Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Handling XML in Traditional Databases

Kwanjai Deejring and Pensri Amornsinlaphachai

Nakhon Ratchasima Rajabhat University, Thailand
E-mail: kdeejring@yahoo.com, kokkoy@hotmail.com

Abstract

Most research in the XML area has concentrated on storing, querying and publishing XML while
not many researchers have paid attention to updating XML; thus, the XML update area is not fully
developed. This work contributes a solution for the update of XML documents via ORDB (Object-
Relational Database) to advance the techniques in this area through preserving constraints, maintaining
performance in the presence of data redundancy, permitting joins of documents in updates and
allowing the updates of documents whose structure is known partially or whose structure is recursive.
Experimental study to evaluate the performance of XML update processing has been conducted. The
experimental results show that updating multiple XML documents storing non-redundant data yields a
better performance than updating a single XML document storing redundant data; an ORDB can take
advantage of this by caching data to a greater extent than a native XML database.

Keywords: XML updates, ORDB, XML constraints

1. Introduction
XML has become an effective standard for

representing semi-structured data on the Web

since it provides a natural data structuring
mechanism for hierarchical and recursive data;
moreover it is flexible in that it allows the
authors to define their own tags and structure for
documents and can handle data whose
occurrence is optional. Many researchers in the

XML area have focused on storing, publishing,

and querying XML documents. XML

consequently provides most of the features

normally expected for a database model.

However, there is an omission in that most

existing work does nof pay much attention to

modifying XML or does not mention it at all.
One possible reason behind the immaturity

of the XML update area is as follows. XQuery

has not provided update features because the

W3C Consortium wanted to release the standard

of XQuery as soon as possible [12]. Thus, only a

few researchers have paid much attention to this

area. Our work has identified five main
problems as follows:

» The work published presently can update
XML documents but only without checking
constraints. Even commercial products
cannot guarantee the integrity the database
when XML data is updated [8].

44

= Normally, all XML data is kept in one
document; thus data redundancy may occur.
This can lead to data inconsistency and low
performance when updates are performed.

= No XML update language supports joins of
XML documents.

= Regular path expressions are used to
query/update XML whose structure is
unknown or only partially known. Using
regular path expressions, especially a
descendent path expression (‘//”), can slow
the process of querying/updating data [47]
because the query engine must traverse all
possible paths in XML.

= In XQuery, there is no specific facility to
query data whose structure is recursive;
however the effect can be achieved by
creating a recursive user-defined function.
Until now, no technique has been proposed
to translate this recursive feature into SQL.

The rest of this paper is organized as
follows. Section 2 presents the goal of our work,
to devise a more effective solution for updating
XML data and solve the open problems as
mentioned previously. Section 3 shows the
results of experimental study, including
performance aspects. Related work is covered in
Section 4. A conclusion is provided in Section 5.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

2. Our Solution for Updating XML

Nowadays, there are two dominant
approaches for managing XML repositories. The
first approach is to use native XML databases to
handle the data. The second approach maps
XML onto a traditional database (e.g., relational
database (RDB), ORDB and object-oriented
database (OODB)).

XML updating has been relatively well-
researched in the area of native XML databases,
whereas in the area of applying traditional
databases to manage XML, only one work [42]
has presented an XML language for updating
XML data. This work employed an RDB, but
only the syntax and semantics of the language
are presented. In our solution, the more
advanced technology of ORDB is exploited to
update XML documents.

The purpose of using a traditional database,
ORDB, in this research is different from that of
other work. The previous work uses OODB (1,
52], RDB [13, 23] and ORDB [24, 32] as
DBMS of XML documents to store and query
XML data but our approach uses ORDB to
preserve constraints during updating and to
indicate the target-elements in XML documents
which should be updated. The updates are
performed on XML documents; thus users can
query data from XML documents instead of
ORDB and it is not necessary to maintain the
order of elements in ORDB. This reduces the
cost of data conversion, since nowadays, the
major expense of exchanging messages between
Web Services comes from converting data such
as between a database and XML format [48].
The overview of our approach is illustrated in
Figure 1.

<books> <authors> For $a in doc("authors.xmi")//author
<book isbn = "12-345" > <author aid = "a11"> where $a/name = "Mick Rossiter"
<title>RDBMS</title> <name> .
h ’ . replace $a/name with

Cc <author rlink-href = Mick Rossiter R .
) “author@aid = a11%> </name> <name>Nick Smith</name>
2 </author> <address>... </address>
< | . <telephone>..<ftelephore>/ ~ — — — |~ T~ T T T T T T T T 77
) </book> | | .. |
-] </author> I

</books> |

</authors> |
__________________________ |
w s L Update authors a
o | Update({name, "Nick Rossiter"}, target) Set a.author.name = "Nick Rossiter"
2— Where a.author.name = "Mick Rossiter"
Q
3 author
[=
= address telephone
Q aid [name
. | zi |

U | target = /authors/author[@aid = "a11")/name no zipcode | place | telno
S | update-data = "Nick Rossiter"
[2]
1]
[
n

Figure 1. Overview of the solution to updating XML documents

In the solution, DTDs are used in our
mapping since most XML documents still stick
to DTDs [31]. Not only XML structure but also
XML constraints are mapped to ORDB, since a
DTD defines the constraints on the logical
structure of XML documents [27].

Non-redundant data is kept in separate
multiple XML documents, avoiding the storage
of redundant data in one single XML document;
then the separate documents are linked together.
To update XML data, an XML update language,

45

as an extension to XQuery, is proposed, and this
language is translated into SQL to update XML
data stored in ORDB. Then the changes in
ORDB are propagated to the XML documents.
More details of the overview of the solution can
be found in [4]. In this section, an XML update
language, translating the XML update language
into SQL and propagating the change from
ORDB to XML will be proposed, whereas
mapping XML to ORDB is presented in [5].

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

2.1 Updating XML documents

We design an XML update language, an
extension to XQuery, and then translate this
language into SQL. Six major features of the
XML update language inherited from XQuery
will be translated: FLW(R|[D) expression,
conditional expression, quantifier, aggregate
functions, non-recursive user-defined function
and recursive function.

In this section, firstly the syntax of the
update language is presented. Secondly, the

technique for translating the first five features is
presented. For the recursive function, its
translation is presented in [6]. Our rules can be
applied to RDB presented in [6] too.

211 The Syntax of the XML update
language

The syntax of our XML update language is
adapted from [42] and that of XQuery from [45].
The syntax is shown in Figure 2.

(ForClause | LetClause)+

WhereUpdateClause | IfUpdateClause
where each clause 1s:
ForClause
LetClause
WhereUpdateClause ::= WhereClause? UpdateClause

::= For $var in XPath(,8var in XPath)
= Let $var := XPath(,$var ;= XPath)

(. Insert content Into node WhereClause? (Before|After condition pasedon xpath)?

WhereClause ::= Where Condition
UpdateClause ::= DeleteClause | ReplaceClause | InsertClause
DeleteClause ::= Delete node WhereClause? (, Delete node WhereClause?)
ReplaceClause ::= Replace node with content WhereClause?
(, Replace node with content WhereClause?)
InsertClause .= Insert content Into node WhereClause? (Before|After condition vasedon_xPath)?
IfUpdateClause .:= If Condition Then UpdateClause

(Elself Condition Then UpdateClause) (Else UpdateClause)?

Figure 2. The Syntax of the XML update language

2.1.2 Four techniques for translating the
XML update language

Our translation uses four main techniques:
1) update/delete join commands, 2) rewriting
rules, 3) graph mapping and 4) optimization
rules for translating the XML update language
into SQL. The first three techniques are given
below. The optimization rules are presented in

[6].
Update/delete join commands

The translation of XML update commands
can produce joins of several tables. However, in
the SQL standard, update/delete join commands
cannot be performed. Therefore, we translate the
update commands into update/delete join
commands and then rewrite them as SQL with
sub-query commands. The syntax of
update/delete join commands is as follows.

Syntax of joins in update command:

Update table whose data will be updated
From all related tables

46

Set field] = valuel, field2 = value2, ...
Where Condition,
Syntax of joins in delete command:

Delete table whose data will be deleted
From all related tables
Where Condition;

Rewriting Rules

There are seven categories of rewriting rules,
one for each major feature of the XML update
language as itemized above, one for SQL and
one for the rlink. The categories are therefore:
FLW(R|IID) expression, aggregate function,
quantifier, conditional expression, (non-
recursive) user-defined function, SQL and rlink
rewriting rules. In this section, we describe first
the SQL functions followed by the seven
categories of rewriting rules.

I) SQL Functions

In the translation of the language, all
clauses of XML update commands must be
rewritten as SQL functions which are conceptual

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

functions representing the operations of SQL
commands. The SQL functions are used to
group update clauses and their conditions
together since one XML update command can
consist of several update clauses and ecach
update clause can have its own condition. These
clauses are grouped by using function number
(funcNo) which is a parameter of every SQL
function. The funcNo 0 is assigned to
ForClause, LetClause and WhereClause of the
ForClause and LetClause. The clauses with
funcNo 0 are shared clauses for UpdateClause.
Each update clause has its own funcNo, a
running number starting from 1. The update
clause and its own condition will have the same
funcNo. The SQL functions are as follows:

1. bindF(path, $var, funcNo)

. bindL(path, $var, funcNo)

. insert (node, value | :funcNo, funcNo)
. delete(node, funcNo)

. update(node, value | :funcNo, funcNo)
. group_by(node, funcNo)

. select(node, funcNo)

0w 1 N n B W N

. aggFunc(node, funcNo)
where aggFunc ::=max|min|count/avg|sum

Nel

. where|LogicalOper(node, CompareQOper,
value | :funcNo, funcNo)

10. having(aggFunc(node),CompareOper,value |
:funcNo, funcNo)

Four SQL functions, insert(), update(),
where|LogicalOper() and having(), have the
parameter value | :funcNo since sometimes the
value in inserting, in updating or in the predicate
is not a constant value, but may come instead
from selecting a value from other nodes. Hence
in this case, funcNo has the same number as that
for the funcNo of the select() function. The
symbol “:” is used to differentiate the funcNo of
an SQL function from funcNo, which is the
value-parameter.

1) Rewriting rules for FLW(R|I{D)

For all rewritng rules, we use the symbol *-->’
stands for ‘is rewritten as’ and used the symbol
‘_-»>’ stands for ‘is translated into’ The
expression FLW(R|[|D) will be rewritten as SQL
functions as follows:

47

1. For $varin XPath -->
bindF(XPath, $var, funcNo)

2. Let$var :=XPath -->
bindL(XPath, $var, funcNo)

3. Where predicate -->
where(node, CompareOper, value|:funcNo,
funcNo)

4. LogicalOper predicate -->
LogicalOper(node, CompareOper,
value|:funcNo, funcNo)

5. For $var in XPathyegicare -->>
For $var in XPath Where predicate

Then this clause is rewritten as SQL
functions according to rules 1, 3, 4.

6. Let $var := XPathyregicare - ->>
Let $var := XPath Where predicate

Then this clause is rewritten as SQL
functions according to rules 2-4.

7. Select node | Return node - ->
select(node, funcNo)

8. Replace node with simple content -->
update(node, content’s value, funcNo)

9. Delete node --> delete(node, funcNo)

. Insert simple content into node -->
insert(node, content value, funcNo)

. Replace node with complex content and
Insert complex content into node

The complex content is shredded into many
simple contents. Then the command is
rewritten in the form of the commands
based on the simple contents which are in
turn rewritten as SQL functions.

III) Rewriting rules for aggregate functions

1. Define: For $varl in XPathl
Let $var2 := $varl/XPath2
i): aggFunct($var2)
aggFunct($var2, funcNo)
group by($varl, funcNo)

-—>

ii): Where aggFunc($var2)
CompareOper value
group_by($varl, funcNo)
having(aggFunct($var2), CompareOper,
value, funcNo)

-->

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

2. Define: Let $var := XPath
i): aggFunct($var)
aggFunct($var, funcNo)

-=>

IV) Rewriting rules for quantifier

There are two quantifiers: existential
quantifier (some) and universal quantifier
(every). Both can be translated into a count()
function since some is used to test whether at
least one item in a sequence satisfies the
condition while every is used to test whether
every item in a sequence satisfies the condition;
thus their meanings will first be translated and
then rewritten as SQL functions as follows:

1. For $varl in XPathExpl
Where some $var?2 in $varl/XPathExp2
Satisfies (Condition)

For $varl in XPathExp1

Let $var2 := $varl/XPathExp2
Where count($var2) > 0

And Condition

$varl = bindF(XPathExpl, funcNo)
$var2 = bindL($varl/XPathExp2, funcNo)
where (node, CompareOper,

value | :funcNo, funcNo)
(LogicalOper(node,CompareOper,

value | :funcNo, funcNo))

group_by($varl, funcNo)
having(count($var2), >, 0, funcNo)

2. For $varl in XPathExpl
Where every $var2 in $varl/XPathExp2
Satisfies (Conditionl1)
[And Condition2]

For $varl in XPathExpl
Let $var2 := $varl/XPathExp2
Where Condition|
[And Condition2]
And count($var2) =
(For $var3 in XPathExpl
Let $var4 ;= var3/XPathExp2
Where $var3 = $varl
[And Condition2]
Return count($vard)

-->>

-——>>

$varl = bindF(XPathExp1, funcNo)
$var2 = bindL(varl/XPathExp2, funcNo)
where (node,CompareOper,
value | :funcNo, funcNo)
(LogicalOper (node, CompareOper,
value | :funcNo, funcNo))

48

{and(node,CompareOper,
valuel|:funcNo, funcNo)
(LogicalOper(node,CompareOper,
value|:funcNo, funcNo))

group_by(8$varl, funcNo)

having(count($var2), =, :1, funcNo)

$var3 = bindF(XPathExpl, :1)

$var4 = bindL($var3/XPathExp2, :1)

select(count($vard), :1)

where ($var3, =, $varl, :1)

[and(node, CompareOper, value, :1)

(logical operator(node, CompareOper,
value, :1))

group_by($var3, :1)

Besides ‘some’ and ‘every’ quantifiers,
there are two functions: empty() and exists()
which can be rewritten as count() functions.
These functions and quantifiers can be used
along with ‘not’. To summarise, the meaning of
these functions and quantifiers can be translated
before rewriting as follows:

empty -->> Countpredicate =0

exists -->> coUntpredicate > 0

some -->> COUNtpredicate > 0

not (empty) -->> countpregicare > 0

not (exists) -->> coUntyredicare = 0

not (some) -->> COUNtyredicate = 0

every -->> CoUltpredicate = COUNtyithout predicate

not (every) -->>
Countpredicale< countyitnout predicate and Countpredicate>0

V) Rewriting rules for conditional expression

(ForClause|LetClause)+

If (Condition) then
UpdateStm,

Else If (Condition ;) then
UpdateStm,

Else [If (Condition ,)]
UpdateStm,
->>

(ForClause|LetClause)+
Where Condition
UpdateStm,
(ForClause|LetClause)+

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Where Condition ,
And —(Condition)
UpdateStm,

(ForClause|LetClause)+
[Where condition]
Where|And — (condition ;)
And — (condition ;)

And — (condition ,_;)
UpdateStm,,

The series of commands is then rewritten as
SQL functions according to the category of
clauses in the commands. The number of
commands in the series corresponds to the
number of conditions in if-then-else. The
symbol — stands for ‘not’.

VI) Rewriting rules for non-recursive user-
defined function

Calls to non-recursive functions are
replaced with the body of such functions and
parameters of the function are replaced with the
values of arguments. After such replacements,
the update command is rewritten as SQL
functions according to the category of clauses in
the command.

VII) Rewriting rules for the rlink
Define: rlinkEle is the rlink-element containing
@rlink-href whose value is XPath

parentEle is the parent of rlinkEle

linkedEle is the element referenced by
XPath which is the value of @rlink-href

1. Where rlink-element

If there is only one predicate in XPath based
on PK of linkedEle as follows:
PK of linkedEle = value

Then Where parentEle/rlink(rlinkEle, XPath)
--> where(parentEle/rlinkEle#linkedEle, =,
value, funcNo)

Else Where parentEle/rlink(rlinkEle, XPath)
- - > where(parentEle/rlinkEle#linkedEle, =,
:funcNo2, funcNol)

select(PK of linkedEle, funcNo2)
where(condition in XPath, funcNo2)

2. Insert rlink-element

49

If there is only one predicate in XPath based
on PK of linkedEle as follows:
PK of linkedEle = value

Then Insert rlink(rlinkEle, XPath)
Into parentEle -->
insert(parentEle/rlinkEle#linkedEle,
value, funcNo)

Else Insert rlink(rlinkEle, XPath)
Into parentEle -->
insert(parentEle/rlinkEle#linkedEle,
:funcNo2, funcNol)
select(PK of linkedEle, funcNo2)
where(condition in XPath, funcNo2)

3. Replace rlink-element is translated into a
sequence of delete and insert rlink-element
with the sequence rewritten as SQL functions
according to rules 1-2:

Replace parentEle/rlinkEle with
rlink(rlinkEle, XPath1)
[Where parentEle/rlink(rlinkEle, XPath2)]
->>
Delete parentEle/rlinkEle
[Where parentEle/rlink(rlinkEle, XPath2)],
Insert rlink(rlinkEle, XPath1) Into parentEle

Then Where and Insert clauses are
rewritten according to rules 1-2.

VIH) SQL rewriting rules

Rules are used to rewrite joins in update
commands and joins in delete commands as
SQL with sub-query commands. The rewriting
rules for joins in update commands and in delete
commands are shown in Figures 3 and 4
respectively.

Graph Mapping

The purpose of graph mapping is to
indicate the SQL functions performed on tables,
(column of) nested table, (column of) abstract
data type or simple columns of the table.
The steps for graph mapping start from creating
a graph whose paths correspond to paths in the
SQL functions. Then the graph is mapped to the
ORDB schema to identify the ORDB structure
on the graph. The keys for joins of tables and
join symbols are then added to the graph and the
SQL functions are mapped to the graph. Next,
the actions, pushing the function down to proper
nodes of the graph and changing the meaning of
update operations, are performed according to
the following rules.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Update-rule 1: If a delete or insert function is
performed on nodes converted to ADTs having
siblings, fields of an ADT, fields of a table or
fields of a nested table, without either a delete or
insert function on an ancestor-node converted to
a table or an ADT without a sibling, then the
function will be converted to an update function.
Update-rule 2: If an insert function is
performed on a node converted to the primary
key of a table, then this insert function must also
be applied to the foreign key of the child-tables
to maintain parent-child relationships.

Update-rule 3: If a select, where or group_by
function is performed on a node converted to a

table or an ADT without a sibling, then the
function will be pushed down to the primary key
of the table.

The graph may then be split into several
sub-graphs. The number of sub-graphs is equal
to the number of update operations performed
on the tables, which have a distinct function
number. Finally, optimization rules [6] are
applied to the (sub-)graphs and SQL commands
or update/delete join commands are generated
from the (sub-)graphs. If the generated
commands are in the form of update/delete join
commands, the commands are rewritten
according to the SQL rewriting rules.

Set field1 = value, field2 = value, ...
Where Condition

Define:

valuel, value2 are constant values
If predicate of T1.FK1 is TL.FK1 = valuel OR
predicate of T1.FK2 is TLFK2 = value2

Update T1

From all related tables

Set FK1 = value, FK2 = value
Where Condition

And T1.FK1 = valuel | T2.PK
And T1.FK2 = value2 | T3.PK

- >

I
Update T1 ,
From all related tables '
Set FK1 = value, FK2 = value '
Where Condition !
And T1.FK1 =T2.PK s
And T1.FK2 = T3.PK :
I
i
I
I

EndIf
EndIf

If T1 is table Then
TOpdate T1 T
! |
gpd‘“eu“ ted tab! . ! Setfield] = value, field2 = value, ... ;
rom all relatea tables : Where PK(Tl) in :
i I
]

N S et

Else If Tl is separate table derived from IDREFs or rlink

T2 is table containing primary key(PK) referenced by foreign key (FK1) of T1
T3 is table containing primary key(PK) referenced by foreign key (FK2) of T1

1 Update T1
ISet FK1 = value, FK2 = value
! Where T1.FK1 (= valuel |

And T1.FK2 (= value2 |

[EUIDNURREPR A -0 <)t Syl e Al bl S S
Else If predicates on T1.FK1 and T1.FK2 are not constant values

Update T1
Set FK1 = value, FK2 = value
Where T1.FK1 in (Select T2.PK

And TIL.FK2 in (Select T3.PK

PO iy g g S S e ettt

(select PK(T1) from all related tables
where Condition)

1
]
i
[}
in (Select T2.PK "
From all related tables except T1 '
Where Condition without join to T1)) !
1

[}

[}

I

i

]

in (Select T3.PK
From all related tables except T!
Where Condition without join to T1))

)
1
I
i
]
From all related tables except Tland T3 |
Where Condition without join to T1 !
and except predicates on T3) !
]
From all related tables except T1 and T2 E
I
[}
1

Where Condition without join to T1
and except predicates on T2)

Figure 3. Rewriting rules for joins in update commands

50

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Define:

Delete T1
From all related tables
Where Condition

If Tl is table Then
Delete T1 | Delete From_"I:I _____ '
From all related tables --> Where PK(T1) in (select PK(T1) from all related tables |
Where Condition ! where Condition) !

Else If T1 is separate table derived from IDREFs or rlink

T2 is table containing primary key(PK) referenced by foreign key (FK1) of T1

T3 is table containing primary key(PK) referenced by foreign key (FK2) of T1

valuel, value2 are constant values

If predicate of TL.FK1 is T1.FKI = valuel OR
predicate of T1.FK2 is T1.FK2 = value2

And T1.FK1 = valuel | T2.PK
And TL.FK2 = value2 | T3.PK

Where T1.FK1 (= valuel |
in (Select T2.PK
From all related tables except T1
Where Condition without join to T1))
And T1LFK2 (= value2 |
in (Select T3.PK
From all related tables except T1
Where Condition without join to T1))

Delete T1 !
From all related tables
Where Condition

And T1.FK1=T2.PK
And T1.FK2=T3.PK

- >

EndIf
EndIf

Where T1.FK1 in (Select T2.PK

And T1.FK2 in (Select T3.PK

1
|
I
From all related tables except Tl and T3 !
Where Condition without join to T1 |
. I

and except predicates on T3) !
1

1

[}

[}

1

1

1

From all reiated tables except Tl and T2
Where Condition without join to T1
and except predicates on T2)

Figure 4. Rewriting rules

2.2 Propagating the changes to XML
Propagation of the changes from ORDB to
XML documents is performed only on the parts
affected by updating. We use values of a
primary or foreign key of updated data in the
database to indicate the elements in XML
documents which should be updated. When data
in the ORDB is updated, the values of a primary
or foreign key of updated data will be returned.

for joins in delete commands

Subsequently paths in the XML update
command are used to create XPath expressions
whose conditions are based on these returned
values to indicate the targets or reference
positions in XML documents for updating.
XPath has no capability for updating. Hence we
propose five propagate functions, shown in
Figure 5, to serve as operators for updating
XML documents.

Propagate Functions

Description

Insert (nodeLst, targetLst)

Inserting nodeLst into nodes in targetLst

InsertBefore(nodeLst, targetLst)

Inserting nodetLst before nodes in targetLst

InsertAfter(nodeLst, targetLst)

Inserting nodeLst after nodes in targetLst

Delete (targetLst)

Deleting nodes in targetLst

Update (nodeLst, targetLst)

Replacing values of nodes in targetLst with values of
nodes in nodeLst

Figure 5. Propagate functions

51

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

From the functions in Figure 5, the parameter
nodeLst can be derived directly from the XML
update command. The parameter fargetLst is an
XPath expression. The path in the XPath is
derived from a path in the XML update
command.

Locating position for updating
The nodes in XML documents which

should be updated can be identified by an XPath

expression whose condition is based on the
values for keys returned from ORDB and some

predicates derived directly from the XML

update command. Such predicates are those of

before and after clauses and on IDREFs, rlink-
elements and elements/attributes converted to
fields of nested tables. To determine which
values for a key should be returned, the types of

ORDB structure and types of update operations

performed on that ORDB structure are

examined. A summary of operations performed
on ORDB and values for the key returned from

ORDB, when an XML update command is

performed on each XML structure type, is

shown in Table 1.

The details of the eight columns in Table 1 are

as follows.

e Column 1 shows the type of update
operation performed on XML documents.

e Column 2 shows the type of XML structure
on which the update operation in column 1
is performed.

e Column 3 shows the type of ORDB
structure converted from the XML structure
in column 2.

e Column 4 shows the type of update
operation performed on ORDB.

e Column 5 shows the keys for the values
which are returned from the ORDB.

e Column 6 shows which ID in XML
documents is the receiver for the returned
values for the keys in column 5. The
receiver and the returned values are used to
compose a key-condition for the XPath
expression.

e Column 7 shows the conditions used along
with the key-condition for the XPath
expression.

e Column 8 shows the element or attribute
which is the target or reference position for
updating. This position is retrieved by the
XPath expression.

52

3. Experimental study

It is important to verify the method for
updating XML, developed in section 2. This was
done through an experimental study in which a
diverse range of 17 update queries were
executed and the results carefully inspected to
check that they were as expected. In addition, to
gain an insight into the performance of the
update techniques, runs were repeated with
variable database size, cache state, degree of
redundancy and methods for linking XML
structures.

3.1 Experiment platform and methodology

In the experiments, three types of databases
are used. The first is X-Hive, a commercial
native XML database (nxd), used to keep
redundant data of a single XML document. The
second is Oracle ORDB employed to keep
redundant data of a single XML document (sxd).
The third is Oracle ORDB utilised to keep non-
redundant data of linked XML documents (1xd).
All experiments are conducted on 1.3 GHz
Pentium M machine with 768 MB main memory
and 20 GB disk running Windows XP. The
experiments are designed to evaluate the
performance for updating: (a) native XML
database storing redundant data, (b) ORDB
storing redundant XML data and (c) ORDB
keeping non-redundant XML data. Varying
sizes of the databases ranging from 5, 10, 20 to
40 MB are used. The number of redundant
records for 5 MB data size varies from 10, 20,
40 to 80 records while the number of redundant
records for 10, 20 and 40 MB data size is two,
four and eight times, respectively (the number of
redundant records for the 5 MB data size). In
updating the linked XML documents, each
update command affects 10 records. Thus the
number of records in a single document affected
by a command varies according to the
proportion of redundant records.

To study the effect of data caching on the
performance of updating XML, the experiments
are conducted in cold cache, warm cache and
hot cache. In cold cache, the database is
restarted for each individual update command.
In warm cache, the database is restarted for each
individual command as well, however before
running the command, five unrelated commands
will be run first. In hot cache, the same
command is run twice in succession and the
performance measured for the second run.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

JUBWS J00i Jou SI (1Y 40) 9Ige) (3004 Jou) ‘Juawale 1004 S| 1 AV 4O 219e) :(3004) ‘(7 Woly Jou) AJuO 3 WOoI) PBLIBAUOD 8Q UBD aINjoniis gayO a4l : .(3)
Aoy ubiaioy)4 A8y Arewiud Hd ‘wsiueyosw yuild Buluieluos Juswae (U ‘1 QY JO PIBY (41aV ‘@dA) ejep joelsqe (1av ‘PlelY 8jdel palsau 41N ‘|ge} paissu (1N ‘@INgule |y ‘Juswale |3

19)JE/21049q JO UOHIPUOD 10}Sa0ue }S31eau JO Q| mo1 payepdn Jo Md ayepdn M4 IHuI
19))2/210}3G JO UOHIPUCD 10}S80UE }SaIeal Jo (| MOJ PalIasUl O Md 15| uasul 9|qe)} ajeiedeg U 's43HAl
19})&/210}94q JO UONIPUOD auou auou Hasul (yoos) Buyqis ou 1 Qv 3
UOIIPUOD 19}JE/210§9q JO UOPUOD 10}S90UE }S21BaU JO (]| MOJ PBUBSUI JO Y4 Hasu {oo13j0u) aiqey ‘Buiqis ou | QV 3
Jaye/a10)0q 13)J8/810§3Q JO UOIPUCD 10)S90UE)s81e9U JO Q| | LN DUIUIBJUOS MOJ JO Md aiepdn 41N 3
ur Bunais LN JO sp[ay uo suopipuod

18Y48/210§3q JO UOIIPUOD 10}sa0ue }saieau Jo | | LN DUIUIBJUOD MO JO Yd pasul 1N 3

19)J8/1043q JO UOIIPUOD 10)s8oUe }S81eaU §0 (i moJ pajepdn jo Hd aepdn L(3) Buais yum 1av ‘414av ‘pisy 3J | Jeye/aioleq

(SRS IR

o e = - qouwmumm;« — Fo — Awtbo_,mmwm u w-,C T W«m@ma - A AR S xn_ ,,ufxc__;qv S
10)s80Ue }saleal Jo Q| MOl papasul J0 Md I1S) pasu| a|qe) ejeiedag U sIJHA|
auou auou pasu| (yoou) Buyqis ou 1y 3
v/3 J0 Jualed 10}S@0UE }Saleau Jo Qf MOJ paUasUl JO Y4 yasu| (yoou jou) 8|qe) ‘Buygis ou 1 QY 3
TN JO sp|al} uo SUORIPUOD 10}S80UE }S81edU JO Q) | LN DUIUIEJUOD MO JO Md ayepdn 4IN vio3g
10}S80UE }581e9U O () | 1N DUIUIEJUOD MOl JO Hd Hasu| IN 3
10}S9%ue Jsaleau jo) Mol pajepdn Jo HMd 9jepdn L(3) Bugis yum 1Qv 41QV ‘PIoL vi03

M0 payepdn Jo Md

ojur - pasu|

J0}S90UE }S81BaU Jo | aepdn M4 Pu
J2IU- U1 UO UOHIPUOD 10}S@0UE }$81EdU JO (]| MO Pa1aIap JO Md IS| BEES 9|qe} ajesedag ERT]
S${3¥J| UO UOHIPUOCD 10)S90UE }saleau Jo (| MO Pa}a|ap JO Md 15| BEES 9|qe) ajeiedsg s434dal
vio3 "0s8p isaiesu 1o 3 Jo d| MO PBIBI8P JO Md 8)8|9p ajqe} ‘Bulqis ou 1 aY 3
1N JO Sp|al} uo SUOIHIPUOD 10]S80UB }Sa1eau JOo (0} | N DUIUIBJUOD MOl)0 Md ajepdn JIN vi03
LN JO Sp|al} UO SUOIIPUOD 10}S30UE }581E3U JO (Jf | N DUIUIEJUOD MOJ JO Hd EEETY) 1IN * 3
10}S8%uUE Jsaleau Jo Q| Mol pajepdn jo Md ajepdn L(3) Bungis yum 1Qv ‘41QaV ‘PIey vi103 BEES

N o T 10}Se0UE 1S3JERU JO Q] ~ m0J paepdn 10 g « N BT B
R CCE J2IU=4UI)I@)3 Uo UolIpuocd J0}S8oUE JS8Ieau JO (| MO P33P JO Md ISt s|qe) ojeledag IHuid
s434Qd| Uo UoPUOD 10)S8OUE }saieau Jo | Mol pajepdn JO Md IS| a|qe) ajeledag s434ql
"089p }saleau 10 340 Q| MoJ pajepdn Jo Md a|qe} ‘Bulqis ou 1 gy 3
vio3 1N JO Spi{al} uo SUOIpUOD 10}S@0UE }S81edU JO | | LN DUIUIBJUOD MO JO Yd 4IN 40 .(3) IN PECE]

Jojsadue jsalesu Jo |

Mol pajepdn jO yd

S UYIm 1AV '41av 'PIdY

V103

aoe|dal

Sunepdn Jo 3031e) pue SUORIPUOD ‘SISAIIIAL ‘SAN[RA PAUINJAL J0J SAY ‘SapIs (1O pue TINX uo suonerddo ajepdn jo Arewrwung :[[qeL

53

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

We design commands covering the 17
features shown in Figure 6. Each experiment is
executed five times and the longest and the

shortest elapsed times are ignored; thus only an
average of three elapsed times is reported.

Cl
C2
C3
C4
C5
C6
C7
C8
Cc9

Exact Match

Update without join of documents
Change selectivity

Allow condition on text

Support aggregation

Support quantifiers

Joins based on values

Joins based on pointer

Casting

C10
Cll
Cl12
Cl13
Cl4
Cl15

Clé6
C17

Join documents in update
Navigation by reference traversal
Handling missing elements
Element ordering

Using regular path expression
Mix between data-centric and
document-centric

Hierarchical and sequential update
Recursion and reference traversal

Figure 6. The 17 update features for the experimental study

3.2 Discussion of the experimental results

This section discusses the performance
with different data redundancy and data caching.
Figure 7 contains four graphs, one for each size
of the database. Each graph plots average
elapsed time for replace, delete and insert
operations against the number of redundant
records in the three possible cache states: cold,
warm and hot.

Note that the update time in the graphs and
the tables excludes serialization time since,
usually, serialization can be performed only
once after all updates finish.

The commands C14 (regular path expression)
and C17 (recursion) are excluded from the
average time of nxd since X-Hive does not
support C17 while the elapsed time of the C14
run on X-Hive is so long that it can affect the
overall performance of the systems.

From the graphs in Figure 7 in cold cache,
sxd has the worst performance for every data
size, whereas nxd has the best performance.
However when the data size is 40 MB and there
is considerable data redundancy, Ixd can
outperform nxd. This is because Ixd does not
contain redundant data; thus although the
number of updated records will be constant for
every degree of redundancy, the data size will
be smaller when nxd has more redundant data.
Therefore the performance of 1xd is better when
the degree of redundancy in nkd is greater.

For warm and hot caches, Ixd has the best
performance in all cases while nxd has the worst
performance when the data size is smaller than
20 MB. When the data size is 20 and 40 MB,
then nxd can outperform sxd. This is because
.the update time in sxd consists of SQL-time and

54

DOM-time (time for updating DOM of XML)
and when the data size is doubled, DOM-time is
also approximately doubled whereas the update
time of nxd is increased to a lesser extent. When
the data size is increased, there are clearly more
records to be updated. As sxd has a rollback
mechanism, this means that more data has to be
preserved for recovery purposes. nxd does not
have such a mechanism so there is no penalty in
performance here. So the performance for sxd is
affected by redundant data more than that for
nxd as can be seen clearly when the data size is
bigger than 5 MB.

The time in cold cache for Ixd is about four
or five times that in warm cache, and the time in
cold cache for sxd is double that in the warm
cache. By contrast, the times in cold and warm
caches for nxd are similar, showing that 1xd and
sxd gain more benefit from caching data than
nxd. The difference in time between the cold
and warm caches for Ixd is more than that for
sxd. This is because caching data has only a
little effect on DOM-time but a much greater
effect on SQL-time. For Ixd, the DOM-time is
small when compared to the SQL-time; thus,
when the cache state is changed from cold to
warm, most of the difference in time is
attributed to the change in SQL-time, causing
significant difference in the elapsed times for
cold and warm caches. On the other hand for
sxd, the DOM-time is nearly equal to the SQL-
time in cold cache and the DOM-time is
changed by only a little when the cache state is
changed from cold to warm. Thus, the
difference in elapsed time between cold and
warm caches in sxd, is less than of the same
case in Ixd.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

$OYOED 10 PUE WLIBM ‘PJOD UI PX] PUEB PXS ‘PXU JO SWul) 0FRISAY *L 3In31]

(P
(0L - 01 « SPJ4023l) Aouepunpsy

&)
(0L - 01 « SPI0DBI) Aouepunpay

0y wie m ploo 104 wie m ploo
ow_oloio_ ow?oioie ow‘oioﬁe owioiomvor 08 Tiomve oiolom_e
000 000
m | nney M
L0z 8 oo.r 5
pX| —¥— @ px| —¥— AR
Fo0Y < | Ao 2
pXs —m— o= pPXs —m— 00'¢ Wv
pXU—@— L0093 PXU—o— Fo0y B
. @ - 00 @
r008 @ o0 m
- 000L 2 2
@ r00L @
00z} 00’8
("N OF) soseqelep aaiy) Jo awy abelaay ('@ 02) seseqelep 994y} Jo awl} abelaay
(a) (e)
(0L - 0L . Splodal) Aouepunpay (0L - 0L » SPJoo81) Aouepunpay
104 wie m ploo joy wie m plo2
873‘8‘9 oiov_oie oioiomvor oioloﬁor S_oioior owioloie
000 000
m . A M
Vg gy 00} 3 r050 g
pX| —%— ﬁ 1] pX|—%— - 00 L @
N ooz & e
pxs —l— w. pXs —l— F0S'L o
e Fooe 3 ||| e F00C 3
- 00v 3 g omum 8
00 S r00€ g
& Fose &
009 00'¥

("a@ 01) seseqejep aauy) Jo awi abelany

("N G) seseqelep aaJy} Jo awp abesaay

55

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

4. Related work

The general steps for updating XML via the
traditional databases are: (i) mapping XML
schema to the database schema and (ii)
translating an XML update language into SQL
executed on the database. Our work updates
XML via ORDB; hence related literature
includes mapping XML to traditional databases,

the languages for updating XML and the
translation of the languages into SQL. Because
of limited space, the detail of each work is
omitted and we just summarize the comparison
of mapping XML to the database in Table 2,
comparison of XML Update Languages in Table
3, and Comparison of techniques for translating
XML query into SQL in Table 4.

Table 2: Comparison of mapping XML documents to traditional database models

Type of | Mapping Query XML | Constraint | Order .
Research/Proposal Model schema | method | Language | Update | Handling | kept Recursion
Khan et al. [22] Relational | DTD Node XPath No No No No
Psaila and Milano [36] Relational { DTD Shred None No No No No
Shanmugasundaram Relational | DTD Shred XML-QL No No No Yes
et al. [401] Lorel
Zhou et al. [51] Relational | DTD Shred None No No No Yes
Lv and Yan [28] Relational | DTD Shred None No Partial No No
. XML
Bohannon et al. [10] Relational Schema Shred XQuery No No No Yes
Varllarr?ls ar.ld Relational XML Shred DB. No Partial No No
Vazirgiannis [44] Schema Command
Atay et al. [7] Relational | DTD Shred None No No Yes Yes
Amer-Yahia et al. [3] Relational | ML | Shred) yph [No | No Yes | Yes
Schema | Edge
Florescu and Relational | None Edge None No No Yes Yes
Kossmann [17]
Jiang et al. [21] Relational | None Edge XPath No No Yes Yes
Manolescu et al. [30] Relational | None Edge QUILT No No No Yes
Yoshikawa et al.[50] Relational | None Node XPath No No Yes Yes
Data User
Deutsch et al. [13] Relational | None o defined Yes No Yes Yes
mining
language
Jensen and Beitzel [9] Relational | None Node XML-QL | No No No Yes
Shimura et al. [41] OR None Node XQL No No Yes Yes
Klettke and Meyer [24] OR DTD Shred None No Partial No Yes
Runapongsa and Patel[37] | OR DTD Shred SQL No No Yes Yes
Tseng and Hwung [43] OR DTD Shred None No No No No
DTD,
Mo and Ling [32] OR XML Shred None No Partial No No
Schema
XML .
Pardede et al. [34] OR Shred None No Partial No No
Schema
XML
Han et al. [19] OO/OR Shred None No No No No
Schema
. OQL
Abiteboul et al. [1] 00 DTD Shred . No No No No
extension
. XML-
Fegaras and Elmasri [14] 00 DTD Shred 0QL No No No No
Zwol et al. [52] 00 DTD Shred Algebra No No No No

56

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Table 3: Comparison of XML Update Languages

XML-RL XML
Language XUpdate | SixDML | * Lorel XML-GL Update Update

Features [49] 33] 2] [11 Language | Extension
: [26] {421
Updating elements | elements | nodes nodes elements elements
Order Preserving Y Y Y N Y N
Recursion N N N/A N Y N

Joins of documents

N N N N N N
based on values
Joins of docqments N N N N N N
based on pointers
Update multiple linked N N N N N N
documents
A sequence of updates Y Y N N Y Y
Implementaton/prototype Y N Y N N N
Origin of Language XPath XQuery Lorel XML-GL | XML-RL XQuery

Table 4: Comparison of techniques for translating XML query into SQL

Represent i y
Researchers Recursion | Optimization | XMLto | “#N8UBE/ | papapage
expession
Database

Fong and Dillon [18] N N shredding XQL Relational
Shanmugasundaram et al. [40] N N shredding Lorel Relational
Jain et al. [20] N Y shredding XSLT Relational
Krishnamurthy et al. [25] Y N shredding expfeaststzons Relational
Fernandez et al. [15] N Y XML V. XQuery Relational
Fernandez et al. [16] N Y XML V. XML-QL | Relational
Shanmugasundaram et al. [39] N Y XML V. XQuery Relational
Jensen and Beitzel [9] N N Node XML-QL | Relational
Khan and Rao {23] N N Node XPath Relational
Prakash et al. [35] Y N Node expfeast_:lions Relational
Shimura et al. [41] N N Node XQL OR
Yoshikawa et al. [50] N N Node XPath Relational
Florescu and Kossmann [17] N N Edge XML-QL Relational
Jiang et al. [21] N N Edge XPath Relational
Manolescu et al. [30] N N Edge Quilt Relational
Manolescu et al. {29] N N Edge XQuery Relational
Three major points from the literature support for constraints as shown in Table 4.
review are summarized as follows. However, for these, constraints may be defined

which conflict with each other, for example
[51], or which are impracticable in the current
technology, for example [31,39], or which are
incomplete, for example [35,40]. In addition,

Mapping XML to conventional databases: No
piece of research handles constraints fully
during the mapping of XML to the database. A
number [31, 35, 39, 40, 51] do provide partial

57

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

there is just one work, [19], supporting simple
update in the query language.

XML update languages: XQuery, a standard
from W3C, is the most powerful of the existing
XML query languages; thus some works make
extensions to it while others propose new query
languages supporting update features.
Nonetheless, none can update multiple linked
documents and join documents in updates. From
Table 6 there is only one work XML-RL [101],
which can update data whose structure is
recursive but this work has not been
implemented.

Translating XML query language into SQL:
No existing work translates the full recursive
function of XQuery into SQL, although, from
Table 7, [25, 35] makes some attempt, but the
researchers just translate a path expression
containing ‘//” into SQL. Several other features
of XQuery such as aggregate functions and
quantifier have not been translated into SQL.

Overall: It is evident that no existing
approach comes close to providing an effective
update language meeting our requirements. In
particular, constraints are at best partially
handled with severe limitations in some cases on
their application. Approaches that can handle
constraints to a limited extent have no capability
for recursion. In updating, no approach can
update multiple linked documents and
documents connected through joins.

5. Conclusion and further work

In our work, we have presented an XML
update language as an extension to XQuery,
translated it into SQL, which is executed on an
ORDB storing XML data. The rules propagating
the change from ORDB to XML are
independent of any XML update language.
Therefore, we feel that we have enhanced the
XML data model with a general update facility.
(We can anticipate that before too long update
features for XQuery will be presented by W3C.)
We have shown that rules employed in updating
XML data can be based on the features of
XQuery and the future version of XQuery
supporting updates will be based on XQuery
also as required by W3C [46].

Meanwhile a standard for updating XML
documents has not been proposed. The existing
XML databases and XML update languages
have limitations in their capability for updating
data. In our technique, the technology of ORDB

S8

is exploited to increase the capability of existing
XML update approaches in the aspect of
controlling constraints during updating of XML
data, making it easier to join XML documents in
upoasing, 2Dowing the updates of documents
whose structure is known partially or whose
structure is recursive, and improving the
performance of the updates by using regular
path expressions. With this approach, there is no
need to maintain the order of elements in
ORDB, and the cost of converting ORDB data
back to XML format is eliminated, since the
change in ORDB is propagated to XML already.
Our approach makes it possible to query XML
data from XML documents, instead of just
ORDB. For example, using Kweelt [38] which
is an implementation of XQuery for querying
XML documents directly, the result from
querying is returned in XML format without any
conversion. Although DOM has to be serialized
back to XML document, serialization is
performed only once after all updates finish.

We have conducted an experimental study to
verify the method for updating XML and to gain
an insight into the performance of the update
techniques. Overall, the experimental results
show that updating non-redundant data in linked
XML documents outperforms updating
redundant data. Caching data significantly
improves the performance of updating ORDB
data. The native XML database has a weakness
in handling regular path expressions.

There are many interesting avenues for
further work in the XML update area, since
XML updating is still in its infancy. The
possible extensions to our research include
updating XML structure, transaction processing,
concurrency control, security for accessing
XML data and query optimization through using
the results obtained in Section 3 as parameters
for a cost model.

6. References

[1] Abiteboul, S., S. Cluet, V. Christophides,
T. Milo, G. Moerkotte, and J. Simeon,
Querying documents in object databases.
International Journal on Digital Libraries,
Vol. 1(1): pp. 5-19, 1997.

Abiteboul, S., D. Quass, J. McHuge, J.
Widom, and J.L. Winer, The Lorel query
language for semistructured data.
International Journal on Digital Libraries,
Vol. 1: pp. 68-88, 1997.

(2]

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Amer-Yahia, S., F. Du, and J. Freire. 4

Comprehensive Solution to the XML-to-

Relational Mapping Problem. in Sixth

ACM CIKM International Workshop on

Web Information and Data Management

(WIDM 2004). Washington, DC, USA. pp.

31-38, 2004.

Amornsinlaphachai, P., N. Rossiter, and

M.A. Ali. Updating XML using Object-

Relational Database. in British National

Conference. Sunderland University, UK.:

Springer-Verlag. pp. 155-160, 2005.

Amornsinlaphachai, P., N. Rossiter, and

M.A. Ali, Storing Linked XML documents

in Object-Relational DBMS. Journal of

Computing and Information Technology,

Vol. 14(3): pp. 225-241, 2006.

Amornsinlaphachai, P., N. Rossiter, and

M.A. Ali, Translating XML update

language into SQL. Journal of computing

and Information Technology, Vol. 14(2):

pp- 81-100, 2006.

Atay, M., A. Chebotko, D. Liu, S. Lu, and

F. Fotouhi, Efficient schema-based XML-

to-Relational data mapping. Information

Systems, 2006.

Babcock, C., Internet Insight: XML Users

Consider Nonstandard. 2002, appears in

Ziff Davis' eWeek 11 Feb. 2002

http://www.charlesbabcock.com/xquery.ht

m

Beitzel, S.M., E.C. Jensen, and D.A.

Grossman. Using a Relational Database

Management System to Implement XML-

QL. in Proceedings of the [7th

International Conference on Advanced

Science and Technology (ICAST'2001).

Chicago, 2001.

[10] Bohannon, P., J. Freire, P. Roy, and J.
Simeon. From XML schema to Relations: A
Cost-Based Approach to XML Storage. in
Proceedings of the International
Conference on Data Engineering. pp. 64-
75, 2002.

[11] Ceri, S., S. Comai, E. Damiani, P.
Fraternali, S. Paraboschi, and L. Tanca,
XML-GL: a Graphical® Language for
Querying and Restructuring WWW Data.
The International Journal of Computer and
Telecommunications Networking, Vol. 36:
pp. 1171-1187, 1999.

{12] Chamberlin, D., XQuery from the experts:

Aguide to the W3C XML Query Language.

(3]

(6]

(7]

(8]

(9]

59

Influences on the Design of XQuery, p.
143, ed. H. Katz. XQuery from the experts:
Aguide to the W3C XML Query Language:
Addison-Wesley, 2003.

[13] Deutsch, A., M.F. Fernandez, and D.
Suciu:. Storing Semistructured Data with
STORED. in SIGMOD Conference.
Philadelphia, Pennsylvania, United States.
pp. 431-442, 1999.

[14] Fegaras, L. and R. Elmasri, Query Engine
for Web-Accessible XML Data. The VLDB
Journal, pp. 251-260, 2001.

[15] Fernandez, M., Y. Kadiyska, D. Suciu, A.
Morishima, and W.-C. Tan, SilkRoute: A
Framework for Publishing Relational Data
in XML. ACM Transactions on Database
Systems, pp. 438-493, 2002.

[16] Fernandez, M., W.C. Tan, and D. Suciu,
SilkRoute : Trading between Relations and
XML. Computer Networks, Vol. 33: pp.
723-745, 2000.

[17] Florescu, D. and D. Kossmann, Storing and
querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, Vol.
22(3): pp. 27-34, 1999.

[18] Fong, J. and T. Dillon. Towards Query
Translation From XQL to SQL. in
Proceedings of the 9th IFIP 2.6 working
conference on database semantics (DS9).
Hong Kong. p. 113-129, 2001.

[19] Han, W.-S., K.-H. Lee, and B.S. Lee, 4n
XML Storage System for Object-
Oriented/Object-Relational DBMSs.
Journal of Object Technology, Vol. 2(3):
pp. 113-126, 2003.

[20] Jain, S., R. Mabhajan, and D. Suciu.
Translating XSLT Programs to Efficient
SQL Queries. in Proceedings of the
Eleventh International World Wide Web
Conference, WWW2002. New York, NY,
USA., Honolulu, Hawaii, USA.: ACM
Press. pp. 616-626, 2002.

[21] Jiang, H., H. Lu, W. Wang, and J.X. Yu
XParent: An efficient RDBMS based XML
database system. in Proceedings of the 18th
International ~ Conference on Data
Engineering. San Jose, California. pp. 335-
336, 2002.

[22] Khan, L., Q. Chen, and Y. Rao. 4
Comparative Study of Storing XML Data in
Relational Database Management Systems.
in Proceedings of the International
Conference on Internet Compuling,

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

1C'2002. Las Vegas, Nevada. pp. 277-282,
2002.

[23] Khan, L. and Y. Rao. 4 Performance
Evaluation of Storing XML Data in
Relational Database Management Systems.
in 3rd International Workshop on Web
Information and Data Management (WIDM
2001). Atlanta, Georgia, USA. pp. 31-38,
2001.

[24] Klettke, M. and H. Meyer, Managing XML
Documents in object-relational databases,
PhD. Thesis, in Computer Science
Department., University of Rostock:
Rostock, Germany, 1999.

[25] Krishnamurthy, R., V.T. Chakaravarthy, R.
Kaushik, and J.F. Naughton. Recursive
XML Schema, Recursive XML Queries, and
Relational Storage: XML-to-SQL Query
Translation. in Proceedings of the 20th
International ~ Conference on Data
Engineering, ICDE 2004. Boston, MA,
USA. pp. 42-53, 2004.

[26] Lu, L., M. Liu, and G. Wang. 4
Declarative XML-RL Update Language. in
Proceedings of 22nd International
Conference on Conceptual Modeling (ER
2003). Chicago, Illinois, USA: Springer-
Verlag. pp. 506-519, 2003.

[27] Lu, S., Y. Sun, M. Atay, and F. Fotouhi,
On the consistency of XML DTDs. Data &
Knowledge Engineering, Vol. 52: pp. 231-
247, 2005.

[28] Lv, T. and P. Yan, Mapping DTDs to
relational schema with semantic
constraints. Information and Software
Technology, Vol. 48: pp. 245-252, 2006.

[29] Manolescu, I., D. Florescu, and D. Kossma.
Answering XML Queries over
heterogeneous Data Sources. n
Proceedings of the 27th VLDB Conference.
Roma, Italy, 2001.

[30] Manolescu, 1., D. Florescu, and D. Kossma,
Pushing XML Queries inside Relational
Databases, in., INRIA Technical Report
No. 4112 Report no. 4112, 2001.

[31] Mignet, L., D. Barbosa, and P. Veltri. The
XML Web: a First Study. in The Twelfth
International World Wide Web Conference
(WWW2003). Budapest, Hungary. pp. 500-
510, 2003.

[32] Mo, Y. and T.W. Ling. Storing and
Maintaining Semistructured Data
Efficiently in an Object-Relational

60

Database. in The Third International
Conference on Web [nformation Systems
Engineering (WISE'00). Singapore. pp.
247-256, 2002.

[33] Obasanjo, D. and S.B. Navathe. A Proposal
for an XML Data Definition and
Manipulation Language. in VLDB 2002
Workshop EEXTT and CAiSE 2002
Workshop DTWeb. Hongkong Chaina. pp.
1-21, 2002.

[34] Pardede, E., J.W. Rahayu, and D. Taniar,
Object-relational complex structures for
XML storage. Information and Software
Technology, Vol. 48: pp. 370-384, 2006.

[35] Prakash, S., S.S. Bhowmick, and S.
Madria, Efficient recursive XML query
processing using relational database
systems. Data & Knowledge Engineering,
2006.

[36] Psaila, G. ERX: A Conceptual Model for
XML Documents. in Proceedings of the
2000 ACM Symposium on Applied
Computing. Como, Italy. pp. 898-903,
2000.

[37] Runapongsa, K. and J.M. Patel. Storing and
Querying XML data in Object-Relational
DBMSs. in XML-Based Data Management
and Multimedia Engineering - EDBT 2002
Workshops. Prague, Czech Republic. pp.
266-285, 2002.

[38] Sahuguet, A. Kweelt: More than Just "Yet
Another Framework to Query XML! in
SIGMOD 2001 Electronic Proceedings.
Santa Barbara, CA. pp. 602, 2001.

[39] Shanmugasundaram, J., J. Kiernan, E.
Shekita, C. Fan, and J. Funderburk.
Querying XML Views of Relational Data.
in Proceedings of the 27th VLDB
Conference. Roma. Italy. pp. 261-270,
2001.

[40] Shanmugasundaram, J., K. Tufte, G. He, C.
Zhang, D. DeWitt, and J. Naughton.
Relational Databases for Querying XML
Documents: Limitations and Opportunities.
in Proceedings of the 25th VLDB
Conference. Edinburgh, Scothland. pp.
302-314, 1999.

[41] Shimura, T., M. Yoshikawa, and S.
Uemura. Storage and Retrieval of XML
Documents using Object-Relational
Databases. in Database and FExpert
Systems Applications, 10th International

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Conference, DEXA '99. Florence, Italy. pp.
206-217, 1999.

[42] Tatarinov, 1., Z. Ives, A.Y. Halevy, and
Daniel S. Weld. Updating XML. in
Proceedings of 2001 SIGMOD Conference.
Santa Barbara, CA, USA. pp. 413-424,
2001.

[43] Tseng, F.S.-C. and W.-J. Hwung, An
automatic load/extract scheme for XML
documents through object-relational
repositories. The Journal of Systems and
Software, Vol. 64: pp. 207-218, 2002.

[44] Varlamis, 1. and M. Vazirgiannis. Bridging
XML-Schema and relational databases. A
system for generating and manipulating

relational databases using valid
documents. in ACM Symposium on
Document Engineering 2001. Atlanta,

Georgia, USA. pp. 105-114, 2001.

[45]1 W3C, XQuery 1.0: An XML Query
Language. 2003.
http://www.w3.org/TR/xquery

[46] W3C, XQuery Update Facility
Requirements, W3C Working Draft.
2005.http://www.w3.org/TR/xquery-
update-requirements/

[47] Wang, G. and M. Liu. Query Processing
and Optimization for Regular Path
Expressions. in Advanced Information
Systems Engineering, 15th International

61

Conference. Klagenfurt, Austria. pp. 30-45,
2003.

[48] Watson, P. Databases in Grid
Applications: Locality and Distribution. in
Proceedings of the Database: Enterprise,
Skills and Innovation. 22nd British
National Conference on Databases,
BNCOD 22. Sunderland, UK: Springer-
Verlag. pp. 1-16, 2005.

[49] XMLDB, XUpdate. 2002.
http://www.xmldb.org/xupdate/xupdate-
wd.html

[50] Yoshikawa, M., T. Amagasa, T. Shimura,
and S. Uemura, XREL: A path based
approach to storage and retrieval of XML
documents using relational databases.
ACM Transactions on Internet Technology,
Vol. 1(1): pp. 110-141, 2001.

[51] Zhou, A., H. Lu, S. Zheng, Y. Liang, L.
Zhang, W. Ji, and Z. Tian. VXMLR: A
visual XML-relational database system. in
Proc. of the 27th Int'l Conference on Very
Large Data Base. Roma, Italy. pp. 719-
720, 2001.

[52] Zwol, R.V., PM.G. Apers, and A.N.

Wilschut. Modelling and Querying
Semistructured Data with MOA. in
proceedings of Workshop on Query

Processing for Semistructured Data and
Non-standard Data Formats. Jerusalem,
Israel, 1999.

