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Abstract

This paper aims to present a finite element time domain method for analyzing inhomogeneous

anisotropic and multi-layered media whose material properties are in tensor forms. Also, the media are

""por"jto an obliquely incident Gaussian pulse. Formulation of this problem is in second order partial

diiferential equations that consist of only two components of unknown fields in term of transverse

electric field. Because of an open boundary problem, using absorbing boundary conditions to truncate

the infinite domain into a finite domain is appropriate. To find out solutions of unknown electric fields

by the finite element time domain method, two steps are taken into consideration. In the spatial

domain, the methodology is based on the application of Galerkin's method with quadratic shape

functions in order to fonn a system of a second-order differential equation. In the time domain, this

differential equatlon can be soived by Newmark's method to become linear system equations at each

time step. Thls method is unconditionally stable for certain values of parameters. After solving the

linear system equations, we get transverse electric fields at corresponding nodes and these fields can

be transformed into the fields in the frequency domain by Fourier transform. Computational results

indicate that the accuracy of this method is comparable with an analytical method, and reflection

coefficients of varying frequencies from inhomogeneous anisotropic media. In addition, our results are

close to results ofthe previous research in the past.

Keywords: finite element time domain (FETD), oblique incidense, multi-layered media'

l. Introduction numerical methods the finite difference time

The problem of plane electromagnetic wave domain (FDTD) or the finite element time

penetration into multi-layered anisotiopic media domain (FETD) approach, has been widely used

is an important issue in shielding design or in in solving transient problems' Schneider and

military applications. Many faJors iifluence Hudson from research [3] proposed the FDTD

this phenomenon such as 
-material 

properties, for analysis- . of propagating electromagnetic

n.r-b", of layers, polarization, frequency and wave in multi-layer anisotropic media' but the

angle of wave. Much research in the past has materials in this approach considered only both

developed to improve methods to study these permittivity and conductivity tensors' Ming et

factors. In the analytical method, reflection of al' [4] presented the computational results of the

electromagnetrc waves from inhomogeneous reflection and transmission in composite

anisotropic media was studied by Titchener and materials by using FDTD and an equivalent

Willis Il]. The anrsotropic material properties in transmission line circuit. This method did not

derived equations of thii method were define6 in allow for the permeability tensor' Research by

terms of permittivity and permeability tensors, Onder unl KLzuoglu t5] investigated the

not defined in term of conductivity tensor. Chiu reconstruction of permittivity and conductivity

and Chen l2l considered the plane-wave whose materials are in scalar form' in the time

shielding performance of an anisotropic domain by using descent methods' Research by

laminated composite cylindrical shell whose [6]-[3] has improved the FETD algorithm to

material was regarded as lossy medium. In obtain an unconditionally stable solution. Recent
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work [9]-[l] has developed new structures or
methods to study a phenomenon of
electromagnetic waves.

In this paper we propose the FETD
formulation for analysis of electromagnetic
waves penetrating into inhomogeneous
anisotropic and multi-layered media. Two
numerical examples based on the transient
problems are presented to demonstrate the
efficiency and accuracy ofthe method.

2. The Finite Element Formulation
Basic Equations

Fig.l Geometry of multi-layered anisotropic
media with a obliquely incident plane wave.

A time-harmonic plane wave propagating
in an isotropic medium is obliquely incident on
anisotropic medium at angle d with respect to
the z-axis as shown in Fig.l.This phenomenon
usually results in the reflection and transmission
of waves. Each layer with thickness of d is
considered as a homogenous and anisotropic
material defined by the permeability,
permittivity and conductivity tensors. At the
z =0 plane, the incident and reflected fields are
expressed as:

i , , r ,  =A r . i { f r t s ind+( ,zcosd)  ( l )

fync _11 ,. i&)rsrnt+&)zcosd) e)

firef _Epit^,+k-,\ (3)

ilref _H,ert-r+tbz) @)

where E, , H, , 8,, and H, are constant vectors

of incident fields and reflected fields, and to is a

free space wave number. For the
region0 <z < L, the fields within each medium
are still plane waves and can be represented as:
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f r ,  =Aor i$, ' tk" )  (5)

fi-Huett"**") (6)

where E, and H, are constant vectors of the

transmission fields.
Enforcing the continuity of the tangential

fields across the boundary interface, which is at
the z=0 plane in (l) to (6), leads to a result of
phase:

k o s i n 9 = k u = k ,

From equation (7), this shows that the electric
and magnetic fields are dependent on the x

variable with e&'"'nd. Then we can express

Eandfr as:

fr,e, z) = 1E,e)a, + E r74^, + E,1r1a ")e ih''"'nt

(8)

ir(x, zS = 1lI,Q)a, + fr ,{r)a, + fi ,1r1a,)r'\""nt

(e)

Substituting (8) and (9) into the Maxwell's

curl equations, eliminating magnetic f ield H
and then transforming from frequency domain
equations into time domain equations leads to
the results:

(1)

a' lE, l  a (ats] | .E,])  a'( tr l t4l)
a l  

=at l  
a ,  , -  *

, a$cltE,l)
f -

(  l0 )

0t
where Id] consists of electric components in x

and y direction, respectively, and matrices [.S] ,

[I] and [C] can be expressed as:

[S] = [G," ] +[G*][G*]lG*l-' ( l  l )

IT ] = IG " ̂)lG r"] - IG *lIG u]IG " hl- 
| 
IG ""] (l 2)

[c]=tc,hl lPl. ( 1 3 )

The set of equations in (l l)-(13) are
identical to those derived by Titchener and
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Willis [1] via an analytical method. From (10)'

we can divide into two equations:

62E,(z,t) _ s a ( aE,Q,t))*r,^ a Iar"t, ' t) ' ]
022 

-" 
a"\. 0t ) 

'" Ar\ 0t )

O'E-(z. t \  O' �E,1z' t7
+ t l -  

6 {+ In  6 {

OE"(z, t \  dE,(z, t )
T.rr---:- = -12-----] i.' .  

d I  o I  
(  14)

6 2 E , ( 2 , t 1  O ( A E , p , t 1 \  a ( a E , Q ' t ) \--a7-='" 
ul a )'"" al a )
O'E-(z, t \  A2 E,(z, t )

r lzr - - j rz  +tzz j ;

OE,(z. t \  .  -  dE,(z ' t )
*" ' -  

a,  
- ' ' " -  

ot

(1s)
where s, ,t, and c, (i,i =1,2) are elements in

[,S], [Z] and [C], resPectivelY.

Boundary Conditions
To solve the solutions of electric and

magnetic fields in anisotropic media by using
(14) and (15), we have to find boundary

conditions that are suitable for an open boundary
problem. Using absorbing boundary conditions
to truncate the infinite domain into a finite

domain is simple. Basically, there are two

polarizations of fields to analyzn the problem in

Fig.l: parallel and perpendicular polarizations.
Then, the boundary conditions for the parallel
polarization in Fig.l can be represented as:

dE"(z,t) 2cos0 AE': ' . cos4 0E,(z,t)

Oz co 0t co 6z

a t z  = 0  ( 1 6 )

)E,(z,t) _ _cos? dE,(z,t) 
atz = L '7)

6z co 0t

where co is the speed of light in free space, and

theE!" is the incident field in x direction'

Subsequently, the boundary conditions for the
perpendicular polarization can be derived by
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changing E, and E'"in (16) and (17) intoE,

and Ei" respectively.

Shape functions
In the finite element method (FEM)' the

solution domain is subdivided in small regions

called 'elements'. For instance, in one-

dimensional applications the domain can be

subdivided into finite lines such as line element'

The points defining the line elements are the

nodes or degrees offreedom.

l*"":n-6r-
slobal ('node 1

Fig.2 Subdividing into line elements in the

spatial domain and time domain.

As shown in Fig.2, we split the domain of

the problem in Fig.l into two parts: a spatial

domain part and a time domain part. The first

figure illustrates each line element composed of

three nodes, and has the total number of

unknown nodesl/o. The Lz is the space

increment of the finite difference node. The

other figure gives the time step A/ between fwo

nodes, and the total number of the time steps N, .

To obtain an accuracy of the finite element

analysis, quadratic shape functions are taken

into consideration [12]. These functions are

comprised of 3 unknown parameters in each

element and are defined over these subintervals

and can be given by:

, (z - zi)Q - zi)
N i =

( 1 8 )
(zi -zi)Qi -zi)

( te )

(20)

( z - r i ) G - z i )' " ' =  ( { ' i l ( 4  _ � 4 )

^ , m  G - z i \ Q - z i )" '  = 
1r7 -1Y{41

where

K - )

global
node

6 7  8  9
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Additionally, these functions correspond to

the nodes of the element. For instance, the Ni is

equal to I at nodezi and to 0 at the other nodes.

More information is discussed in [5] and [12].
Then, trial functions of electric fields in each

element can be expressed as the sum of these
shape functions and unknown parameters

zi = (m -l)Lt ,

z i  =m\z '

3

E,(z,n\t) =lw1 1216 
,./,ntl

3

E, (2, n Lt) = Z w i' k),y^ (n L,t)
/ = l
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information of these matrices will be shown in

the appendix.

3. The Time Stepping Formulation
Equation (23) is the system of a second-

order differential equation, which can be solved
by Newmark's method [7]. This method begins

by expandingIX]  and [* ]  lequivalent

to dlxll dt ) at time t'.' and then rearranging

equations as:

lXl' = BlXl*' +(1-2filxl' + PIX)'-' (24)

lx7*'-lxl' '
2Lt

Vf -2lx l '+ lxf"
.----------------

(Lt)'

where the superscript for matrices indicates the

values at a particular time instant, and B is a

parameter that can be chosen to obtain stability.

Generally, the value of B is l/4. Substituting

(24) - (26) into (23) and rewriting in linear

system equations as:

z i  = ( m - ) r *  a n d

(21)

(22)

txl' :

l*l'"

(2s)

(26)

where, Qi @Lt) and ryi @Lt) are the unknown

parameters of E, and E ,, at time nLt ,

respectively.

Galerkin method

Performing the inner product of basis

tunction U r(z) with Eq.(14) and Eq.(15),

integrating over the interval 0<z<L, and

imposing the boundary conditions according to
Eq.(16) and Eq.(17) leads to a system of a
second-order differential equation:

s 2 r  v t  n t  y l
Vl++ ( [s ]  +  [c ] ) :11!+[K] tx l  = [F l  (23)

dt' dt

where

Here the column matrix[X] represents the

E, and E, at the corresPonding nodes,

respectively. The matrices tf l , tsl , [C] ,and [rK]

are square matrices with size 2N,,x2N,,, and

are time-independent matrices. The column
matrix tf ] denotes incident fields. More

lAllxl*'=lBl
where

(27)

(28)

-t +lfl. '*'

(2e)

Here, the column matrix [/] denotes

the incident fields that assume the Gaussian
incident pulse. Equation (27) is solved at every

time step for the nodes to calculate the electric

field at those nodes. The time-stepping

procedure is required to replace the values [X]'

and [X]' 
'from the field values at previous time

steps to obtain values lXl'- '  at the next t ime

step or at time instant l'tr . After solving the

equation (27) at every time step, we obtain both

electric fields at corresponding nodes in the time

domain, and these fields can be transformed into

fields in the frequency domain by Fourier

tA= l r l  *  [s]  +tr l l
(At)' 2Lt

,r(#-tna-2b)txt'

(-#.#-wtB)tn'
Vrrl).
lT*rl) '

llcdil lcr,l)

llc,ol [c,,])

I t r r t l' '= L,q, ' .1

li;ll '.,=
,lll,]'-''

'",=[,'ll],
,,,= [l;;]
,,.,= l'ffr,

,,=liT,l
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transform. Once this procedure is achieved, the
amplitude and phase of the f,relds is obtained.

4. Computational Results
In this section, the finite element time

domain method described in the sections 2 and 3
has been applied to solve the reflection and
transmission coefhcients of laminated sheets
based on Fig.1. As the problem space is limited
to one-dimension geometries, we can compute
these coefficients with a simple FORTRAN
program using a personal computer with
coprocessor chip in a few minutes.

The source used in all computations is the
Gaussian incident pulse obtained from [4] and is

defined as follow: a unit amplitude(Eo) I V/m,

a pulse width(r) 0.05 nS, and a pulse delay

(r0) 0.3 1S. This pulse delay means that the

Gaussian will reach its maximum at /" :9.3 n5.

Two-layer anisotropic media

A
K l

free space free space

Let us consider the case of two-layer
anisotropic media, as shown in Fig.3. In this
case, we aim to test the accuracy of our method
with exact solutions. Hence, to compare our
results with a previously published analytical
method that has been extensively studied by
Titchener and Willis [1], it was necessary to
write source codes of their method and run
programs in order to find the values of the
reflection coefficients for comparison. The
geometry and parameters in this example are
chosen to be the same as those of that research.
The thickness of each layer is 0.03 m and it is
composed of 45 elements. The length of the free

space for each side of this case is 0.06 m and
consists of 90 elements. Consequently, there are
270 elements and 1080 unknown electric fields
in both the x and y directions. With the

specification Lz=2coLt, we get the Az equal

to 0.33 mm and the A/ equal to 0.554 nS.
Table I shows that the magnitude of

reflection coefficients of Rr1, where R,,, found

in [12]-[a] is a division of reflected field by
incident field. This is compared with the results
from research [ ] via the analytical method. The
frequencies ofthe incident field are chosen to be
0.9, 1.8, and 2.7 GHz; the angles of incident

held are 30', 45" and 60', respectively. The

percentage error of the R', is defined as

100.(E -Sr)/E where S, and S, are the

analytical and numerical solutions, respectively.
It should be noted that the percentage of error
for all frequencies is less than 1.8, and a good
accuracy has been achieved in all angles of

incident field, and that the magnitudes of R,,

vary with the angles of incident field and
frequencies.

Table I Comparison of the reflection coefficient

R,, by analytical method with FETD.

Magnitude of R, ,

0 =30' FETD Research' %oErtor

0.9 GHz 0.6046 0.6023 0 . 3 8 1 8
1 .8  GHz 0.2798 0.2848 t . 7 5 5
2 . 1 G H z 0.3300 0.3285 0.4566
0 = 4 5 '

0.9 GHz 0.6196 0.6220 0.3922
1 .8  GHz 0. l  370 0.1 348 I  .601 s
2.7 GHz 0.3300 0.3290 0.3039
0 = 6 0 '

0.9 GHz 0.s666 0.5703 0.6487
1.8 GHz 0.5418 0.5452 0.4768
2.7 GHz 02n2 0.2168 0. I 845

>
z

Fig.3 Two-layer anisotropic media

7 l

: research from Titchener and Willis.



Thammasat Int

(a) parallel polarization

Three-layer carbon fiber media

,l

Fig.4 Three-layer anisotropic media

Let us consider the case of three-layer
carbon fiber media whose conductivities are in
tensor form and the other material properties are
in scalariorm, as shown in Fig.4. In this case,
the geometry and parameters are selected to be
the same as those of research [3]. The thickness
of each layer is 3.75 mm. The length of the free
space for each side of the geometry is 37.5 mm.
Then, there are230 elements,30 of them are on
three layers of the anisotropic materials, and the
other 200 are on the free space or the outside
boundary. TheAz and theAr are 0.1875 mm
and 0.3 125 pS, respectively.

s ^ -

(b) perpendicular polarization.

Fig.5 Incident field and both reflected fields in
front of anisotropic media.

The graphs of the Gaussian incident pulse
for both polarizations and the reflected fields on
a node that interfaces between the free space and
the materials, is plotted in Fig.5, with respect to
time. In this figure, the Gaussian pulse is
propagating in the positive z direction. After
1200 time steps (0.375 nS) there are several
reflected pulses or reflected fields visible in the
problem space. The reflected pulses are
propagating in the negative z direction, while
the transmitted pulses are propagating in the
positive z direction. Also they are attenuating
along the z direction. For parallel
polarization,the amplitude of{ is higher than

that of E" and this result is opposite for

perpendicu lar polarization.

Fig.6 Magnitude of reflection coefficient
R,,andR,, based on Fig.4 (solid l ine for FETD

and asterisk for FDTD by Schneider and
Hudson).

P@ddlr rohdr6 6t-pldz.d

E
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Fig.6 illustrates the magnitude of the

reflection coefficient for the R'' and R', as a

function of frequencies, once the incident field

with the parallel polarization is applied. The
results of FETD method, marked as a line, are
compared with that of FDTD method results,
marked as an asterisk, by Schneider and
Hudson. As seen from the graph, our results
agree with results from the FDTD method. Note
that the magnitude of the reflection coefficient

for the 4, in all frequencies is low. This

reflection coefficient is less than 0.1 because of
cross polarization between incident field and
reflected field.

(b) Phase of 4r.

Fig.7 Phase of reflection coefficient ,!, and R,,

based on Fig.4 (solid line for FETD and asterisk
for FDTD by Schneider and Hudson).

The comparison of phase fo. 4, and R,, is

shown in Fig.7. From the graph, the computed
results based on our method are close to results
of the FDTD method by Schneider and Hudson.
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The results give some interesting oscillations at

180 degrees.

5. Conclusions
In this paper, the finite element time

domain for the analysis of propagating

electromagnetic wave in the inhomogeneous
anisotropic and multi-layered media, that is

comprised of three tensor forms, is presented to
investigate the accuracy of the calculations, and

the reflection coefficients. By this FETD, all

numerical solutions are performed by means of

Galerkin's method in the spatial domain and

Newmark's method in the time domain. As a
result, the linear system equation is solved at

every time step for the nodes to compute the
electric fields at those nodes. Calculations are
carried out in two transient problems. It is clear

that this method provides the accuracy and

efficiency of computing the problem involving
reflection and transmission coefficients. Also, it

seems more powerful and flexible than an

analytical method or FDTD method. The

approach used in this paper can be applied to

other transient problems of electromagnetics'

6. Appendix
The matrices [f], [S], [C], and [K] in the

section 2 are the assemblage of individual

coef f ic ient  matr ices such as [T*1,  [Ttu] , lTr6J,

and fT,,l. These matrices can be expressed as:

L

[T*l = 
!t,,U,12\J, (z)dz

L

l\,1 = lt'ru, (z\J, (z)dz

t.

lTrrl = lt  ̂ u,12\.J, (z)dz

L

ITrrl = 
ltrrU,(zP, (z)dz

t.  du (z ' t
lSrl= ls,,U,(z)-1ldz+

c o s Q , , , , , , , ,- r u , \ L )u ,  (Z )  +  U ,  (0 )U ,  (0 )J
co
L, dt /,121 ,

[Sn*]= )s,ru,(z)-f,42

b{

I

\

a\

\
\
\

l3



1

l 1 l

L  ) r r  t - t

I S..-l = ls,,u,tz\!!{Jdz
d -  d z
L ,  d U , ( z l

[S, , ]= lsr rU,(z\  ,  d ;+
o " '

cns 4Ylu,( L)u, t t I + u, (o)u, (o)1
c0

lC ool = 
!c,,(J,(z\J, 

(z)dz

L

IC o,l = 
lc,,U,(z\J,(z)dz

:
lC,ol= [c,,U,@Y,Q)dt

L

lC r rl 
-- 

lc rrU, (z\J, (z) dz

. o
r ld IJ  

, (z)  dU , \z \
lK*): |  ,  --32

; a z a z

r  , ,  .  
I1dU, (z )  dU , (z l  , -

1x,,,,,1= | , ---=a:
d dz ctz

\ f,,, = 2rot e 4Ell;r. o. 0..... o, l.
co dt

2cos0 dEi,:, .. ^
1 y, y -_ ::::::--:r-[1. 0. 0,.... 0, ]' .

L 0  U t
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