-1)/2 sequences

having minimum total flow time.

 The flowchart of the code program

can be described in Figure 7.

 The following is a summary of

notation that is used in the flowchart.

N total number of jobs

m total number of machines

q[i][j] processing time at job i on machine j

tt[i] summation of processing time of job i for all machine j=1,…,m

fin[j][i] completion time of job i on machine j

Input n,m,q[i][j]; i=1,..,n; j=1,..,m

Begin

Set fin[j][0]=0; j=1,..,m

tt[i]=]][[
1

jiq
m

j




 ; i=1,..,n

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 42

Figure 7. The flowchart of the code program of the proposed method.

Table 1. Comparison of the proposed methods for the objective of minimizing total flow time.

n m no.instances Average CPU times (s) ARPD

 Laha-Sarin [7] Proposed

10 5 1 to 20 0.02655 0.0289 0.982219

10 10 21 to 40 0.02425 0.0266 0.676018

10 15 41 to 60 0.0281 0.0289 0.633287

10 20 61 to 80 0.0282 0.0282 0.535631

20 5 81 to 100 0.1781 0.2492 1.042264

20 10 101 to 120 0.1751 0.3469 0.624009

20 15 121 to 140 0.18045 0.24765 0.669467

No

Yes

p[i] is the ascending order of tt[i];i=1,..n

Set t=2 , selecting p[1] ,p[2] by calculating

fin[j][1], fin[j][2]; j=1,..,m

t=t+1

Select p[t] and place it to the p[1],..,p[t-1] sequence

at the position between p[1]-p[2] , p[2]-p[3] ,…,p[t-

2]-p[t-1] by choosing the one position that minimize

objective (]][[
1

imfin
n

i




 or fin[m][n]).Set p*=p[t]

and define the new sequence as p[1],..,p[t].

For each p[i] except p* in the new sequence

p[i],..,p[t]. Place it at the position between p[i+1]-

p[i+2], p[i+3]-p[i+4],…,p[t-1]-p[t] by choosing the

one position that minimizes objective. Select the best

sequence from placing each p[i] except p*.

t=n

From the sequence p[1],..,p[n] obtained from the

steps before, perform the pairwise interchanges

between p[i] and p[s] for each i=1,..,n-1 and

s=i+1,..,n. Select the best sequence that minimizes

objective.

STOP

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 43

Table 1. Comparison of the proposed methods for the objective of minimizing total flow time.

(Continued)

n m no.instances Average CPU times (s) ARPD

 Laha-Sarin [7] Proposed

20 20 141 to 160 0.18985 0.19535 0.567634

30 5 161 to 180 0.58365 0.5867 0.766617

30 10 181 to 200 0.6273 0.63125 0.54204

30 15 201 to 220 0.6187 0.62575 0.449736

30 20 221 to 240 0.6479 0.65705 0.447026

40 5 241 to 260 1.4024 1.40705 0.662283

40 10 261 to 280 1.46015 1.4656 0.559147

40 15 281 to 300 1.5196 1.5297 0.359461

40 20 301 to 320 1.58115 1.5984 0.40412

50 5 321 to 340 2.79305 2.80235 0.565697

50 10 341 to 360 2.93995 2.95235 0.566107

50 15 361 to 380 3.0968 3.1172 0.374524

50 20 381 to 400 3.2414 3.2719 0.384409

60 5 401 to 420 4.9523 4.96715 0.678612

60 10 421 to 440 5.31495 5.33595 0.428656

60 15 441 to 460 5.6181 5.65235 0.386263

60 20 461 to 480 5.91245 5.9539 0.336179

70 5 481 to 500 8.229 8.2469 0.477944

70 10 501 to 520 8.72655 8.7656 0.357064

70 15 521 to 540 9.3578 9.4156 0.391865

70 20 541 to 560 9.87975 9.9476 0.403442

80 5 561 to 580 12.48355 12.51095 0.606884

80 10 581 to 600 13.5281 13.58675 0.414618

80 15 601 to 620 14.50235 14.5867 0.39081

80 20 621 to 640 15.46335 15.5617 0.315106

0

0.2

0.4

0.6

0.8

1

1.2

10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 60 60 60 60 70 70 70 70 80

Number of jobs

A
R

P
D

Figure 8. ARPD and size of problem for minimizing total flow time objective.

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 44

Table 2. Comparison of the proposed methods for the objective of minimizing makespan.

n m no.instances Average CPU times (s) ARPD

 Laha-Sarin [7] Proposed

10 5 1 to 20 0.0398 0.0406 0.550132

10 10 21 to 40 0.0218 0.04295 0.851801

10 15 41 to 60 0.04065 0.04225 1.311459

10 20 61 to 80 0.03905 0.0414 0.823365

20 5 81 to 100 0.1679 0.1703 0.874063

20 10 101 to 120 0.1812 0.18745 1.037284

20 15 121 to 140 0.19545 0.1977 0.575118

20 20 141 to 160 0.19995 0.2023 0.830651

30 5 161 to 180 0.4578 0.45855 0.934585

30 10 181 to 200 0.5109 0.51715 0.806254

30 15 201 to 220 2.2564 0.53755 0.565922

30 20 221 to 240 0.54455 0.5492 0.527077

40 5 241 to 260 1.02025 1.02185 0.503105

40 10 261 to 280 1.11785 1.125 0.650253

40 15 281 to 300 1.15305 1.16165 0.521265

40 20 301 to 320 1.2298 1.2392 0.497326

50 5 321 to 340 1.58505 1.9374 0.359122

50 10 341 to 360 2.0976 2.11345 0.456082

50 15 361 to 380 2.25395 2.268 0.432683

50 20 381 to 400 2.3723 2.2852 0.368986

60 5 401 to 420 3.3446 3.35395 0.421359

60 10 421 to 440 3.64675 3.66255 0.38288

60 15 441 to 460 3.90225 3.9258 0.412617

60 20 461 to 480 4.12505 4.15545 0.425646

70 5 481 to 500 5.37105 5.3797 0.371372

70 10 501 to 520 5.87115 5.893 0.302847

70 15 521 to 540 6.32025 6.35625 0.330696

70 20 541 to 560 6.74615 6.79295 0.347304

80 5 561 to 580 8.2007 8.2164 0.260466

80 10 581 to 600 8.95775 8.98995 0.384264

80 15 601 to 620 9.73435 9.7819 0.37028

80 20 621 to 640 10.44765 10.51395 0.301534

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
R

P
D

Number of jobs

Figure 9. ARPD and size of problem for minimizing makespan objective

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 45

p[i] a job acceptable at position i in the

 sequence.

i index for jobs (i=1,..,n)

j index for machines (j=1,..,m)

Note that Step 6 dictates the time

complexity of O(nm) for the schedule of n

jobs on m machines. Multiplication of the

O(nm) of the schedule by the O(n
2
)

operations of changing the sequence, the

overall executed time in Step 6 is O(n
3
m).

 From the working paper[7], Step 1

to Step 5 perform O(n
4
m) operations. With

Step 6 adding to Step 1-5, the procedure

performs O(n
4
m)+ O(n

3
m) ≈ O(n

4
m) opera-

tions , since the proposed procedure in Step

6 does not increase the time complexity of

the Laha and Sarin’s method.

4. Performance evaluation

The experimentation has been

carried out on 640 instances with n=10, 20,

30, 40, 50, 60, 70 and 80, and m=5, 10, 15,

and 20, and the replication is 20 for each

combination of jobs and machines [7]. For

the generated random processing times, it

follows a discrete uniform distribution

between 1 and 99.

 The computer programs of the

proposed procedure and the method of Laha

and Sarin are coded in C++ language and

run on a Pentium 4, 256 MB, 2.4GHz PC.

 Average relative percentage devia-

tion (ARPD) is considered to compare the

performance of these methods. It is defined

as [7]:

 





20

120

100

i i

ii

B

BA
ARPD

For the i

th
 instance, Ai is the

objective value obtained from the Laha and

Sarin’s method and Bi is the objective value

obtained from the proposed procedure. The

results are demonstrated in Table 1.

For all instances, the objective of

minimizing total flow time and minimizing

makespan can be applied to the code

program for comparing 2 methods.

From the results, it is evident that

the proposed procedure gives solution

values better than the obtained value from

the Laha and Sarin’s method for the

objective of minimizing total flow time and

minimizing makespan by ARPD and is

greater than 0 for all cases. The better

results from the objective of minimizing

total flow time and minimizing makespan

have been shown as ARPD in Table 1 and

Table 2, Figure 8, and Figure 9 respectively.

The computing times of the pro-

posed procedure are greater than the Laha

and Sarin’s method, but the differences are

very small (they are not greater than 0.1

second).

5. Conclusions

This paper studies a minor change

on existing heuristic by adding a step of

pairwise interchanging into the heuristic

Laha and Sarin solution in order to enhance

the performance measurement of total flow

time and makespan value. The new

procedure requires a time-complexity of

O(n
4
m). The results show that the minor

modifications on the heuristic create a

significant improvement in the performance

as can be seen by the Average relative

percentage deviation (ARPD) values.

However, the computational time is slightly

increased.

6. References

[1] Agarwal A., Colak S., and Eryasoys

E., Improvement Heuristic for the

Flow-shop Scheduling Problem: An

Adaptive Learning Approach, Eu-

ropean Journal of Operational Re-

search, Vol. 169, pp. 801-815, 2006.

 [2] Averbakh I. The Minmax Regret

Permutation Flow Shop problem with

Thammasat Int. J. Sc. Tech., Vol. 14, No. 4, October-December 2009

 46

two jobs, European Journal of

Operational Research, Vol. 169, pp.

761-766, 2006.

[3] Brandimarte P., and Villa A.,

Advanced Models for the Manu-

facturing Systems Management,

U.S.A, CRC Press, 1992.

 [4] Framinan J.M., and Leisten R., An

efficient Constructive Heuristic for

Flowtime Minimization in Permu-

tation Flowshops, Omega, Vol. 31,

pp .311-317, 2003.

 [5] Gonzalez T., and Sahni S., Flow

Shop and Job Shop Scheduling:

Complexity and Approximation,

Operations Research, Vol. 26, pp. 36-

52, 1978.

 [6] Koulamas C., and Kyparisis G., A

Note on the Two-stage Assembly

Flow Shop Scheduling Problem with

Uniform Parallel Machines, European

Journal of Operational Research, Vol.

182, pp. 945-951, 2005.

[7] Laha D., and Sarin S.C., A Heuristic

to Minimize total Flow Time in

Permutation Flow Shop, Omega, Vol.

37, pp. 734-739, 2009.

[8] Nawaz ME., Enscore E., and Ham I.,

A Heuristic Algorithm for the M-

machine, n-job Flow Shop Sequen-

cing Problem, Omega, Vol. 11, pp.

91-95, 1983.

 [9] Soukhal A., Oulamara A. and Mar-

tineau P. Complexity of Flow Shop

Scheduling Problems with Transpor-

tation Constraints, European Journal

of Operational Research, Vol. 161,

pp. 32-41, 2005.

 [10] Yokoyama M., Flow-shop Schedul-

ing with Setup and Assembly Opera-

tions, European Journal of Opera-

tional Research, Vol. 187, pp. 1184-

1195, 2008.

