
Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4. October-December 2007

Handling XML in Traditional Databases

Kwanjai Deejring and Pensri Amornsinlaphachai

Nakhon Ratchasima Rajabhat University, Thailand
E-mail : kdeejring@yahoo.com, kokkoy@hotmail.com

Abstract
Most research in the XML area has concentrated on storing, querying and publishing XML while

not many researchers have paid attention to updating XML; thus, the XML update area is not fully
developed. This work contributes a solution for the update of XML documents via ORDB (Object
Relational Database) to advance the techniques in this area through preserving constraints, maintaining
performance in the presence of data redundancy, permitting joins of documents in updates and
allowing the updates of documents whose structure is known partially or whose structure is recursive.
Experimental study to evaluate the performance of XML update processing has been conducted. The
experimental results show that updating multiple XML documents storing non-redundant data yields a
better performance than updating a single XML document storing redundant data; an ORDB can take
advantage of this by caching data to a greater extent than a native XML database.

Keywords: XML updates, ORDB, XML constraints

1. Introduction
XML has become an effective standard for

representing semi-structured data on the Web
since it provides a natural data structuring
mechanism for hierarchical and recursive data;
moreover it is flexible in that it allows the
authors to define their own tags and structure for
documents and can handle data whose
occurrence is optional. Many researchers in the
XML area have focused on storing, publishing,
and querying XML documents. XML
consequently provides most of the features
normally expected for a database model.
However, there is an omission in that most
existing work does not pay much attention to
modifying XML or does not mention it at all.

One possible reason behind the immaturity
of the XML update area is as follows. XQuery
has not provided update features because the
W3C Consortium wanted to release the standard
of XQuery as soon as possible [2]. Thus, only a
few researchers have paid much attention to this
area. Our work has identified five main
problems as follows:
. The work published presently can update

XML documents but only without checking
constraints. Even commercial products
cannot guarantee the integrity the database
when XML data is updated [8].

. Normally, all XML data is kept in one
document; thus data redundancy may occur.
This can lead to data inconsistency and low
performance when updates are performed.

. No XML update language supports joins of
XML documents.

. Regular path expressions are used to
query/update XML whose structure is
unknown or only partially known. Using
regular path expressions, especially a
descendent path expression ('ll'), can slow
the process of querying/updating data [47]
because the query engine must traverse all
possible paths in XML.

. In XQuery, there is no specihc facility to
query data whose structure is recursive;
however the effect can be achieved by
creating a recursive user-defined function.
Until now, no technique has been proposed
to translate this recursive feature into SQL.

The rest of this paper is organized as
follows. Section 2 presents the goal of our work,
to devise a more effective solution for updating
XML data and solve the open problems as
mentioned previously. Section 3 shows the
results of experimental study, including
performance aspects. Related work is covered in
Section 4. A conclusion is provided in Section 5.

44

2. Our Solution for Updating XML
Nowadays, there are two dominant

approaches for managing XML repositories. The
first approach is to use native XML databases to
handle the data. The second approach maps
XML onto a traditional database (e.g., relational
database (RDB), ORDB and object-oriented
database (OODB)).

XML updating has been relatively well-
researched in the area of native XML databases,
whereas in the area of applying traditional
databases to manage XML, only one work [42]
has presented an XML language for updating
XML data. This work employed an RDB, but
only the syntax and semantics of the language
are presented. In our solution, the more
advanced technology of ORDB is exploited to
update XML documents.

Update({name, "Nick Rossiter"}, target)

target = /authors/author[@aiO = "al 1"]/name
uodate-data = "Nick Rossiter"

In the solution, DTDs are used in our
mapping since most XML documents still stick
to DTDs [31]. Not only XML structure but also
XML constraints are mapped to ORDB, since a
DTD defines the constraints bn the logical
structure of XML documents [27].

Non-redundant data is kept in separate
multiple XML documents, avoiding the storage
of redundant data in one single XML document;
then the separate documents are linked together.
To update XML data, an XML update language,

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4, October-December 2007

The purpose ofusing a traditional database,
ORDB, in this research is different from that of
other work. The previous work uses OODB [,
521, RDB [13, 231 and ORDB [24, 32] as
DBMS of XML documents to store and query
XML data but our approach uses ORDB to
preserve constraints during updating and to
indicate the target-elements in XML documents
which should be updated. The updates are
performed on XML documents; thus users can
query data from XML documents instead of
ORDB and it is not necessary to maintain the
order of elements in ORDB. This reduces the
cost of data conversion, since nowadays, the
major expense of exchanging messages between
Web Services comes from converting data such
as between a database and XML format [48].
The overview of our approach is illustrated in
Figure l.

o
o

s
o
{

@q,
o-ct
o
c
f
o
!
ooo
o
o

For $a in doc("authors.xml")//author
where $a/name = "Mick Rossiter"
replace $a/name with

<name>Nick Sm ith</name>

Uodate authors a
Set a.author.name = "Nick Rossiter"
Where a.author.name = "Mick Rossiter"

as an extension to XQuery, is proposed, and this
language is translated into SQL to update XML
data stored in ORDB. Then the changes in
ORDB are propagated to the XML documents.
More details of the overview of the solution can
be found in [4]. In this section, an XML update
language, translating the XML update language
into SQL and propagating the change from
ORDB to XML will be proposed" whereas
mapping XML to ORDB is presented in [5].

Figure 1. Overview of the solution to updating XML documents

45

2.1 Updating XML documents

We design an XML update language, an
extension to XQuery, and then translate this
language into SQL. Six major features of the
XML update language inherited from XQuery
will be translated: FLW(RIIlD) expression,
conditional expression, quantifier, aggregate
functions, non-recursive user-defined function
and recursive function.

In this section, firstly the syntax of the
update language is presented. Secondly, the

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4, October-December 2007

technique for translating the first five features is
presented. For the recursive function, its
translation is presented in [6]. Our rules can be
applied to RDB presented in [6] too.

2.1.1 The Syntax of the XML uPdate
language

The syntax of our XML update language is
adapted from [42] and that of XQuery from [45].
The syntax is shown in Figure 2.

(ForClause I LetClause)+

WhereUpdateClause I IfUpdateClause
where each clause is:
ForClause '.1: p 67 $var in XPath(,.Evar in XPath)
LetClause '.'.: Let Svar :: XPath(,$var := XPath)
WhereUpdateClause : :- WhereClause? UpdateClause
WhereClause ::= Where Condition
UpdateClause ::-DeleteClause ReplaceClausellnsertClause
DeleteClause ::: Delete nodeWhereClause? (, Delete node WhereClause?)
ReplaceClause ::: Replace node with content WhereClause?

(, Replace node with content WhereClause?)

InsertClause ::: Insert content Into node WhereClause? (BeforelAfter condition basedon Xpath)?

(,Insert content lnto node WhereClause? (Before After conditioh basedon xpath)?
IfupdateClause ::: If Condition Then UpdateClause

(ElseIf Condition Then UpdateClause) (Else UpdateClause)?

Figure 2. The Syntax of the XML update language

2.1.2 Four techniques for translating the
XML update language

Our translation uses four main techniques:
1) update/delete join commands, 2) rewriting
rules, 3) graph mapping and 4) optimization
rules for translating the XML update language
into SQL. The first three techniques are given
below. The optimization rules are presented in

t6l.
Updateidelete join commands

The translation of XML update commands
can produce joins of several tables. However, in
the SQL standard, update/delete join commands
cannot be performed. Therefore, we translate the
update commands into ufdate/delete join

commands and then rewrite them as SQL with
sub-query commands. The syntax of
updateidelete join commands is as follows.

Syntax ofjoins in update command:

Update table whose data will be updated
From all related tables

Setfieldl : valuel, field2
-- value2, ...

Where Condition;
Syntax ofjoins in delete command:

Delete table whose data will be deleted
From all related tables
Where Condition;

Rewriting Rules

There are seven categories of rewriting rules,
one for each major feature of the XML update
language as itemized above, one for SQL and
one for the rlink. The categories are therefore:
FLW(RIIlD) expression, aggregate function,
quantifier, conditional expression, (non-
recursive) user-defined function, SQL and rlink
rewriting rules. In this section, we describe first
the SQL functions followed by the seven
categories of rewriting rules.

D SQL Functions

In the translation of the language, all
clauses of XML update commands must be
rewritten as SQL functions which are conceptual

46

functions representing the operations of SQL

commands. The SQL functions are used to

group update clauses and their conditions

together since one XML update command can

consist of several update clauses and each

update clause can have its own condition. These

clauses are grouped by using function number
(funcNo) which is a parameter of every SQL

function. The funcNo 0 is assigned to

ForClause, LetClause and WhereClause of the

ForClause and LetClause. The clauses with

funcNo 0 are shared clauses for UpdateClause.
Each update clause has its own funcNo, a

running number starting from l. The update

clause and its own condition will have the same

funcNo. The SQL functions are as follows:

1. bindF(path, $var, tuncNo)

2. bindl(path, $var, funcNo)

3. insert (node, value | :funcNo, funcNo)

4. delete(node, funcNo)

5. update(node, value | :funcNo, funcNo)

6. group_by(node, funcNo)

7. select(node, funcNo)

8. aggFunc(node, funcNo)
where aggFunc : : :maxlmin lcount lavglsum

9. wherelLogicalOper(node, CompareOper,
value | :funcNo, funcNo)

I 0. having(aggFunc(node),CompareOper,value I
:funcNo, funcNo)

Four SQL functions, insert0, update0'

wherellogicalOper0 and having0, have the

parameter value | :funcNo since sometimes the

value in inserting, in updating or in the predicate

is not a constant value, but may come instead

from selecting a value from other nodes' Hence

in this case, funcNo has the same number as that

for the funcNo of the select0 function. The

symbol ':' is used to differentiate the funcNo of

an SQL function from funcNo, which is the

value-parameter.

II) Rewriting rules for FLW(RIIID)

For all rewritng rules, we use the symbol '- - >'

stands for 'is rewritten as' and used the symbol

expression FLW(RIIID) will be rewritten as SQL

functions as follows:

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

For $var in XPath
bindF(XPath, $var, funcNo)

Let $var :: XPath
bindl(XPath, $var, funcNo)

Where predicate
where(node, CompareOper, valuel:funcNo,

funcNo)

LogicalOper predicate
LogicalOper(node, ComPareOPer,

valuel:funcNo, funcNo)

For $var in XPathpreaicate
For $var in XPath Where Predicate

Then this clause is rewritten as SQL
functions according to rules 1,3,4'

Let $var :: XP&thpreaicate
Let $var :: XPath Where predicate

Then this clause is rewritten as SQL
functions according to rules 2-4.

Selectnode I Return node -->

select(node, funcNo)

Replace node with simPle content

update(node, content's value, funcNo)

1 .

2.

J .

4 .

5 .

6 .

8 .

7 .

9. Delete node

10. Insert simple content into node - - >

insert(node, content value, funcNo)

ll. Replace node with complex content and

lnsert complex content into node

The complex content is shredded into many

simple contents. Then the command is

rewritten in the form of the commands

based on the simple contents which are in

turn rewritten as SQL functions.

III) Rewriting rules for aggregate functions

1. Define: For $varl in XPathl
Let $var2 := $varllXPath2

i): aggFunct($var2)
aggFunct($var2, funcNo)
group-by($varl, funcNo)

ii): Where aggFunc($var2)
CompareOper value

group_by($varl, funcNo)
having(aggFunct($var2), CompareOper,

value, funcNo)

^ 1

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4. October-December 2007

2. Define: Let $var :: XPath
i): aggFunct($var)

aggFunct($var, funcNo)

IV) Rewriting rules for quantifier

There are two quantifiers: existential
quantifier (some) and universal quantifier
(every). Both can be translated into a count0
function since some is used to test whether at
least one item in a sequence satisfies the
condition while every is used to test whether
every item in a sequence satisfies the condition;
thus their meanings will first be translated and
then rewritten as SQL functions as follows:

l. For $varl in XPathExpl
Where some $var2 in $varl/XPathExp2
Satisfies (Condition)

For $varl in XPathExpl
Let $var2 :: $varllXPathExp2
Where count($var2) > 0
AndCondi t ion - ->

$varl : bindF(XPathExpl, funcNo)
$var2 : bindl-($var1 /XPathExp2, funcNo)
where (node, CompareOper,

value | :funcNo, funcNo)
(LogicalOper(node,CompareOper,

value | :funcNo, funcNo))
group_by($var1, funcNo)
having(count($var2), >, 0, funcNo)

2. For $varl in XPathExpl
Where every $var2 in $varl/XPathExp2
Satisfies (Conditionl)

[And Condition2]

For $varl in XPathExpl
Let $var2 :: $varliXPathExp2
Where Conditionl

[And Condition2]
And count($var2):

(For $var3 in XPathExpl
Let $var4 :: var3/XPathExp2
Where $var3 : Svarl

[And Condition2]
Return count($var4)

$varl - bindF(XPathExpl, funcNo)
$var2 : bindl(var1 /XPathExp2, funcNo)
where (node,CompareOper,

value | :funcNo, funcNo)
(LogicalOper (node, CompareOper,

value | :funcNo, funcNo))

[and(node,CompareOper,
valuel;funcNo, funcNo)

(LogicalOper(node,CompareOper,
valuel : funcNo, funcNo))

group_by($varl, funcNo)
having(count($var2), :, : l, funcNo)
$var3 : bindF(XPathExpl, : l)
$var4 : bindl($var3lXPathExp2, : l)
select(count($var4), : 1)
where ($var3, : , $var l , :1)

[and(node, CompareOper, value, ; l)
(logical_operator(node, CompareOper,

va lue , :1))

group_by($var3, :1)

Besides 'some' and 'every' quantifiers,
there are two functions: empty0 and exists0
which can be rewritten as counto functions.
These functions and quantifiers can be used
along with 'not'. To summarise, the meaning of
these functions and quantifiers can be translated
before rewriting as follows:

empty -->> coufltpredicate : 0

exists -->> coufltpreaicate > 0

Some -->> Countp."di"ut" > 0

not (empty) --)) coufltpredi""t.) 0

not (exists) --)) couotpredicate - 0

not (some) -->) courltpredicate : 0

gvery -->> Countpredicate : Counts.ithout predicate

not (every) -->>

COUltpredicate< COUnt*11hou, 0r"61.u1. &fld COUDtpredicate>0

V) Rewriting rules for conditional expression

(ForC lauselLetClause)+
If (Condition 1) then

UpdateStml
Else If (Conditionz) then

UpdateStm2

Else [If (Condition ")]
UpdateStm"

(ForClausel LetClause)+
Where Condition 1
UpdateStmr
(ForClause I LetClause)+

48

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4. October-December 2007

Where Condition2
And -(Condition 1)
ullatestmz

(ForClauselLetClause)+

fWhere condition n]
WherelAnd - (condition 1)
And - (conditionz)

And - (condition.-r)
UpdateStmn

The series of commands is then rewritten as
SQL functions according to the category of
clauses in the commands. The number of
commands in the series corresponds to the
number of conditions in if-then-else. The
symbol - stands for 'not'.

VI) Rewriting rules for non-recursive user-
defined function

Calls to non-recursive functions are
replaced with the body of such functions and
parameters of the function are replaced with the
values of arguments. After such replacements,
the update command is rewritten as SQL
functions according to the category ofclauses in
the command.

VII) Rewriting rules for the rlink
Define: rlinkEle is the rlink-element containing

@rlink-hrefwhose value is XPath

parentEle is the parent of rlinkEle

linkedEle is the element referenced by
XPath which is the value of @rlink-href

l. Where rlink-element

If there is only one predicate in XPath based
on PK of linkedEle as follows:
PK of l inkedEle : value

Then Where parentEle/rlink(rlinkEle, XPath)

value, funcNo)

Else Where parentEle/rlink(rlinkEle, XPath)
- - > where(parentEle/rlinkEle#linkedEle, -,

:funcNo2, funcNol)
select(PK of linkedEle, funcNo2)
where(condition in XPath, funcNo2)

2. I ns ert rlink-element

If there is only one predicate in XPath based
on PK of linkedEle as follows:
PK of linkedEle: value

Then Insert rlink(rlinkEle, XPath)
IntoparentEle -->

insert(parentEle/rlinkEle#linkedEle,
value, funcNo)

Else Insert rlink(rlinkEle, XPath)
IntoparentEle -->

insert(parentEle/rlinkEle#linkedE le,
:funcNo2, funcNol)

select(PK of linkedEle, funcNo2)
where(condition in XPath, funcNo2)

3. Replace rlink-element is translated into a
sequence of delete and insert rlink-element
with the sequence rewritten as SQL functions
according to rules 1-2:

Replace parentEle/rlinkEle with
rlink(rlinkEle, XPath 1)

[Where parentEle/rlink(rlinkEle, XPath2)]

Delete parentEle/rlinkEle

IWhere parentEleirlink(rlinkEle, XPath2)],
Insert rlink(rlinkEle, XPath I) Into parentEle

Then l4rhere and Insert clauses are
rewritten according to rules l-2.

VIII) SQL rewriting rules
Rules are used to rewrite joins in update

commands and joins in delete commands as
SQL with sub-query commands. The rewriting
rules for joins in update commands and in delete
commands are shown in Fisures 3 and 4
respectively.

Graph Mapping
The purpose of graph mapping is to

indicate the SQL functions performed on tables,
(column of) nested table, (column of) abstract
data type or simple columns of the table.
The steps for graph mapping start from creating
a graph whose paths correspond to paths in the
SQL functions. Then the graph is mapped to the
ORDB schema to identifu the ORDB structure
on the graph. The keys for joins of tables and
join symbols are then added to the graph and the
SQL functions are mapped to the graph. Next,
the actions, pushing the function down to proper
nodes ofthe graph and changing the meaning of
update operations, are performed according to
the followine rules.

49

Thammasat

Update-rule l: If a delete or lnserl function is

performed on nodes converted to ADTs having

siblings, fields of an ADT, fields of a table or

fields of a nested table, without either a delete or

insert function on an ancestor-node converted to

a table or an ADT without a sibling, then the

function will be converted to an update function.
Update-rule 2z If an insert function is
performed on a node converted to the primary

key of a table, then this insert function must also

be applied to the foreign key of the child-tables

to maintain parent-child relationships.
Update-rule 3: If a select, where or group-by

function is performed on a node converted to a

table or an ADT without a sibling, then the

function will be pushed down to the primary key

of the table.
The graph may then be split into several

sub-graphs. The number of sub-graphs is equal

to the number of update operations performed

on the tables, which have a distinct function

number. Finally, optimization rules [6] are

applied to the (sub-)graphs and SQL commands
or update/delete join commands are generated

from the (sub-)graphs. If the generated

commands are in the form of update/delete join

commands, the commands are rewritten

according to the SQL rewriting rules.

If T1 is table

Update Tl

From all related tables

Set fieldl = value, field2: value, ..,

Where Condition

i6J"t"ifi Update Tl

I Set fieldl : value, field2: value, ...

I Where PK(TI) tn
(select PK(TI) from all related tables I

where Condition)

Then

I wnere uonorllon/ |
L - - - - - - - - -

Else If Tl is separate table derived from IDREFs or rlink

Define:
T2 is table containing primary key(PK) referenced by foreign key (FKl) of T1

T3 is table containing primary key(PK) referenced by foreign key (FK2) of Tl

valuel, value2 are constant values

If predicate of Tl.FKl is Tl.FKl = valuel

predicate of Tl.FK2 is T1.FK2 = value2
OR

Update Tl
From all related tables

Set FKl : value, FK2: value - - ,
Where Condition
And T1.FKl : valuel lT2.PK
And Tl.FK2 : value2 | T3.PK

Update T1
From all related tables

Set FKI = value, FK2 = value

Where Condition
And Tl .FKl = T2.PK

And T1.FK2: T3.PK

Then

Update Tl
Set FKI : value, FK2: value

Where Tl .FKl (= valuel I
in (Select T2.PK

From all related tables excePt Tl

Where Condition without join to Tl))

And TI.FK2 (: value2 |
in (Select T3.PK

From all related tables excePt Tl

Set FK I = value, FK2 - value

Where T1.FK1 in (Select T2.PK
From all related tables except T1 and T3

Where Condition without join to Tl

and excePt Predicates on T3)

And T1.FK2 in (Select T3.PK

From all related tables except T1 and T2

Where Condition without join to T1

L - - - - - - - - - - - -Y!s'c 9gl{'ls'l-y'lLo-'!l-"-"rts! D- - -'
Else If oredicates on Tl .FKl and Tl.FK2 are not constant values Then

t - - - - - - - - - -
I I l - , I -ra 1-1

Endlf
Endlf

I
I

I
L - - - -

Figure 3. Rewriting rules for joins in update commands

50

Else If Tl is separate table derived from IDREFs or rlink Then

Define:
T2 is table containing primary key(PK) referenced by foreign key (FKl) of T1

T3 is table containing primary key(PK) referenced by foreign key (FK2) of Tl

valuel, value2 are constant values
If predicate of T1.FKl is Tl.FKl - valuel OR

oredicate of T1 .FK2 is Tl .FK2 - value2 Then

If Tl is table

Delete Tl
From all related tables
Where Condition

Delete Tl
From all related tables
Where Condition
And Tl .FKl : valuel I T2.PK
And Tl.FK2 : value2 | T3.PK

Else If predicates on Tl.FKl

Delete Tl
From all related tables
Where Condition
And Tl .FKl : T2.PK
And Tl .FK2 : T3.PK

Endlf
Endlf

Then

i -D.dF; i i - - - - - - - - -
' i Where PK(TI) in (select PK(TI) fiom all related tables I

I where Condition) |

in (Select T2.PK
From all related tables except T1
Where Condition without join to Tl))

And TI.FK2 (- value2 |
in (Select T3.PK ;

From all related tables except T1 i
i Where Condition without join to Tl)) i
L - - - - - - - - - -

and T1.FK2 are not constant values Then

; ; ; ; ; ; ;
Where Tl.FKl in (Select T2.PK

From all related tables except Tt and T3

Where Condition without join to Tl

and except predicates on T3)

And Tl.FK2 in (Select T3.PK
From all related tables except Tl and T2

Where Condition without ioin to T1

and except predicates on T2)

t -
I
I

> l
I

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4, October-December 2007

Figure 4. Rewriting rules for joins in delete commands

2.2 Propagating the changes to XML
Propagation of the changes from ORDB to

XML documents is performed only on the parts
affected by updating. We use values of a
primary or foreign key of updated data in the
database to indicate the elements in XML
documents which should be updated. When data
in the ORDB is updated, the values of a primary
or foreign key of updated data will be returned.

Subsequently paths in the XML update
command are used to create XPath expressions
whose conditions are based on these returned
values to indicate the targets or reference
positions in XML documents for updating.
XPath has no capability for updating. Hence we
propose five propagate functions, shown in
Figure 5, to serve as operators for updating
XML documents.

Propagate Functions Description

Insert (nodelst, targetl-st) Insertns nodelst into nodes in targetlst

InsertBefore(nodeLst, targetL5t) Insertng nodetlst before nodes in targetlst

I nsertA l ter(nodeLst, targetlst) Inserting nodelst after nodes in targetlst

Delete (targetlst) Delet ine nodes in tars,etLsl

Update (nodeLst. targetLst)
Replacing values of nodes in targetlst with values of
nodes in nodelst

Figure 5. Propagate functions

5 l

Thammasat Int. J. Sc. Tech., Vol. 12. No. 4. October-December 2007

From the functions in Figure 5, the parameter
nodeLst can be derived directly from the XML
update command. The parameter targetLst is an
XPath expression. The path in the XPath is
derived from a path in the XML update
command.

Locating position for updating
The nodes in XML documents which

should be updated can be identified by an XPath
expression whose condition is based on the
values for keys returned from ORDB and some
predicates derived directly from the XML
update command. Such predicates are those of
before and after clauses and on IDREFs, rlink-
elements and elements/attributes converted to
fields of nested tables. To determine which
values for a key should be returned, the types of
ORDB structure and types of update operations
performed on that ORDB structure ate
examined. A summary of operations performed
on ORDB and values for the key returned from
ORDB, when an XML update command is
performed on each XML structure type, is
shown in Table l.
The details of the eight columns in Table I are
as follows.
r Column 1 shows the type of update

operation performed on XML documents.
o Column 2 shows the type of XML structure

on which the update operation in column 1
is performed.

o Column 3 shows the type of ORDB
structure converted from the XML structure
in column 2.

o Column 4 showq the type of update
operation performed on ORDB.

o Column 5 shows the keys for the values
which are returned from the ORDB.

o Column 6 shows which ID in XML
documents is the receiver for the returned
values for the keys in column 5. The
receiver and the returned values are used to
compose a key-condition for the XPath
expression.

. Column 7 shows the con{itions used along
with the key-condition for the XPath
expression.

o Column 8 shows the element or attribute
which is the target or reference position for
updating. This position is retrieved by the
XPath expression.

3. Experimental study
It is important to verifu the method for

updating XML, developed in section 2. This was
done through an experimental study in which a
diverse range of 17 update queries were
executed and the results carefully inspected to
check that they were as expected. In addition, to
gain an insight into the performance of the
update techniques, runs were repeated with
variable database size, cache state, degree of
redundancy and methods for linking XML
structures.

3.1 Experiment platform and methodology
In the experiments, three types of databases

are used. The first is X-Hive, a commercial
native XML database (nxd), used to keep
redundant data of a single XML document. The
second is Oracle ORDB employed to keep
redundant data of a single XML document (sxd).

The third is Oracle ORDB utilised to keep non-
redundant data of linked XML documents (lxd).

All experiments are conducted on 1.3 GHz
Pentium M machine with 768 MB main memory
and 20 GB disk running Windows XP. The
experiments are designed to evaluate the
performance for updating: (a) native XML
database storing redundant data, (b) ORDB
storing redundant XML data and (c) ORDB
keeping non-redundant XML data. Varying
sizes ofthe databases ranging from 5, 10,20 to
40 MB are used. The number of redundant
records for 5 MB data size varies from 10, 20,
40 to 80 records while the number of redundant
records for 10, 20 and 40 MB data size is two,
four and eight times, respectively (the number of
redundant records for the 5 MB data size). In
updating the linked XML documents, each
update command affects l0 records. Thus the
number of records in a single document affected
by a command varies according to the
proportion of redundant records.

To study the effect of data caching on the
performance of updating XML, the experiments
are conducted in cold cache, warm cache and
hot cache. In cold cache, the database is
restarted for each individual update command.
In warm cache, the database is restarted for each
individual command as well; however before
running the command, five unrelated commands
will be run first. In hot cache, the same
command is run twice in succession and the
performance measured for the second run.

52

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4. October-December 2007

o

'o

g
LL
j
o
I
> c

E b
O U

Y X(L Y

'?
.9.

o i r
F <

l O
c -

' E x
6 h
c 9
o b
c 9
o -

o o

. . o

. : o

F A
o ; -< F
b <
: o
o . \

G :

L ! G

< o- o

i a

O Y

P E
i -
i _ >
, . . o
E u r
< E

E 6

; >

. . o
L O

2 \
o d

= !
.!! b

9 o

, o

g r -

F
o

c
0)
E
o
0)
t-lJ

bI)

6)

E

a

!
c)

0)

()

o

()

()

(J

(.)

J

X

()

0)

qi

!

a

3

uJ

o
E

c

uJ

o
uJ

ul

c
o
6
r!

- 6 -

. E b €
6 5 I

!

-
z

6
c
o

c
.o=

o

a
I
uJ

o

E
c

o
E

I
.E

uJ
c

=
E
c

F
z

a

o)

=
c

F
z

a

=
E
c

a
c

=

a
r
[l
t
_o
o

.o=
c

o

o
t

E=

uJ
c

=
c

z

b

=
C

C

g

r
c
C.s

6
o
E
o
o
o

c

=
c

o

-
z ,

o >
; .

o :

F !

c c

o c

o

E
c

o)
(E
q)

0)

o
C

=
c
o
o

o
(E
q)

0)

E

c
o
o

(
s
I

c
c
.g
r
c
c

o

o
o
c
o

o
o
o)
E

o

o

c)

@

E
o
o
c

o

o

q)

6
o
c

uJ
o
o

6

o
O
c
o

a
o

o
c
o
o

o

o
c
o

o
o
0)
C

o

o

o
c
6

o
o
o
C

o

o

o

o

E
6
o
c

o

A
a
o

C

q
o

o
c

o

c

(
c(

c

c

a
o

a
o
s
o
c

tU

o

o
o
c
o

o

o

o
o

a
o

c
N

o

ci

o

6

o

N

o

o
C

o
o

6

o
c
G

o
o
o
c
=
o

=
o
o
c
o

I
6
o
c

o

c

c
C

c

c

c
C

(
c(
c

c

c
c

q)

c

o
c
6

a
o
G
o)

o

a
o
c
o

o

o

o

q

o
c
c

a
o
c
o
c

e

6

o
a
c
o

o
o
0)
c

o

o
o
C
6

o

o

o

a
o
c
N

o

o

e

o

q

9l
c
6

C)
G
o
C

o

e

o
a
o

o
6
o
c

?

3

o
o
o-

Y
(L

F
z
o
.E
.E

3

Y
(!

3

;
o
o
E
:

)<
o_

3
P

G

f

Y
0-

-
:
o
c)
o
o

Y

3
I
0)
o
o=

Y

c

E

G
c

:

x
L

z
o
.E.=
C
o

=
;
)<
(!

z

.=.=

-
;
Y
(I

3

0)
o
o

Y
(L

3
o

o
o
o

Y
(I

=
o

o
o
o

)<
(I

a

j

o

=

Y
o_

=
;
o
(E

l

Y
(L

z

.c

.c
G
c

o

3

o
Y
o_

z

.c

.E
G

a

-

Y(!

;
;
o

E
o
.5

Y

o
c

c

3

o
0)

.c

Y
(!

=
;
o
6

Y
(L

=
o

o
(E

o
f

)<
(L

F
z

.=.=
o
c

3

Y(!

z
o

.C
c

c
o

]

)<
rL

3
c

E

E
o

.E

c
Y
I

o
E

C

3
o

o
E
o
a
.E

Y(r

T

C
T

t
c
Y

#;w;4
Ww&
W,

t
c

c

Eq
(

I
g

f

.g

o
!

c

(
!

t
c

d

I

o

c

c)
o
q)

o
o
o

o

f

E

=

E
q)

C

c(
!
c

I

c

E
o
o
c

o
@
E

o

o
-

o
G

l

E
o

c
T
c

o
q

.g

o
o

.E_

I

u
E

(
E
E

ul

c
'6

=-
F

U-
F

J

a)

L!
F
z

uJ

F
z

o

G

ci
.c
E

c
F
o

o

o
o
G

o
a

q)

5
G
o
6

G

q)

o
Y
u

ul

-

o

;
E -

z
t!
F
z

o

6

o.=
E'6

F
o

o

o
G

G

o
a

o

CJ
G
N

0)
a

Y
L!

tlJ

o

!'6

t=
3

Lr
r
o

E
-q) r

z
r
2

c
c

c
c

=

c

' ,
c
c
F
c

o
C

o

o
!
g
o)
o
o
o
d)
a

Y
L

ul
o
.E
E
a
c

3
F
o

l!
Fo

a z
F
z

e
c

E

c'a

c
F
o

oe
o'6

c
F
o

c)
o
o
o
o
G
o
o
a

Y
I

ffi
ffiul

0)

o
o
o

tIJ ul

I
ul
tr
o

UJ

€
uJ

tU
c
u uJ

a
l!
uJ
E
e

U
c

r
c o

ul UJ
o

UJ LL uJ

uJ

c

:
a

L

uJ
E

uJ
c

U.l tU u l! UJ

U
c

u
UJ
E

uJ
c

I

:
E
q)

E

: 3' : s
! g

s t
. : <

53

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

shortest elapsed times are ignored; thus only an
average of three elapsed times is reported.

We design commands covering the 1'7
features shown in Figure 6. Each experiment is
executed five times and the longest and the

3.2 Discussion of the experimental results
This section discusses the performance

with different data redundancy and data caching.
Figure 7 contains four graphs, one for each size
of the database. Each graph plots average
elapsed time for replace, delete and insert
operations against the number of redundant
records in the three possible cache states: cold,
warm and hot.

Note that the update time in the graphs and
the tables excludes serialization time since,
usually, serialization can be performed only
once after all updates finish.

The commands C14 (regular path expression)
and Cl7 (recursion) are excluded from the
average time of nxd since X-Hive does not
support Cl7 while the elapsed time of the C14
run on X-Hive is so long that it can affect the
overall performance of the systems.

From the graphs in Figure 7 in cold cache,
sxd has the worst performance for every data

size, whereas nxd has the best performance.
However when the data size is 40 MB and there
is considerable data redundancy, lxd can
outperform nxd. This is because lxd does not
contain redundant data; thus although the

number of updated records will be constant for

every degree of redundancy, the data size will
be smaller when nxd has more redundant data.
Therefore the performance of lxd is better when
the degree ofredundancy in nkd is greater.

For warm and hot caches, lxd has the best
performance in all cases while nxd has the worst
performance when the data size is smaller than
20 MB. When the data size is 20 and 40 MB,
then nxd can outperform sxd. This is because
the update time in sxd consists of SQL-time and

DOM-time (time for updating DOM of XML)
and when the data size is doubled, DOM-time is

also approximately doubled whereas the update
time of nxd is increased to a lesser extent. When

the data size is increased, there are clearly more
records to be updated. As sxd has a rollback
mechanism, this means that more data has to be
preserved for recovery purposes. nxd does not
have such a mechanism so there is no penalty in
performance here. So the performance for sxd is

affected by redundant data more than that for
nxd as can be seen clearly when the data size is
bigger than 5 MB.

The time in cold cache for lxd is about four

or five times that in warm cache, and the time in

cold cache for sxd is double that in the warm

cache. By contrast, the times in cold and warm
caches for nxd are similar, showing that lxd and
sxd gain more benefit from caching data than
nxd. The difference in time between the cold
and warm caches for lxd is more than that for

sxd. This is because caching data has only a

little effect on DOM-time but a much greater

effect on SQL-time. For lxd, the DOM-time is

small when compared to the SQL-time; thus,
when the cache state is changed from cold to

warrn, most of the difference in time is

attributed to the change in SQL-time, causing
significant difference in the elapsed times for

cold and warm caches. On the other hand for
sxd, the DOM-time is nearly equal to the SQL-
time in cold cache and the DOM-time ts
changed by only a little when the cache state is
changed from cold to warn. Thus, the

difference in elapsed time between cold and
warm caches in sxd, is less than of the same
case in lxd.

Cl Exact Match
C2 Update without join of documents
C3 Change selectivity
C4 Allow condition on text
C5 Support aggregation
C6 Support quantifiers
C7 Joins based on values
C8 Joins based on pointer
C9 Castin

Cl0 Join documents in update
Cl I Navigation by reference traversal
C12 Handling missing elements
C13 Element ordering
C l4 Using regular path expression
C I 5 Mix between data-centric and

document-centric
C16 Hierarchical and sequential update
C17 Recursion and reference traversal

Figure 6. The 17 update features for the experimental study

54

Thammasat Int. J. Sc. Tech.. Vol. 12, No. 4, October-December 2007

a()

tr
6

B

X

X
q

€
X

q)

c)
bo
!
0)

t-
o

oo

a
E
o
o
o

- E

o
c
o

c
a

o
t

N O @ (O S N O

(spuoces) aurD posdelj

g

o
G

!
o
6
E
o
o

cl
e

E
o
(!

C)

a

o ^
9 - o
3

o
c
l

ox

(o l r) $ f) N O

(spuocas) aurl pasdelf

;

o
q
o
G

o
q)
q)

E

p
c

F
o
o
o

c o r - (o d + € i 6 i ; c ;

(spuoces) au4 pesdelS

g
N

@
o
a
o
(E
G

0)
C)

o
p
c

E

o
6

o

6
oq)

(u
o
c
o

f

&

* (O c O N N T T O O

(spuoces) eult pasdelf

E
9
a
0)
(E

(E
G

!
G)
c)

E

o
p
c

F

o
G

o

55

4. Related work
The general steps for updating XML via the

traditional databases are: (i) mapping XML
schema to the database schema and (ii)
translating an XML update language into SQL
executed on the database. Our work updates
XML via ORDB; hence related literature
includes mapping XML to traditional databases,

Thammasat Int. J. Sc. Tech.. Vol. 12. No.4. October-December 2007

the languages for updating XML and the
translation of the languages into SQL. Because
of limited space, the detail of each work is
omitted and we just summarize the comparison
of mapping XML to the database in Table 2,
comparison of XML Update Languages in Table
3, and Comparison of techniques for translating
XML query into SQL in Table 4.

Table 2: Comparison of mapping XML documents to traditional database models

Research./Proposal Model
Type of
schema

Mapping
method

Query
Language

XML
Uodate

Constraint
Handline

Order
kent

Recursion

Khan et al. [22] Relational DTD Node XPath No No No No

Psaila and Milano [36] Relational DTD Shred None No No No No

Shanmugasundaram
cr ql lAf i }

Relational DTD Shred
XML-QL
Lorel

No No No Yes

Zhou et al. [51] Relational DTD Shred None No No No Yes

Lv and Yan [28] Relational DTD Shred None No Partial No No

Bohannon et al. [0] Relational
XML
Schema

Shred XQuery No No No Yes

Varlamis and
\ / q z i r o i a n n i c [4 4]

Relational
XML
Schema

Shred
DB.
Command

No Partial No No

Atay et al. [7] Relational DTD Shred None No No Yes Yes

Amer-Yahia et al. [3] Relational
XML
Schema

Shred
Edse

XPath No No Yes Yes

Florescu and
Kossmann | | 7l

Relational None Edge None No No Yes Yes

Jiang et al. [21] Relational None Edge XPath No No Yes Yes

Manolescu et al. [30] Relational None Edge QUILT No No No Yes

Yoshikawa et al.[50] Relational None Node XPath No No Yes Yes

Deutsch et al. I I 3] Relational None
Data
mining

User
defined
lansuase

Yes No Yes Yes

Jensen and Beitzel [9] Relational None Node XML-QL No No No Yes

Shimura et al. [41] OR None Node XQL No No Yes Yes

Klettke and Meyer [24] OR DTD Shred None No Partial No Yes

Runapongsa and Patel[37] OR DTD Shred SQL No No Yes Yes

Tseng and Hwung [43] OR DTD Shred None No No No No

Mo and Ling [32] OR
DTD,
XML
Schema

Shred None No Partial No No

Pardede et al. [34] OR
XML
Schema

Shred None No Partial No No

Han e t a l . [9] oo/oR XML
Schema

Shred None No No No No

Abiteboul et al. I l oo DTD Shred
OQL
extenslon

No No No No

Fegaras and Elmasri I l4] oo DTD Shred
XML-
ooL No No No No

Zwol e t a l . [52] oo DTD Shred Algebra No No No No

56

Table 3: Comparison of XML Update Languages

language
Features

Xupdate
[4e]

SixnML
133l

I"orel
f)1
1 ! j

XML:GL
[11]

XML-RL
Update

L*nguage
tzffi

XML
Updale

Exiensisn
{421

Updating elements elements nodes nodes elements elements

Order Preserving Y Y Y N Y N

Recursion N N N/A N Y N

Joins of documents
based on values

N N N N N N

Joins of documents
based on pointers N N N N N N

Update multiple linked
documents

N N N N N N

A sequence ofupdates Y N N Y Y

Implementaton/prototype Y N Y N N N

Origin of Language XPath XQuery Lorel XML-GL XML-RL XQuery

Three major points from the literature
review are summarized as follows.

Mapping XML to conventional databases: No
piece of research handles constraints fully
during the mapping of XML to the database. A
number [3] , 35, 39, 40,51] do provide par t ia l

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

suppotl for constraints as shown in Table 4.
However, for these, constraints may be defined
which conflict with each other, for example

[5 l], or which are impracticable in the current
technology, for example [3 1,39], or which are
incomplete, for example [35,40]. In addition,

Table 4: Comparison of techniques for translating XML query into SQL

Researchers Recursion Optimization

Represent
XMLto
Database

Language /
expession

Database

Fong and Dillon [8] N N shredding XQL Relational

Shanmugasundaram et al. [40] N N shredding Lorel Relational

Jain et al. [20] N Y shredding XSLT Relational

Krishnamurthy et al. [25] Y N shredding
Path

expressions
Relational

Femandez et al. [15] N Y XML V. XQuery Relational

Femandez et al. [16] N Y XML V. XML-QL Relational

Shanmugasundaram et al. [391 N Y XML V. XQuery Relational

Jensen and Beitzel [9] N N Node XML-QL Relational

Khan and Rao [23] N N Node XPath Relational

Prakash et al. [35] Y N Node
Path

expressions
Relational

Shimura et al. [41] N N Node XQL OR

Yoshikawa et al. [50] N N Node XPath Relationa

Florescu and Kossmann ! 7] N N Edge XML-QL Relationa

Jiang et al. l21l N N Edge XPath Relationa

Manolescu et al. [30] N N Edge Quilt Relationa

Manolescu et al. [291 N N Edge XQuery Relationa

5 l

there is just one work, [19], supporting simple
update in the query language.

XML update languages: XQuery, a standard
from W3C, is the most powerful of the existing
XML query languages; thus some works make
extensions to it while others propose new query
languages supporting update features.
Nonetheless, none can update multiple linked
documents and join documents in updates. From
Table 6 there is only one work XML-RL [l0l],
which can update data whose structure is
recursive but this work has not been
implemented.

Translating XML query language into SQL:
No existing work translates the full recursive
function of XQuery into SQL, although, from
Table 7, 125, 351 makes some attempt, but the
researchers just translate a path expression
containing 'll' into SQL. Several other features
of XQuery such as aggregate functions and
quantifier have not been translated into SQL.

Overall: It is evident that no existing
approach comes close to providing an effective
update language meeting our requirements. In
particular, constraints arc at best partially
handled with severe limitations in some cases on
their application. Approaches that can handle
constraints to a limited extent have no capability
for recursion. In updating, no approach can
update multiple linked documents and
documents connected through joins.

5. Conclusion and further work
ln our work, we have presented an XML

update language as an extension to XQuery,
translated it into SQL, which is executed on an
ORDB storing XML data. The rules propagating
the change from ORDB to XML are
independent of any XML update language.
Therefore, we feel that we have enhanced the
XML data model with a general update facility.
(We can anticipate that before too long update
features for XQuery will be presented by W3C.)
We have shown that rules employed in updating
XML data can be based on the features of
XQuery and the future vereion of XQuery
supporting updates will be based on XQuery
also as required by W3C [a6].

Meanwhile a standard for updating XML
documents has not been proposed. The existing
XML databases and XML update languages
have limitations in their capability for updating
data. In our technique, the technology of ORDB

Thammasat Int. J. Sc. Tech.. Vol. 12. No.4, October-December 2007

is exploited to increase the capability ofexisting
XML update approaches in the aspect of
controlling constraints during updating of XML
data, making it easier to join XML documents in
Dpdab& d)oilng tbe updates of documents
whose structure is known partially or whose
structure is recursive, and improving the
performance of the updates by using regular
path expressions. With this approach, there is no
need to maintain the order of elements in
ORDB, and the cost of converting ORDB data
back to XML format is eliminated, since the
change in ORDB is propagated to XML already.
Our approach makes it possible to query XML
data from XML documents, instead of just

ORDB. For example, using Kweelt [38] which
is an implementation of XQuery for querying
XML documents directly, the result from
querying is retumed in XML format without any
conversion. Although DOM has to be serialized
back to XML document, serialization is
performed only once after all updates finish.

We have conducted an experimental study to
verifu the method for updating XML and to gain
an insight into the performance of the update
techniques. Overall, the experimental results
show that updating non-redundant data in linked
XML documents outperforms updating
redundant data. Caching data significantly
improves the performance of updating ORDB
data. The native XML database has a weakness
in handling regular path expressions.

There are many interesting avenues for
further work in the XML update area, since
XML updating is still in its infancy. The
possible extensions to our research include
updating XML structure, transaction processing,
concurrency control, security for accessing
XML data and query optimization through using
the results obtained in Section 3 as parameters
for a cost model.

6. References

t1l Abiteboul, S., S. Cluet, V. Christophides,
T. Milo, G. Moerkotte, and J. Simeon,

Querying documents in object databases.
International Journal on Digital Libraries,
Vol . 1(1) : pp. 5-19,1997.

l2l Abiteboul, S., D. Quass, J. McHuge, J.
Widom, and J.L. Winer, The Lorel query
language .fo, semistructured data.
International Journal on Digital Libraries,
Vol . l : pp.68-88, 1997.

58

t3l Amer-Yahia, S., F. Du, and J. Freire. I
Comprehensive Solution to the XML-to-
Relational Mapping Problem. in Sixth
ACM CIKM International lMorkshop on
Web Information and Data Management

]LIDM 2004). Washington, DC, USA. pp.

3 l -38 ,2004 .

t4l Amornsinlaphachai, P., N. Rossiter, and
M.A. Ali. Updating XML using Object-
Relational Database. in British I'{ational
Conference. Sunderland University, UK.:
Springer-Verlag. pp. 1 55- 160, 2005.

t5l Amornsinlaphachai, P., N. Rossiter, and
M.A. Ali, Storing Linked XML documents
in Object-Relational DBMS. Journal of
Computing and Information Technology,
Vol. 14(3): pp. 225-241, 2006.

t6] Amornsinlaphachai, P., N. Rossiter, and
M.A. Ali, Translating XML uPdate
language into SQL. Journal of computing
and Information Technology, Vol. l4(2):
pp . 81 -100 ,2006 .

l7l Atay, M., A. Chebotko, D. Liu, S. Lu, and
F. Fotouhi, Efficient schema-based XML-
to-Relational data mapping. Information
Systems,2006.

t8l Babcock, C., Internet Insight: XML Users
Consider Nonstandard. 2002. appears in
Ziff Davis' eWeek I I Feb. 2002.
http ://www.charlesbabcock.com/xquery. ht
m

t9l Beitzel, S.M., E.C. Jensen, and D.A.
Grossman. Using a Relational Database
Management System to Implement XML-

QL. in Proceedings o.f the I Tth
International Conference on Advanced
Science and Technology (ICAST'2001).

Chicago, 2001.

[10] Bohannon, P., J. Freire, P. Roy, and J.
Simeon. From XML schema to Relations: A
Cost-Based Approach to XML Storage. in
Proceedings "l the International
Conference on Data Engineering. pp. 64-
1s,2002.

[11] Cer i , S. , S. Comai , E. Damiani , P.
Fraternali, S. Paraboschi, and L. Tanca,
XML-GL: a Graphical

- Language for
Querying and Restructuring l4/WI(Data.
The lnternational Journal of Computer and
Telecommunications Networking, Vol. 36:
pp. 1 1 7 1 - 1 187 , 1999.

[12] Chamberlin, D., XQuery.from the experts:
Aguide to the W3C XML Query Language.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 4, October-December 2007

Influences on the Design of XQuery, P.
143, ed. H. Katz. XQuery from the experts:
Aguide to the W3C XML Query Language:
Addison-Wesley, 2003.

[13] Deutsch, A., M.F. Fernandez, and D.
Suciu:. Storing Semistructured Data with
STORED. in SIGMOD Conference.
Philadelphia, Pennsylvania, United States.
pp. 431-442,1999.

[4] Fegaras, L. and R. Elmasri, Query Engine

for Web-Accessible XML Data. The VLDB
Journal, pp. 251-260, 2001.

[15] Fernandez,M., Y. Kadiyska, D. Suciu, A.
Morishima, and W.-C. Tan, SilkRoute: A
Framework for Publishing Relational Data
in XML. ACM Transactions on Database
Systems, pp. 438-493, 2002.

[16] Fernandez, M., W.C. Tan, and D. Suciu,
SilkRoute : Trading betvveen Relations and
XML. Computer Networks, Vol. 33: PP.
723-74s,2000.

[7] Florescu, D. and D. Kossmann, Storing and
querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, Vol.
22(3): pp.21-34, t999.

[8] Fong, J. and T. Dillon. Towards Query
Translation From XQL to SQL. in
Proceedings of the 9th IFIP 2.6 working
conference on database semantics (DS9).

Hong Kong. p. l l3-129, 2001.

[9] Han, W.-S., K.-H. Lee, and B.S. Lee, An
XML Storage System .for Object-
Oriented/Object-Relational DBMSs.
Joumal of Object Technology, Vol. 2(3):
p p . I l 3 - 1 2 6 . 2 0 0 3 .

[20] Jain, S., R. Mahajan, and D. Suciu'
Translating XSLT Programs to ElJicient
SQL Queries. in Proceedings o/ the
Eleventh lnternational World Wide Web
Conference, WW1ry2002. New York, NY,
USA.. Honolulu, Hawaii, USA.: ACM
Press. pp. 616-626, 2002.

[21] Jiang, H., H. Lu, W. Wang, and J.X. Yu.
XParent: An ef.ficient RDBMS based XML
database system. tn Proceedings of the l Sth
International Conference on Data
Engineering. San Jose, California. pp. 335-
336.2002.

l22l Khan, L., a Chen, and Y. Rao. A
Comparative Study oJ Storing XML Data in
Relational Database Managemenl Systems.
in Proceedings "J the International
Conference on Internet Computing,

59

IC'2002. Las Vegas, Nevada. pp. 277-282,
2002.

[23] Khan, L. and Y. Rao. A Performance
Evaluation of Storing XML Data in
Relational Database Management Systems.
in 3rd International Workshop on Web
Information and Data Management (WIDM
2001). Atlanta, Georgia, USA. pp. 3l-38,
2001.

[24] Klettke, M. and H. Meyer, Managing XML
Documents in object-relational databases,
PhD. Thesis, in Computer Science
Department., University of Rostock:
Rostock, Germany, 1999.

[25] Krishnamurthy, R., V.T. Chakaravarthy, R.
Kaushik, and J.F. Naughton. Recursive
XML Schema, Recursive XML Queries, and
Relational Storage: XML-Io-SQL Query
Translation. in Proceedings of the 20th
International ConJbrence on Data
Engineering, ICDE 2004. Boston, MA,
USA. pp. 42-53,2004.

126l Lu, L., M. Liu, and G. Wang. A
Declarative XML-RL Update Language. in
Proceedings "J 22nd International
Conference on Conceptual Modeling (ER
2003). Chicago, Illinois, USA: Springer-
Verlag. pp. 506-519, 2003.

[27] Lu', S., Y. Sun, M. Atay, and F. Fotouhi,
On the consistency of XML DTDs. Data &
Knowledge Engineering, Vol. 52: pp.231-
247,2005.

[28] Lv, T. and P. Yan, Mapping DTDs to
relational schema with semantic
constraints. Information and Software
Technology, Vol. 48: pp. 245-252, 2006.

[29] Manolescu, L, D. Florescu, and D. Kossma.
Answering XML Queries over
heterogeneous Data Sources. in
Proceedings of the 27th VLDB Conference.
Roma, Italy, 2001.

[30] Manolescu, I., D. Florescu, and D. Kossma,
Pushing XML Queries inside Relational
Databases, in., INRIA Technical Report
No.41 12 Report no.4112,2001.

[31] Mignet, L., D. Barbosa, and P. Veltri. The
XML l(eb: a First Study. in The Twelfth
International World Wide l4/eb Conference
(WWW2003). Budapest, Hungary. pp. 500-
5 1 0 , 2 0 0 3 .

[32] Mo, Y. and T.W. Ling. Storing and
Maintaining Semistructured Data
Efficiently in an Object-Relational

Thammasat Int. J. Sc. Tech.. Vol. 12. No. 4. October-December 2007

Database. in The Third International
Conference on Web Information Systems
Engineering (WISE'00). Singapore. pp.
247-2s6,2002.

[33] Obasanjo, D. and S.B. Navathe. A Proposal

for an XML Data Definition and
Manipulation Language. in VLDB 2002
Worl<shop EEXTT and CAiSE 2002
Workshop DTWeb. Hongkong Chaina. pp.
1 -21 ,2002 .

[34] Pardede, E., J.W. Rahayu, and D. Taniar,
Object-relational complex structures for
XML storage. Information and Software
Technology, Vol. 48: pp. 370-384, 2006.

[35] Prakash, S., S.S. Bhowmick, and S.
Madria, Efiicient recursive XML query
processing using relational database
systems. Data & Knowledge Engineering,
2006.

[36] Psaila, G. ERX: A Conceptual Model for
XML Documents. in Proceedings o/' the
2000 ACM Symposium on Applied
Computing. Como, Italy. pp. 898-903,
2000.

[37] Runapongsa, K. and J.M. Patel. Storing and

Querying XML data in Object-Relational
DBMSs. in XML-Based Data Management
and Multimedia Engineering - EDBT 2002
Workshops. Prague, Czech Republic. pp.
266-285,2002.

[38] Sahuguet, A. Kweelt: More than Just "Yet

Another Framework to QUew XML! in
SIGMOD 2001 Electronic Proceedings.
Santa Barbara, CA. pp. 602,2001 .

[39] Shanmugasundaram, J., J. Kiernan, E.
Shekita, C. Fan, and J. Funderburk.

Querying XML Views of Relational Data.
in Proceedings of the 27th VLDB
Conference. Roma. Italy. pp. 261-270,
2001.

[40] Shanmugasundaram, J., K. Tufte, G. He, C.
Zhang, D. DeWitt, and J. Naughton.
Relational Databases for Querying XML
Documents: Limitations and Opportunities.
in Proceedings of the 25th VLDB
Conference. Edinburgh, Scothland. pp.
302-314,1999.

[41] Shimura, T., M. Yoshikawa, and S.
Uemura. Storage and Retrieval of XML
Documents using Object-Relational
Databases. in Database and Expert
Systems Applications, 10th International

60

Conference, DEXA'99. Florence, Italy. pp.
206 -217 ,1999 .

f42lTatarinov, 1., Z. Ives, A.Y. Halevy, and
Daniel S. Weld. Updating XML. in
Proceedings of 2001 SIGMOD Conference.
Santa Barbara, CA, USA. pP. 413-424,
2001.

[43] Tseng, F.S.-C. and W.-J. Hwung, An
automqtic load/extract scheme for XML
documents through obiect-relational
repositories. The Journal of Systems and
Software, Vol. 64: pp. 207 -218, 2002.

[44] Varlamis, I. and M. Vazirgiannis. Bridging
XML-Schema and relational databases. A
system for generating and manipulating
relational databases using valid
documents. in ACM Symposium on
Document Engineering 2001. Atlanta,
Georgia, USA. pp. 105-114, 2001.

[45] W3C, XQuery 1.0: An XML Qrery
Language.2003.
http ://www.w3.org/Tfu xquery

[46] W3C, XQuery Update Facility
Requirements, W3C Working Draft.
2005.http :/iwww.w3. orgiTR/xquery-
uodate-requirements/

f47lWang, G. and M. Liu. Query Processing
and Optimization for Regular Path
Expressions. in Advanced Information
Systems Engineering, I5th International

Thammasat Int. J. Sc. Tech.. Vol. 12, No. 4, October-December 2007

Conference. Klagenfurt, Austria. pp. 30-45,
2003.

[48] Watson, P. Databases in Grid
Applications: Locality and Distribution. in
Proceedings of the Database: Enterprise,
Skills and Innovation. 22nd British
National Conference on Databases,
BNCOD 22. Sunderland, UK: Springer-
Ver lag. pp. l -16,2005.

[49] XMLDB, XUpdate. 2002.
http : //www. xmldb. org/xundate/xupdate-
wd.html

[50] Yoshikawa, M., T. Amagasa, T. Shimura,
and S. Uemura, XREL: A path based
approach to storage and retrieval of XML
documents using relational databases.
ACM Transactions on Internet Technology,
Vo l . l (l) : pp . 110 -141 ,2001 .

[5 l] Zhou, A., H. Lu, S. Zheng, Y. Liang, L.
Zhang, W. Ji, and Z. Tian. VXMLR: A
visual XML-relational database system. in
Proc. of the 27th Int'l Conference on Very
Large Data Base. Roma, ltaly. pp. 719-
720,2001.

l52l Zwol, R.V., P.M.G. Apers, and A.N.
Wilschut. Modelling and Querying
Semistructured Data with MOA. in
proceedings of llorkshop on Query
Processing for Semistructured Data and
Non-standard Data Formafs. Jerusalem,
Israel ,1999.

61

