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Abstract

A numerical study of natural convection in tilted isosceles triangular enclosure filled with air is
presented by using a finite element based adapting meshing technique. In this present study, two upper

walls are maintained at constant cold temperature, whereas a constant heat flux is symmetrically

embedded at the bottom wall, and the non-heated parts of the bottom-wall are considered adiabatic.

The Grashof number based on the enclosure height is varied from l0'to l0o. This study reports the

effect ofvarious aspect ratios, ranging from 0.5 to 1, and inclination angles ofthe enclosure from 0o to

60o, on the thermo-fluid characteristics. Results are presented in the form of streamline and isotherm
plots as well as the variations of the Nusselt number and maximum temperature at the heat source
surface under different conditions.
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1. Introduction
Natural convection heat transfer and fluid

flow in enclosed spaces has been studied
extensively in recent years in response to
energy-related applications, such as thermal
insulation of buildings using air gaps, solar
energy collectors, furnaces and fire control in
buildings and so on. The enclosures encountered
in these applications are highly diverse in their
geometrical configurations and most
investigated enclosures include the annulus
between horizontal cylinders, the spherical
annulus, the closed rectangular caviry and the
hollow horizontal cylinder. Effective cooling of
electronic components has become increasingly
important as power dissipation and component
density continue to increase substantially with
the fast growth of electronic technology. It is
very important that such cooling systems are
designed in the most efficient way and the
power requirement for the cooling is minimizec.

The electronic components are treated as heat
sources embedded on flat surface [,2]. In many
applications natural convection is the only
feasible mode of cooling of the heat source.

Several earlier studies have been performed
for triangular enclosures in general [3 - 5], but
the focus of this paper is on isosceles triangular
enclosures with discrete heating from below. In
modeling natural convection inside an isosceles
triangular enclosure, nearly every numerical
study previously reported in the literature
employed a symmetry condition at the midplane
and performed the simulations using only one
half of the physical domain. Akinsete and
Coleman t6] used a finite difference
representation of the steady-state stream
function, vorticity, and energy equations with an
adiabatic boundary condition for the vertical
wall in a right triangular enclosure, and made
the claim that the problem could also represent
the case for an isosceles triangular enclosure due
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to symmetry. Poulikakos and Bejan [7] used a
similar numerical approach, except that transient
simulations were performed and an actual
symmetry condition was used at the midplane
for Gr up to 10s andA -* 0.2 to 1.0. The use of
the symmetry condition for this problem was
continued by Ghassemi and Roux [8], Salmun

[9], and Hasani and Chung [10]. Del Campo et
al. [11] numerically modeled natural convection
in triangular enclosures using a Galerkin finite
element method with a stream function-vorticity
formulation of the steady-state cases. They
considered symmetric boundary conditions and
heating from below, and no symmetry
assumption was made. Triangular elements with
linear interpolation were used, and the resulting
graded mesh was symmetric. The solutions
obtained were all symmetric about the midplane.

A continuing source of discrepancies in the
literature is the calculation of average Nu
(average dimensionless temperature gradient)
along the base for the triangular enclosure.
Akinsete and Coleman t6] recognized the
existence of unbounded heat transfer at the
comer of the enclosure where a temperature
discontinuity exists, and calculated the limiting
value of 1y'a using a method outlined by Collatz

[2]. Poulikakos and Bejan [7] proposed starting
the integration of the temperature gradient from
a set distance away from the corner, thereby
avoiding the singularity. Del Campo et al. I l]
proposed a convective Na defined as the
difference between Nu for the case considered
and Nu for pure conduction (using the same grid
resolution). Salmun [9] and Hasani and Chung

[ 0] did not specifically discuss the problem of
the singularity and reported similar results for
their average iy'a due to having used the same
grid resolutions. A limited number of laboratory
experiments have been conducted for natural
convection in triangular enclosures with base
heating. One experiment reported in the
literature, involving symmetric temperature
boundary conditions for an isosceles triangular
enclosure and base heating, was done by Flack

[13]. The flo_w was reported as "turbulent" for
Gr - 3 x 10' with A : 0.58 and for Gr : 8.9 x

105 with A : 1.0. Nu values were inferred using
a Wollaston prism Schlieren interferometer.
Flow patterns were determined qualitatively
using a particle-based visualization technique
and quantitative measurements were taken using
a laser velocimeter. For the heated base
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experiments, no mention was made as to the
symmetry of the flow. Poulikakos and Bejan

[14] conducted experiments in a right triangular
enclosure with an insulated vertical wall, and
noted that the flow phenomenon should be
similar to that found in a symmetric triangular
space.

In the present study, the response of the
two-dimensional, non-linear system to changes
in all parameters is explored numerically using
finite element discretization schemes. First the
physical model and finite element formulation
are described and the results are discussed in
detail. Finally, some concluding remarks are
stated. The main purpose of this paper is to
provide steady-state numerical results
considering the entire triangular region. The
effects of aspect ratio, inclination angle, and
Grashof number on the flow structure and heat
transfer are investigated. Results are presented

in the form of streamline and isotherm plots.

2. Mathematical Model
The physical model considered here is

shown in Fig. 1, along with the important
geometric parameters. It consists of an isosceles
triangular enclosure whose upper walls are
cooled to a constant cold temperature, 0,. The
bottom wall has a discrete heat source with

constant heat flux, Q", and length Z. The

remaining parts of the bottom wall are adiabatic.
The dimensionless governing equations of
continuity (1), momentum (2)-(3), and energy (4)
for steady state laminar flow of an
incompressible Boussinesq fluid with negligible
viscous dissipation are as follows:

AU AV. - - + . - ' = 0  
f l )

AX AY

u*Y * v qY :- 9: .Ia1g . az9'1-  ax dy ax [axz ayz ) el
+(Gr  s in  <D)0

u#*v#=-#.?#.#) (3)
+(Gr  cos  O)0

u#+v#= *(#. oe) s)
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The boundary conditions for the present
problem are specified as follows:

The dimensionless parameters
non-dimensionalizing the governing
are defined as follows:

Also the dimensionless heat transfer
parameter is symbolized as follows:

I

Nu* ==-='  U q ( x )

1 u  r  
( 7 )

Nu = I t-=+--dx
e  [  0 s ( x )

where 0,(X) is the local dimensionless
temperarure.

2.1 Finite Element Formulation
The velocity component and the

temperature distributions and linear
interpolation for the pressure distribution
according to their highest derivative orders in
the differential Eqs. (l)-(4) are:

w h e r e  c : 1 , 2 , . . .  . . . , 6 : ) ; -  1 , 2 , 3 ;  N o  a s
the element interpolation functions for the
velocity components and the temperafure, and
Hr the element interpolation function for the
pressure. To derive the finite element equations,
the method of weighted residual is applied to the
Eqs. (l)-(a). We get:

/ att ,arr\

leN"l i  * ;  JdA 
= o ( t2)

/  A t t  , a r \  / a P \
lo Na I u fr + v#]dA = -iA Hi 

Iax JdA
(  s2r r  a2r r  )

*  leN"I  p .  #Jae 
+ laN"(crs ino)odA (13)

/ A\/ ^\/\ / ,T, l

IANG I 
u ;x + uaY 

]* 
=-ton^ 

[ r, ]* 
*

( '2t, ^2rr)
foN"lIL] +rj laa+ jaNal(Gcoso)odA'^ -l 

Axz dYz l
( r 4 t

lo*"[u#.vS)ae =

r  ,  * ,  (  a2e a2e )  , .  
(15)

p ; l nN" l# .  *2 f ^
where A is the element area. Gauss's

theorem is then applied to Eqs. (13)-(15) to
generate the boundary integral terms associated
with the surface tractions and heat flux. Then
Eqs. (13)-(15) become:

I  A t t  ^ n \  / a p \
le N" lubi  + v; jdA. lo "^ l i joo

, , f No au , aNct au i,dA -  ja(Gr s inOlNo0dA'Al ax ax dY ay )
= Iso Ncrs^dso

r^ N^lu9I*v9I ' laa 
/^P\

*r. ax aY ) 
- lAHi[#JdA

, , (dNo av , dN., av\
.  i^ [ : ; f ; .# ; ,F^ -  l4(Grcos@)Ns0dA

= igo NoSrdsg

(  A  . l e \
i n N " l u i + v - j a a

. l , r d N o a e , d N c t a e ). ;  i^ [ ; f  ; . ; i  *J* 
= is* Na Qw dSw

used for
equations

U(X,Y)=NoUo
V(X,Y)= No Vo

e(x,Y)= No To

P(X,Y)= Hl. Pl.

(8)

(e)
(10)

( 1 1 )

U = V = 0  f o r a l l w a l l s
0 = 0 for upper walls

I  o.  roro < X .o.t_� t

#= ] - t '  ro ro .s - |<x<os+ !  (6 )

I  
o ,  ro ro .s+ ]<x<1

for the bottom wall only.
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Here Eqs. (13)-(14) specifu surface tractions
(S-, Sr) along outflow boundary 36 and Eq. (15)

specifies velocity components and fluid
temperature or heat flux that flows into or out
from domain along wall boundary S'.
Substituting the element velocity component
distributions, the temperature distribution, and
the pressure distribution from Eqs. (8)-(11), the
finite element equations can be written in the
form:

KoB.* uF * Kop,yVF = o

KoBi,,* uFut * Kopy,yvPur

/  )  t 1 1*Mo1r.*Pr, * l toB.** *so9.yy 
Ju0 

(17)

-(Gr sin<D)KogOF = Qo,,

KoBy,* uPvt * K.,py,yvFvt * Mot,yPl, *

(rou,*r,*so',yy)vp-(Grcoso)KoBoB 
(18)

=Qo,u

K.,py,*uFet * KoBy,yvger +

* (t'u,.. * s.,',ry 
)oo 

= Qcr,r (le)

where the coefficients in element matrices
are in the form of the integrals over the element
area and along the element edges Ss and S* as:

KoF,* = laN,rNB,* i l '

Kopy,y = JiN.,NBNy,ydA'

Kop,y  =  laNoNB,vdA '

KoBy,* = j4NoNBNv,xdA '

KcrF = hN0NBdA,

soB,** = iaNo,*NB,*dA'

Sop,yy = l ,qNo,vNB,vdA'

tou,*  = leHoHlr ,^dA'

Mou , ,  =J i t oH t ' , ydA '

Qo,u = 
to 

*.rs*oso '

Qo,u = 
Lo 

*osroto '

Qc. t  = I r*  "o qwdsw '

These element matrices are evaluated in
closed-form ready for numerical simulation.
Details of the derivation for these element
matrices are omitted herein for brevity. The
derived finite element equations, Eqs. (16)-(19),

are nonlinear. These nonlinear algebraic
equations are solved by applying the Newton-
Raphson iteration technique by first writing the
unbalanced values from the set of the finite
element Eqs. (16)-(19) as:

Fo,p = K.,p,* uF * KoB,yvF

Fo,u =KoBy,*UpUy *Kopr, rvpu,  *

Mop,*PP *(SoP,**  *Sop,yy)uP -

(Grs ino)KoU00 -Qo, , ,

Fo,u = KcrBy,*u9vv * Kopy,yvBvY * Mopr,yPtt *

(SoB,** * SoB,yy )vB - (Grcos<D)KoBe0 - Qo,u

Fcr,T =Kopy,"UB0Y +KoBy,yvFet *

t ( ^  ^  \ ^
p,lsop.** *SoB.w J oF -Q".r

This leads to a set of algebraic equations
with the incremental unknowns of the element
nodal velocity components, temperatures, and
pressures in the form:

Kru KuT

K*  KuT

Kru Kt t

tou o

(16)

*uol lour 
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where

Kuu = K'Fy,xU, + KorB,*Uy + K.,By,yvF +(t.rB,^* + so0,yv), Kuv = Kagv'yUY"

Kug = -sinOKoB,Krp =McrU.,x,Kw =KcrFy,^Vy,

Kw = K*Fy,xUB + KorB,rV, * KoFy,yVy * (SoB,o + S.rp,rr), Kug = -coso K1,F,

Kw=KcrFy,xUB+KorB,rVr+KoFy,yvT*(soB,*"+soB,,,),r*=M.rt.,v'Keu=Kcrpy,xgy'

K0" = K"py,fl,Kee = Kopy, *up + ropr, rvp * fr ( soB, * * $og yy), rgp = O,

Kpu = Kcrp,x , Kpu = KoF,y, KOg = 0' Kpp = 0 '

The iteration process is terminated if the
percentage of the overall change compared to
the previous iteration is less than the specified
value.

3. Results and Discussion
Equations (l)-(a) with boundary conditions

given above have been solved numerically using
a finite element based adapting meshing
technique. It provides smooth solutions at the
interior domain including the comer regions. Six
noded triangular elements are used in this paper
since the six noded elements smoothly capture
the non-linear variations of the field variables.
All six nodes are associated with velocities as
well as temperature. Only the comer nodes are
associated with pressure. This means that a
lower order polynomial is chosen for pressure
which is satisfied through the continuity
equation. Solutions are assumed to converge
when the following convergence criteria is
satisfied for every dependent variables at every
point in the solution domain:

loT--o"l<ro*
Where / represents a dependent variable U,

V, P, and 0. The working fluid is chosen as atr
with Prandtl number, Pr : 0.71. The normalized
length of the constant flux heat source at the
bottom wall. e = LAV. was varied from 0.2 to
0.8. For each value of e. the Grashof number. Gr
was varied from 103 to 106, the aspect ratio, A

was varied from 0.5 to 1 and the inclination
angle, @, was varied from 0o to 60'.

In order to obtain a grid independent
solution, a grid refinement test is performed for
A : 1.0, Gr : 103 with e : 0.2 and <D : 0". Fig. 2
shows the convergence of the average Nusselt
number, Nu, at the heated surface with the grid
refinement. It is observed that grid independence
is achieved with 4082 elements where there is
insignificant change in ly'a.

In order to validate the numerical code, the
results were compared with those reported by
Holtzman et al. [5]. Figure 3 shows the
comparison of streamline and isotherm of
present model with that obtained by Holtzman et
al. [15]. The agreement is found to be excellent
which validates the present computations
indirectly.

3.1 Flow and Thermat Fields Characteristics
The effects of aspect ratio and inclination

angle on the flow and thermal fields in a
triangular enclosure for the lower values of
discrete heat source size and Grashof number
are presented in Fig. 4. A Smaller aspect ratio of
the triangular enclosure with minute heated strip
gives the formation of two circulating cells of
different intensity and opposite directions of
rotation at Q :30'. Due to the weaker intensity
of the vortices, diffusion is the principal heat
transfer mechanism. Increasing the aspect ratio
makes the primary circulating cell spread inside
the enclosure space, resulting in higher
recirculation strength, and a pocket of fluid is
trapped at the top vertex. Thus, diffusion heat
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transfer becomes profound. At Q : 60o, the
expansion of the primary vortex inside the
cavity suppresses the secondary vortex at the
right alcove ofthe enclosure. This flow scenario
indicates that the convective current is
responsible for the heat transport mechanism.
An increase in aspect ratio strengthens the
primary vortex, but still there are pockets of
fluid entrapped at the top and right corners of
the triangular enclosure. Here, the heat transfer
rate increases, though a major portion of the heat
is carried out by diffusion rather than a
convection heat transfer mechanism. At <p :

30o, the isotherms indicates a diffusion heat
transfer mechanism. As the aspect ratio
increases, the temperature gradient becomes
precipitous, indicating strong diffusion heat
transfer. While tilted angle is 60o, at low value
of aspect ratio, isotherms become nonlinear and
a plume formation is visualized pointing
towards the settlement of buoyancy driven
natural convection currents. Further increases in
aspect ratio imply that the heat transfer increases
albeit convection is overwhelmed by the
diffusion heat transfer mechanism.

Figure 5 also shows the influence of the
aspect ratio and the inclination angle on the
thermo-fluid characteristics inside the enclosure
of larger discrete heat source size for higher
values of Grashof number. In case of @ : 30"
and small aspect ratio, two circulating cells of
relatively lower strength are formed. For higher
values of Grashof number and inclination angle,
the secondary vortex experiences oppression,
due to the rapid growth of the primary vortex.
Then the secondary vortex subsides and is
entrapped at the right recess of the enclosure.
Thereby convection heat transfer surmounts
diffusion heat transfer. The isotherms also show
the supremacy of buoyancy effect through
prolonged plume formation.

The change of flow and heat transfer
attributes inside a triangular enclosure of aspect
ratio 0.5 and heat source size 0.4 for different
values of Grashof number, while the inclination
angle is fixed to 0o, is shown in Fig. 6(a). In the
presence of the lower magnituiJe of Grashof
number, two circulating cells of almost equal
strength and reverse directions of motion are
developed. With increasing of the buoyancy
effect, the intensity of the circulating cells
increases, which is a sign of the supremacy of
convection heat transfer. The isotherms are
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similar for the Grashof number ranging from 10'
to 105. At Gr :106, a strong plume is formed,
resulting in better thermal convection heat
transfer.

Figure 6(b) shows the effect of the
inclination angle on the natural convection heat
transfer within the cavity. At Q: 15", a primary
vortex of relatively higher strength and large
size and a secondary vortex of weaker strength
and small size, appear inside the enclosure. This
type of flow situation indicates that convection
is the key mode of heat transfer mechanism. As
the enclosure, is tilted at higher inclination
angles, the large circulating cell spreads over the
space inside the triangular enclosure
strengthening its circulation. And the secondary
vortex located near the right corner of the
enclosure becomes minute. Thereby, buoyancy
dominated natural convection prevails here. The
isotherms show similar temperature distribution
profiles within the enclosure for all values of the
inclination angle. The evolution of the plume
formation signifies that convective current is
dominant.

3.2 Heat Transfer Analysis
The variation of average Nusselt number

and maximum non-dimensional temperature
along with Grashof number for different values
of discrete heated strip is reported in Fig. 7 and
8. ln general, the average Nusselt number
remains invariant up to a certain value of
Grashof number and then increases briskly with
increasing Grashof number. Maximum Ner is
obtained at small heat source size for higher
value of Gr while <D : 60". Maximum non-
dimensional temperature of the heat source does
not change up to a certain value of Gr. After that
it changes its profile as Gr increases. It is
noticed that a lower value of 0^^is obtained at a
higher value of Gr for all inclination angles.
Therefore, better thermal performance is
achieved for the triangular enclosure of small
heat source size at higher Grashof number and
inclination angle.

4. Conclusions
Two dimensional, steady, natural

convection flow in a tilted isosceles triangular
enclosure, partially subjected to constant heat
flux at the bottom wall while the upper walls are
cooled at a constant temperature, has been
investigated numerically for a wide range of
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Grashof numbers, aspect ratio of the enclosure,
discrete heat source size and inclination angles.
The synopsis ofthe investigation is that average
Nusselt number decreases as the heated strip
enlarges, and increases along with inclination
angle. Optimum heat transport phenomenon is
gained for higher value of Grashof number and
aspect ratio ofthe enclosure.

NOMENCLATURE

A aspectratio (H/lT)
g gravitationalaccelerationIm/s']
Gr Grashof number
H height of the cavity [m]
k thermal conductivity [W/m'K]
L length of the heat source [m]

Nu Nusselt number
p pressure [Pa]
P dimensionlesspressure
Pr Prandtl number

q" Heat flux at the source
T Temperature [K]

AT Temperature difference [K]
u,v dimensional velocity [m/s]
U,V dimensionless velocity
W length of the cavity [m]

x,y dimensionalcoordinates
X,Y non-dimensional coordinates
Greek S.v.'mbols:
a Thermald i f fus iv i ty Im' ls ]

P Thermal expansion coefficient [1/K]
e discrete heat source size (L/W)
0 Dimensionless temperature
p Fluid density [kg/m']
17 Kinematic viscosiry [m'ls]
A Inclination angle [deg]
Subscripts:
c cold wall
s local

max max
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Fig. 1: Schematic diagram of the physical domain and boundary conditions
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Streamlines Isotherms
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Fig. 5: Streamlines and isotherms in the enclosure with e : 0.6 and Gr : 706.
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Fig.6 (a): Streamlines and isotherms in the enclosure with e : 0.4, <D:0'and A:0.5
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Fig.6 (b): Evolution of the flow in the enclosure with inclination angles (Gr :106. A:0.5. e:0.4)

J J



- - 15" :,'
/ ,  t

- -- 30' . ."" t '- - '  J U  t , ' r '
- ' 4 5 o  " ' /  /

l i /  z '
. 60o ,.i')' ..'

, i " /  , ,

./:)"'
i;/.'

'...._....."......._-.-4*t':'3'

Thammasat Int. J. Sc. Tech., Vol' 12, No. 4, October-December 2007

A : I

(..l
,{

a
I z

t2

l 1

l0

9

8

l0

9

8

6

5

1000

-0o

- -  1 5 0
- - -  3 0 "
-- 45.
r 60o

10000 Gr

-0 "
- -  1 5 0
-  - -  300
- -  45 "
r 60o

/ri

1000000 1000 10000 Gr 100000

- -  0 "
. - - 1 5 '
- - 3 0 '
- 4So
r 60o

1000 10000 Gr 100000

10000 Gr 100000

- - . 0 o

- - 1 5 "
- -  30 '
- 45"
. 600

- 0 o

- -  1 5 0
- -  -  300
- -45 "

r 60o

A : 0 . 5

10000 Gr 100000

10000 Gr 100000 1000000

13
t2

l l

l0
z 9

8

7

6

l 1

10

9

8

z 7

6

J

4

10

9

8

a 7
z

6

5

4

1000000

s =
o Z

9

8

d  J 1
7 l

i l -

6

5

z

t

9

8.5

8

oo

, , z l
t l

* 6.5

6

5.1

9

8

6

J

4
1000 10000 Gr 100000 r000000 10000 Gr 100000

Fig. 7: Variation of the Nusselt number at the heated surface with Grashof number.
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Fig. 8: Variation of the d.u* at the heated surface with Grashof number.
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