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Abstract 

 
 The problem of the non-Darcian natural convection flow of an electrically conducting 

fluid along a vertical wavy surface embedded in a fluid-saturated porous medium in the 

presence of a uniform normal magnetic field is investigated. We consider the boundary-layer 

regime where the Darcy-Rayleigh number is very large, (i.e. Ra ). In particular, the wavy 

surface is considered in the following form )/ˆ(sinˆ)ˆ(ˆ 2 xax   . Appropriate transformations 

are employed to transform the complex wavy surface to a smooth surface. Then, the obtained 

boundary layer equations are solved numerically using the Runge-Kutta integration scheme 

with the Newton-Raphson shooting method. Extensive computations are presented for a wide 

range of the wave amplitudes a, the magnetic field parameter M , and the Grashof number 

Gr . Graphical results for the velocity, temperature, and the local Nusselt number profiles are 

illustrated and discussed for various physical parametric values. 
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1. Introduction 
  

 Natural convection heat transfer by 

a fluid moving through a porous medium is 

a phenomenon of great interest. This is due 

to the increasing need in understanding 

complicated transport for applications in 

diverse fields which include geophysical 

and geothermal engineering, cooling of 

nuclear reactors, heat exchanger design, 

petroleum extraction, in-site combustion of 

oil shale, solid matrix heat exchangers, 

building insulation, solar power collectors, 

control of pollutant spread in ground water 

and many more. Nield and Bejan [1] have 

presented a comprehensive review of the 

studies of convective heat transfer 

mechanisms through porous media. Most of 

the existing works in ref. [1], depending on 

Darcy or non-Darcy convective flow over 

heated bodies embedded in fluid-saturated 

porous medium, are concerned with flat 

plates, for instance, Nakayama and Koyama 

[2], Plumb and Huenefeld [3], Cheng and 

Minkowycz [4].  

 Previous studies have centered on 

those cases where the thermal boundary 

conditions allow the use of similarity 
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transformation to reduce the governing 

equations to a system of ordinary 

differential equations. In general, this means 

that the heated surface is a plane. However, 

surfaces are sometimes intentionally 

roughened to enhance heat transfer. 

Roughened surfaces are encountered in 

several heat transfer devices such as flat-

plate solar collectors and flat-plate 

condensers in refrigerators. The Natural 

convection heat transfers from vertical 

wavy surfaces, such as sinusoidal surfaces 

have been studied. Yao [5] studied the 

natural convection heat transfer from an 

isothermal vertical wavy surface by using 

an extended Prandtl’s transposition theorem 

and a finite-difference scheme. He proposed 

a simple transformation to study the natural 

convection heat transfer from isothermal 

vertical wavy surfaces, such as sinusoidal 

surfaces, in Newtonian fluids. Cheng [6-7] 

reported the phenomenon of natural 

convection heat and mass transfer near a 

vertical wavy surface with constant wall 

temperature and concentration in a porous 

medium, for the two cases of Darcy and 

non-Darcy law models. Rees and Pop [8-10] 

carried out some studies to analyze natural 

convection from vertical and horizontal 

wavy surfaces embedded in a porous 

medium with employing the Darcy law 

model. Rees and Pop [11] examined the 

combined effect of spatially stationary 

surface waves and the presence of fluid 

inertia on the free convection induced by a 

vertical heated surface embedded in a fluid 

medium for the non-Darcy flow model. 

Rathish Kumar et al. [12-14] presented a 

series of studies about the effects of phase 

of the wave surface on the natural 

convection in a porous enclosure. They 

found that the effects of the phase of the 

wavy surface on the flow and temperature 

fields are important.  

 Based on the above brief review, it 

is of interest in this article to analyze the 

natural convection problem along a vertical 

wavy surface embedded in electrically 

conducting fluid saturated porous media for 

the case of non- Darcy flow model in the 

presence of a transverse magnetic field. The 

applied magnetic field is assumed to be 

uniform and the magnetic Reynolds number 

is assumed to be small so that the induced 

magnetic field can be neglected. Moreover, 

it is assumed that there is no external 

electric field. 

  

2. Structure of Theoretical Model  

We consider a vertical surface 

which exhibits steady transfer waves of 

amplitude, â , and wavelength, 2 , and 

which is embedded in a homogeneous fluid 

saturated porous medium. Fig. 1 shows the 

schematic diagram for the problem under 

consideration, in particular, the wavy 

surface profile is given by: 

)./ˆ(sinˆ)ˆ(ˆˆ 2 xaxy              (1) 

The temperature of the wavy 

surface is held at constant value wT  and a 

uniform ambient temperature T . The 

governing equations for the problem under 

consideration are based on the balance laws 

of mass, linear momentum, and energy 

modified to include the porous medium 

Darcian and non-Darcian effects. Based on 

the Boussinesq approximation, these 

equations can be written as: 

,0
ˆ

ˆ

ˆ

ˆ











yx

u 
             (2) 

 ,
ˆ

ˆ
ˆˆ

~

1
2




















 TT

v

gK

x

pK
uV

v

KBK 





              (3) 

,
ˆ

ˆ
ˆˆ

~

1
y

pK
V

v

K






















           (4) 

.
ˆˆˆ

ˆ
ˆ

ˆ
2

2

2

2


































y

T

x

T

y

T

x

T
u       (5) 

where û  and ̂  are the velocity components 
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ture;  ,  are the thermal diffusivity of the 

saturated porous medium and thermal 

expansion coefficients of the fluid; K is the 

permeability of the porous medium and K
~

is 

a material parameter which may be thought 

of as a measure of the inertial impedance of 

the matrix.  ̂,ˆˆ uV   is the velocity flux 

vector. Properties ,v  and   are the 

effective kinematic viscosity, the dynamic 

viscosity, and density of the fluid, 

respectively, g is the acceleration due to 

gravity, B,  are the electrical conductivity 

and the applied magnetic flux density.  

Both the permeability K , and the 

material parameter K
~

 can be determined 

from the widely-known correlations 

proposed by Ergun[15]: 
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where d denotes the particle diameter and   

the porosity. Darcy’s law is recovered when 

K
~

 = 0. When the term   22 ˆˆ/
~

uvK  is 

near or greater than 1 at any point of the 

flow field, the nonlinear term is important. 

The boundary conditions to be considered 

are: 
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Figure 1. The physical model depicting 

transverse surface waves 

 

The previous equations can be 

converted to non-dimensional form by 

considering the following new variables:  
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Using the above transformation and 

after eliminating the pressure between 

equations (3) and (4), then equations (3)-(5) 

turn into the following: 
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where   
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are the non-dimensional velocity, Grashof 

number, the magnetic field parameter, and 

the Darcy-Rayleigh number, respectively.  

The effect of the wavy surface can 

be transferred from the boundary conditions 

into the governing equations by means of 

the coordinate transformation given by: 
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Applying the above transformation into 

Equations (9)-(10) with Ra , we get the 

governing equations as: 
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Thus, we get the boundary layer 

equations as follows: 

  ,12
1

1
2/12

2























ffGrf

M 


 (16) 

.'
2

1





















x

f

x
fxf 


        (17) 

The boundary conditions are:  

,1,0,0   f      (18a)  

.0,0,   f   (18b) 

The result of practical interest in 

many applications is the heat transfer 

coefficient. The heat transfer coefficient is 

expressed in terms of the local Nusselt 

number, and is given by: 
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where wq̂ , is the wall heat flux on the wavy 
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(11), (15) and (20) we get the local Nusselt 

number from the following expressions: 
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The total tare of heat transfer between 

the leading edge and a streamwise location 
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where Ŝ  is the distance along the wavy 

surface. In terms of the non-dimensional 

variables this expression becomes 
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3. Results and Discussion 
The obtained partial differential 

Equations (16), and (17), subject to the 

boundary conditions (18), are solved by 

numerical integration using the Runge-

Kutta fourth-order with Newton-Raphson 

shooting technique with a systematic 

guessing of )0,(xf  , )0,(x   for a range of 

values of the governing physical 

parameters, the amplitude-wavelength a, 

Grashof number Gr , and the magnetic field 

parameter M . The results are shown 

graphically. 

In order to check the accuracy of 

the solution, we compare the values of 

)0,0(   and )0,0(f  obtained by the 

present study with the solution reported by 

Plumb and Huenefeld [3]. Table 1 shows 

the values of )0,0(   and )0,0(f  for the 

case of a flat plate and no magnetic field 

effect, for various values of the Grashof 

number Gr . It is clearly shown in Table 1 

that the present results are in excellent 

agreement with the solutions reported by 

Plumb and Huenefeld [3]. 

Figure 2 and 3 illustrate that as the 

magnetic field parameter increases, it is 

observed that the velocity decreases, while 

the temperature increases. The effect of the 

Grashof number is depicted in Figure 4 and  

5. It is observed that as the Grashof number 

increases, the velocity decreases and the 

temperature increases. 
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Table 1. Comparison of  )0,0('  and 

)0,0('f with 0M  and 0a  (Flat plate) 
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Figure 2.  Influences of the magnetic field 

parameter on the non-dimensional velocity 

profiles 
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Figure 3. Influences of the magnetic field 

parameter on the non-dimensional 

temperature profiles 
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Figure 4.   The effect of Grashof number on 

the non-dimensional velocity profiles 
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Figure 5.  The effect of Grashof number on 

the non-dimensional temperature profiles 

 

Figure 6 shows the axial distri-

bution of the heat transfer coefficient in 

terms of the local Nusselt number 

  2/1
RaxNux as a function of axial 

coordinate x for various values of the 

surface wave amplitude (a = 0.0, 0.1, 0.2, 

0.3, 0.4 and 0.5). It is observed that this 

quantity varies periodically in the direction 

of x when 0a  (wavy surface). Also, one 

can see that increasing the amplitude 

wavelength ratio a tends to increase the 

 

Gr  

[3] Present study 

)0,0('  )0,0('f     f   

0.0 0.44390 1.00000 0.4445 1.000 

0.01 0.44232 0.99020 0.4434 0.990 

0.1 0.42969 0.91608 0.4301 0.916 

1.0 0.36617 0.61803 0.3679 0.618 

10.0 0.25126 0.27016 0.2523 0.270 

100.0 0.15186 0.09512 0.1521 0.095 
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amplitude of the local Nusselt number and 

decrease the global rate of heat transfer as 

compared with the limiting case of a 

vertical smooth surface. 
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 Figure 6. The axial distribution of the local 

Nusselt number for selected values of wave 

amplitudes 

0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

 a    =   0.0

 a    =   0.1

 a    =   0.2

 a    =   0.3

 a    =   0.4

 a    =   0.5

M     =    2.0

Gr    =    5.0

 

 

N
u

m
/R

a
1

/2

x

 

Figure 7.  The average Nusselt number for  

Selected values of wave amplitudes 

 

Figure 7 depicts the global rate of 

heat transfer (Mean Nusselt number) 
2/1RaNum for various values of amplitude 

wavelength ratio   (a = 0.0, 0.1, 0.2, 0.3, 0.4 

and 0.5), with Gr = 5.0, and M = 2.0. The 

increase of the amplitude wavelength ratio, 

on the global rate of heat transfer tends to 

decrease the natural convection heat transfer 

rates as compared with the limiting case of 

a vertical smooth surface. It is clearly 

shown that increasing amplitude 

wavelength ratio tends to increase the 

thermal boundary layer thickness and hence 

decrease the global rate of heat transfer 

(Mean Nusselt number). 
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 Figure 8. The axial distribution of the local 

Nusselt number for selected values of the 

magnetic field 

 

Figure 8 displays the effect of the 

magnetic field parameter on the local 

Nusselt number as a function of x. From this 

Figure we observe that as M increases, the 

rate and amplitude of heat transfer 

decreases, and make greater fluctuations of 

  2/1
RaxNux with increasing x. Figure 9 

shows the global rate of heat transfer (Mean 

Nusselt number) 2/1RaNum for various 

values of magnetic field (M = 0.0, 1.0, 2.0, 

3.0, 4.0, and 5.0), while a = 0.2 and Gr = 

5.0. It is clearly shown that increasing the 

magnetic parameter tends to decrease the 

global rate of heat transfer. The influence of 

the Grashof number (Gr = 0.1, 1.0, 2.0, 5.0, 

10.0 and 100.0) on the local and mean 

Nusselt number is illustrated in Figure 10 

and 11. We observe that while Gr increases, 

the local and global rates of heat transfer 

decreases. 
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Figure 9.  The average Nusselt number for 

selected values of the magnetic field 
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Figure 10. The axial distribution of the 

local Nusselt number for selected values of 

Grashof number 

 

4. Conclusions 

 
The effect of magnetic field on non-

Darcian natural convection heat and fluid 

flow along a vertical wavy surface was 

studied. The governing equations were 

solved numerically to obtain the wall heat 

transfer rates for the wavy surface of the 

form )/ˆ(sinˆˆ 2 xay  . It was found that 

the magnetic field retards the heat transfer 

process by decreasing the local Nusselt 

number and increasing the fluid 

temperature. In addition, the velocity field 

was strongly affected by the presence of the 

magnetic field. The wall heat transfer rate 

was found to vary according to the slope of 

the wavy surface . The axial distribution 

of the local Nusselt number varies 

periodically with a wavelength equal to the 

wavy surface. Increasing amplitude of 

wavelength leads to greater fluctuations of 

the local Nusselt number. Local Nusselt 

number along a wavy surface in the 

presence of the magnetic field was found to 

be much lower than those of flat plate 

values. Finally, increasing Gr  leads to 

smaller fluctuations of the local Nusselt 

number.
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Figure 11. The average Nusselt number for 

selected values of Grashof number 
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