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Abstract
In this paper a comparative analysis with adaptive filter receivers is performed over projected

orthogonal matched filter (POMF) receivers. Here an algorithm has been designed for a projected
orthogonal matched filter receiver based on quantum signal processing. The algorithm has been
applied to a speech signal and the performance is estimated using probability theories. The algorithm
describes the measurement vector orthogonality and imposes an inner product constraint. A new
method is developed for choosing a set of measurement vectors that best represent the signals of
interest which have a specified inner product structure. The POMF receiver performs correlation of the
received signal with that of the original signal. Whitening is performed on the correlated signal. The
resultant signal obtained will be the same as that of the transmitted speech signal. The performance of
the POMF receiver is compared with matched filter, RLS and LMS adaptive filter receivers. The
analysis suggests that over a wide range of channel parameters, the POMF receiver can outshine both
the Matched Filter and the Adaptive Filters.

Keywords: Hilbert Space, Singular value Decomposition, Quantum Mechanics, LMS Adaptive filters,
Inner Product Constraint

1. Introduction
The introduction of Quantum mechanical

concepts, which rely on estimation almost
entirely, on some signal processing algorithms
are implemented with various techniques.
Various signal processing approaches have been
developed to examine the behavior of physical
systems. One such signal processing technique
is quantum signal processing (QSP) and it is
aimed at developing new or modified existing
signal processing algorithms by using the
principles of quantum mechanics and some of its
interesting axioms and constraints. Quantum
signal processing is an organized framework,
which can be implemented by exploiting the
different mathematical structure of quantum

mechanics such as vector algebra, analytical
geometry, functional analysis and calculus of
variations etc. It implied as bridgework between
quantum measurement and signal processing
algorithms. [, 2 and 3] .The present work is
concentrated on developing a quantum signal
processing framework for possible application in
speech analysis. Computationally efficient
approximations of matched filter receivers and
other adaptive filters have been developed in [4,
5 and l2]. The problem of designing a receiver
wi th l inear  approach is  pervasive in  s igna.
processing and communication applications. The
optimal linear receiver for this problem is
straightforward to derive, and is the well-known
Projected OMF (POMF) receiver [6]. However,
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as discussed in a recent series of papers [7, 8],
when the additive noise is white and Gaussian
and the signals have equal prior probabilities, it
is well known [9, l0 and 1l] that a receiver
which maximizes the probability of correct
detection, consists of a demodulator comprised
of a bank of correlators with correlating signals
equal to the transmitted set, followed by a
detector which chooses as the detected signal,
the one for which the output of the correlator is
maximum. This demodulator, is referred to as a
matched filter (MF) receiver. If the noise is not
Gaussian, then the MF receiver does not
necessarily maximize the probability of correct
detection. However, it is still used as the
receiver of choice in many applications, since
the optimal detector or non-Gaussian noise is
typically nonlinear ([9] and references therein),
and depegds on the noise distribution which may
not be known. One justification often given for
its use is that if a signal is comrpted by Gaussian
or non-Gaussian additive white noise, then a
filter matched to that signal maximizes the
output signal-to-noise ratio (SNR) from all
linear filters [2]. The choice of terminology
here is based on the interpretation of the
receivers in terms of orthogonal signals. We
show that if the transmitted signals give a strong
symmetry property called geometric uniformity

Il3, 14 and 151, then the POMF receivers
maximize the total output SNR, subject to the
constraint that the outputs of the demodulator
are uncorrelated on the appropriate space. This
provides some additional justification for this
class ofreceivers.

2. Quantum signal processing constraints
One of the important elements of quantum

mechanics is that the measurement vectors are
constrained to be orthonormal. For imposing
such constraints, the measurement vectors are
restricted to have a certain inner product
structure as in quantum mechanics. We develop
methods for choosing a set of measurement
vectors that "best" represent the signals of
interest and have a specified inner product
structure. Specifically, we construct
measurement vectors qi with a given inner
product structure that are closest in a least
square (LS) sense to a given set ofvectors si, so
that the vectors qi are chosen to minimize the
sum of the squared norms of the error vectors
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et :Qi - st . These techniques are referred to as LS
inner product shaping. This LS inner product
shaping leads to new processing techniques in

diverse areas, including frame theory, detection,
covariance shaping, linear estimation, and multi-
user wireless communication, which often
exhibit improved performance over traditional
methods.

Underlying the development of QSP in the
signal space view points towards signal
processing in which signals are regarded as
vectors in an abstract Hilbert space referred to as
the signal space. A complex vector space V over
the complex numbers C is a set of elements
called vectors, together with vector addition and
scalar multiplication by elements of C such that
V is closed under both operations. We will
assume throughout that all vector spaces are
complex. We now add geometric structure to a
vector space in the form of an inner product
relation between pairs of vectors, which also
includes a distance measure or metric on the
space. The inner product on the vector space V,
denoted (X, y), is a mapping from V to C, and
is said to be Hilbert Space. Two vectors x, y are
said to be orthogonal in V if <x, y>:0. This

situation is denoted asx I y. A linear

transformation T: V)V is called orthogonal
linear transformation if it preserves the inner
product. That is, all pairs of vectors x and y are
in the inner product space V. This means that T
preserves the angle between x and y, and that the
lengths of T* and x are equal. The word normal
is sometimes also used in place of orthogonal.
However, normal can also refer to unit vectors.
In particular, orthonormal refers to a collection
of vectors that are both orthogonal and normal
(of unit length). So, using the term normal to
mean "orthogonal" is often avoided. In some
contexts, two things are said to be orthogonal if
they are mutually exclusive.

3. Problem Formulation
Suppose that one of m signals

{So(t),1 < k a m} is received over an additive
noise channel with equal Probability, where the
signals lie in a real Hilbert space 11 with inner

q

product(x(r) ytt)): lx(t)y(t)dt .We assume
- d

that the signals are normalized. The received
signal r(t) is also assumed to be in H and is
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modeled as r(t): si(t)+n(t). For one value i, n (t)

is a stationary white noise process with zero

mean and spectral density o, and otherwise
unknown distribution. The receiver we design
consists of the correlation demodulator that

cross-correlates the received signal r(t) with the
m signals {q; (t) eU, lsilm} so that a;:<q;
(|,r(t)>, where the signals {qt (t)} are to be
determined. The declared detected signal is si (t),

where i:argmax ai. The difference between the
modified receivers and the MF receiver lies in

the choice of signals qi(t).
If we choose the signals qi(t):si(t), then the

resulting demodulator is equivalent to an MF
demodulator. If the noise is not Gaussian, then
the MF receiver does not necessarily minimize
the probability of detection eror. It is still used
as the receiver of choice in many applications,
since the optimal receiver for non-Gaussian
noise is typically non-linear, and requires
knowledge of the noise distribution. For a

correlation demodulator, we would like to
choose the signals qi (t) so that when the noise is
non-Gaussian, the resulting detector leads to
improved performance over MF detection'
Drawing from the quantum detection problem,

we propose imposing an inner product constraint
on the signals, which as we show is equivalent
to imposing a constraint on the correlation
between the demodulator outputs. Building upon
our results regarding oPtimal QSP
measurements, we then develop a new class of

correlation receivers that, like the MF, depend
only on the transmitted signals, and can lead to

improved performance over the MF for some
classes of non-Gaussian noise, with essentially
negligible loss of performance for Gaussian
noise.

In the system shown, the correlation
between the outputs &i of the correlation
demodulator is proportional to the inner
products between the signals q1(t).

Cov la , , ao )  =
f l )

a(q,  (1) . ,?(r )  (n(r \ .q*( t ) ) )o '  @,Q\.q  ̂ ( r ) ) .  
'

In our modification of the MF demodulator
we propose shaping the correlation of the
outputs prior to detection. Thus, we propose

choosing the signals qi(t) to have a specified
inner product structure, so that the outputs ai
have the desired correlation. Here we choose the

signals q;(t) so that the outputs d; are
uncorrelated. We brieflv consider the more

general case in which the signals q;(t) are chosen
to have an arbitrary inner product structure. The

subsequent development considers separately
which transmitted signals are linearly

independent or linearly dependent.
If the signals s;(t) are linearly independent,

then we may decorrelate the outputs ai by

choosing the signals q;(t) to be orthonormal. The
resulting demodulator is referred to as

Orthogonal Matched Filter (OMF) demodulator'
and the overall detector is referred to as an OMF
detector.

Ifthe signals s;(t) are linearly dependent, so

that they span an n-dimensional subspace U,

then there are at most n orthonormal signals in

U, and we cannot choose the correlating signals
to whiten the outputs ai in the conventional
space. Instead, we choose the correlating signals

as projections of a set of orthonormal signals in

a larger space containing U, i.e., we choose the

correlating signals to form a normalized tight

frame for U. As we show, the outputs ai are then

uncorrelated on a space formed by the

transmitted signals. The resulting demodulator is

a Projected Orthogonal Matched Filter

demodulator or POMF detector.

4. Implementation of Projected

Orthogonal Matched Filter Receiver
Suppose now the transmitted signals

{s,,1<i<m}are linearly dependent, and span an
n-dimensional subspace, where n<m. As in the
case of linearly independent signals, we can

choose the signals gi(t):g;(t) to be orthonormal
and to minimize the LS elror. Since
<gi(t),gi(t)>:1 for any signals gi(t)' minimizing

the LS error  is  equivalent  to  maximiz ing:
n _!lL

I ( g , ( r ) ' , ( r )  :  I ( g l ( r ) ' , ( r )  Q l

where the signals form a normalized tight

frame for U. For any normalized frame for U,

maximiz ing is  equivalent  to  min imiz ing:

-g-

LGiQ ) -  s , ( r  ) .g i ( t  ) - ' , ( r  )  (3 )

Thus, when the signals s;(t) are linearly
dependent, choosing a set of orthogonal signals
to maximize SNR is equivalent to choosing a

normalized tight frame for U to minimize the LS
error. Furthernore, if the transmitted signal is

35



s;(t), then the ith output of the correlation
demodulator with signals g;(t) is;

(Tx,Ty)  = (x ,y) .  (4)

', = k,@1t> = (g; (rl s, (/) +,x(r) + gi' Q), {tD : a + n, (5)

Since ri and n; are uncorrelated, ni does not
contain any linear information that is relevant to
the detection of si(t).Therefore, in the case of
linearly dependent signals s1(t), we propose
choosing the signals q;(t) to be a normalized
tight frame for U, which we denote by q'(|:f;(t),
that minimizes the LS error.

Thus we seek the signals {f;($, 15i:ml
corresponding to F to minimize:

-q
E. ,= I ( ' , ( r ) - l ( / ) . s , (1 ) -10 )  (6 )
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Fig I Feature Vector Generation
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Subject to the constraint:

FF*=1  Q)

5. Results and Discussion
Most useful parameters in speech

processing are found in the frequency domain.
There are several ways to extract the spectral
information of speech. When the audio file
contains a single channel (mono), the block's
output is an M-by-l matrix containing one frame
(M consecutive samples) of mono audio data.
With the use of a periodogram block a
nonparametric estimate of the power spectrum
of the speech signal is computed. With the use
ofa transpose block, the vector input signals are
treated as (Mx1) matrices as output.

0.t

The signal is obtained as a column vector.
This column vector is converted into a square
matrix. Now a Hilbert transform is performed on
this matrix so that the numerical values of the
signal can be obtained. An FFT is performed on
the signal so that the spectral values ofthe signal
can be obtained. As the concept of QSP is
satisfied, now the spectral matrix is converted
into an orthogonal matrix using the Gram-
Schmidt orthogonalization procedure. In the
orthogonal matrix, white noise with zero mean
and unit standard deviation is added to the
signal. Input is a continuous speech signal given
through a microphone. This signal is plotted
with its amplitude with respect to time in
Figure 2. The plot for the signal input to the
receiver is plotted in Figure 3.
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Fig 2 Input Speech Signal

The received signal is subjected to SVD
(Singular Value Decomposition) and matrix
based results are obtained. The Eigenvector of
the signals is obtained. Figure 4 explains the
correlation process between the signals at the
input ofthe receiver and correlating signal.
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Fig 3 Input Speech Signal with Noise

Whitening is performed on the signal. An
Inverse FFT is processed to the resultant matrix
and is converted to a column vector which is the
output of the receiver as shown in Figure 5.

Fig 4 projected orthogonal Matched Filter
Receiver
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We derive exact and approximate
expressions for the probability of error with the
knowledge of signal to noise ratio for different
receivers. The probability ofthe signal detection
and probability of error prediction is
approximately one and zero respectively, as
shown in Figure 6 & Figure 7 for the POMF
receiver.
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Fig 6 Probabilify of input signal detection for
POMF receiver
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Fig 7 Probability of input signal prediction
POMF receiver
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Fig 8 Probability of input signal Detection for n-
LMS adaptive receiver
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Fig 11 Probability of input signal Prediction for
RlS-adaptive receiver

A recursive least square adaPtive
receiver(RlS), normalized LMS adaptive filter
receiver and matched filter receiver can be
designed for estimating the instantaneous state
of linear system perturbed by white noise. The
results shows that the probability of signal
detection and probability of error prediction is
less than one and greater than zero respectively
as in Figure 8 and Figure 9 for n-LMS adaptive
filter.
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Fig 9 Probabilify of input signal Prediction for
n-LMS adaptive receiver
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Fig 10 Probability of input signal Detection for
RLS-adaptive receiver
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Fig 12 Probability of input signal Detection for
Matched filter receiver
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Fig 13 Probability of input signal prediction for
Matched filter receiver

The analysis of RlS-adaptive filter receiver
shows thit probability of signal detection anc
probability of error prediction is less than one
and greater lhan zero respectively as in Figure
l0 and Figure 1 l. The results for matched filter
receiver give the probability of signal detection
and probability of error prediction are greater
than one and less than zero respectively as in
Figure l2  and Figure 13.

Table I Analysis of various receivers with
Probability of error.

6. Conclusion
A comparative study has been made with

adaptive and matched filter receivers. A speech
signal is the input to the system which is
received at the receiver output. This result
suggests that the receiver output shows a steep
probability in signal detection and a well-drop
probability in the error prediction of the signal.
The implementation of this receiver seems
simple in the design of the hardware part so that
future analysis can be made on the
implementation of the receiver in orthogonal
CDMA systems.
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POMF
recelver

n-LMS
adaptive
receiver

RLS
adaptive
receiver

Matched
Filter
receiver

Probability
of Error
Detection

1 . 0 0.65 0.92 t . 1 2

Probability
of Error
Prediction

0.0 0.485 0 .12 -0 .13
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