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Abstract
The pressure drop of slug flows in capillary tubes is mostly resulted from the pressure gradient of

liquid slugs in the capillary tubes, which can be related to the radius of the Taylorbubbles behind the
liquid slugs. The paper proposes a theoretical relation between the pressure gradient in a liquid slug
and the radius of the following Taylor bubble in capillary tubes. The present relation is derived by
assuming that the flow taking place around a Taylor bubble is incompressible laminar flow.
Verification of the present relation is done by comparing the results predicted from the present relation
with the results from empirical formulas. The present relation showed not only that it could predict
additional pressure gradients, resulted from the presence of the Taylor bubbles. It also agreed well
with the empirical results, and also it gave more insights about slug flows, for instance, the critical
bubble-to-tube radius ratio and the velocity profiles in liquid slugs.
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1. Nomenclature
1.1 Characters
W Relative velocity ratio
a Velocity

Ca Capi f  lary number 1p, lu^ l f  o ,o I

Gravity acceleration
Superficial velocity
Static pressure
Length
Radius in cylindrical coordinates
Time
Vertical distance in cylindrical
coordinates

C

f
o

I
tb
ls
r
t

q

P
I
r
t
z

1.3 Superscripts and Subscripts
b Bubble

Capillary tube
Fall ing fi lm
Gas
Liquid
Liquid and bubble interface
Liquid slug
Radius in cylindrical coordinates
Total slug unit

z Vertical distance in cylindrical
coordinates

2. Introduction

1.2 Symbols 
Small tubes have been used for many

a Volume fraction of gas 
purposes' Catalytic monoliths' which are widely

B Ratio or the rength or a rayror bubbre ro ff'# !iiil::,1J":T"i,ft 
":ffli 

,'#J,:"1
the length of a slug unit ' catalvtic monolith consists of a large number of

5 Percent ofrelative discrepancy; see (20) smali tubes arranged in a honeycJmb shape. A
e Roughness oftube surface porous washcoaf containing the catalyst is
p Viscosity covered on the surface of each small tube so that
d Angle in cylindrical coordinates the catalyst reacts with the flow in the small
p Density tubes [1]. Another example of using small tubes

is hollow fibre ultrafiltrarion l2l and Smith and
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Cui [3]). A module of hollow fibre ultrafiltration
consists of a bundle of membrane small tubes
ranging from 0.1 to 2.0 mm in diameter. Fluid
flows are introduced inside the small tubes.
Filtrate passes through the small tube walls and
is collected in a shell.

In academic research, the small tubes are
sometimes called either microchannels [4,5,6,7]
or capil lary tubes [8,9,10,11,12]. The diameter
of capillary tubes ranges from 

.l 
to 3 mm I I I ,1 2]

so the flow inside the capillary tubes is usually
laminar.

Falling
Fi lm

Figure l: The dimension fbr a slug unit in a
capillary tube.

Many flow pattems can occur in the
capillary tubes even though their diameter is
small. Slug flows are a regime of flows that
often takes place in the capillary tubes. A unit of
slug flow is illustrated within the dashed
rectangle in Fig. l. An important parameter of
slug flows is the pressure drop across a slug unit.
Since the pressure drop across a Taylor bubble
is comparatively much smaller than the pressure
drop across a liquid slug, it is well known that
the pressure drop across a slug unit will be
determined if the pressure drop across a liquid
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slug or pressure gradient in the liquid slug are
given. The pressure gradient in liquid slugs
depends on the velocity profile, which is
affected by the shape of the following Taylor
bubble. The objective of this paper is to derive
an equation relating the pressure gradient in
liquid slugs and the shape (radius) of the
following Taylor bubble. The equation will be
obtained from the continuity equation and
momentum equation with some assumptions, i.e.
the flow in liquid slugs is steady, laminar,
incompressible and symmetric around tubes
centerline.

3. Theoretical Relation
As shown in Fig. l, a unit of a slug flow in

vertical capillary tubes typically is composed of
3 parts, i.e. a liquid slug, Taylor bubble and a
falling film. All parts are moving with different
velocities. If the Taylor bubble is considered as
a reference frame, the velocities of the liquid
flow around the Taylor bubble may be depicted
as shown in Fig. 2.

Since the diameter of capillary tubes is
small, The reynolds number for the liquid flow
in the slug is low and the flow is usually laminar.
Consequently the velocity profile across the
sectional area a-a in the liquid slug (see Fig. 1)
can be simply calculated with the Navier-
Strokes equations for incompressible flows in
cylindrical coordinate as follows.

ContinuiQ equation:
r d ,  r a ,  a ,-  ^  l t ' u , ) + -  _ l u o  ) + - ( r ,  ) :  U  (  l )
r o r  r O A  O z

Momentum equalion on z-axis:
/ ^  r  \
t ou_ ou_ ua ou_ ou l

o , l  - +  + - - +  u _ -  |" \ d t  ' 0 r  
r A 0  

' d z )

I t  a f  d u . \  |  o z u .  o ' u . f
:  u , t  

- - l  
|  

-  
|  T . _ - - - - - - - - : - T _ - - - -  |'  ' l r  Ar \  0r  )  r '  A0 '  dr '  )

AP
+p6-*  Q)

oz

If we consider that the flow in the liquid
slug is steady and symmetrical on the z-axis, all
terms which are funbtions of either t or 0 will
be eliminated from ( I ) and (2). Furthermore, the
flow in the liquid slug will be considered as
fully developed along the z direction ifthe space
between the cross sectional area a-a and the
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Taylor bubble is greater than one diameter of the
du

cap i l l a r y  t ube  l l 0 l .  Hence .  a l l  
; j  

w i l l  be
UL

eliminated. The equations; (l) and (2), can be
reduced as below:

! ! t , u  t : o
r  D r '

The reduced continuity equation (3) implies

that u, is zero. Hence, the left-hand-side of (4)

is zero, as well.
'  t /  r  \

^  I  d /  d u - \  0 p
u :  u , - - l  r -  l *  p , s -  .

" r 0 r \  A r )  0 z
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Then, the constants cr and c, can be

determined by applying the following boundary
conditions:

l .  
uu '  

= o when r  = o
or

2. u, : un when r = r,.

Finally we get the velocity profi le across
the sectional area (a-a) in the l iquid slug as
below:

|  (aP \
u  = u ,  l ( r t _ � r ' )  t o t

41t , \  oz

The velocity profile across the sectional
area b-b in Fig. 2 can be obtained with a similar
method. Namely, the set of Navier-Strokes
equations; (l) and (2), are integrated under the
steady and symmetry conditions. Next, the
condition of fully developed flow is applied, in
accordance with the assumption that the falling
fi lm on the b-b plane is under equil ibrium
between shear and gravity. This yields:

t (aP )
u ,  =  ,  |  * -  p , S  l r t  + c ' , l n ( r l + c o  0 l

+pt  \oz )

which is identical to (5). Mao and Dukler

[3] calculated the static pressure in the falling
fi lm with:

where

, 1  -

f2. = fn

Under the equilibrium between shear and
gravity, the radius ofthe Taylor bubble does not
change along the z direction, the second telm on
the left hand side of (8) wil l be constant. The
right hand side of (8) representing the static
pressure inside the Taylor bubble is usually
assumed to be constant. Therefore the static
pressure in the falling film will be constant. The
pressure gradient in (7) will be equal to zero-
This sives:

(3 )

; /  r  \  I
o u -  |  o l  o u - \  o p

o , u . . - :  u , - - l  t . -  l +  p , P - L  ( + l"  
A r  

" r 1 r \  
d r l  0 z

(8 )p

l l
, - + -

ft fz

r r|  /  ̂  \ :
t l o r . \- l  l + l a l
|  \ d z l
L

P + o , o K =

|  , .  J

il'.13i
Relative to

the tube

Relative to

the bubble

Figure 2: The velocity diagrams of the slug unit
in a capil lary tube

lntegrating fbr 2 times, we obtain:

1 ( A P  )" ,  =- t* lot-  P,s 
)r '  

+c,  In(r)+c,  (5)
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n o
u ,  = - ! l J e - Y ' + c ,  l n ( r ) + t ' o  ( 9 )'  

4u ,

The constants have to be determined by the
following boundary conditions:

l . u ' ' = 0 w h e n r : r ,
0r

2. u, : uu when r : r,.

Finally we get the velocity profile across
the sectional area (b-b) in the falling film as
below:

f  r  r lp , s l  )  )  ,  I  r  t l
u , : u r . + = l  r , ' - r '  + 2 6 l n l  -  l l  ( l o )

+ l t r l  \ {  i - l
Vaporization may occur on a Taylor bubble

surface in the case that a temperature change is
serious in the flow field, but vaporization is
usually low in isothermal flows. According to
Fig. 2, the mass flow rates across the sectional
areas, a-a and b-b, are equal if the vaporization
rate on the Taylor bubble surface is negligibly
low. This can be written as:
hrng = h /;t.

(oQ),,,r = (PQ) ,,,,

Usually, there are few dispersed bubbles
suspended in the flow around the Taylor bubble
in the case of flows in capillary tubes, so the
flow is assumably an incompressible liquid.
Then, the densities are eliminated.

Q , , :  Q r  ( 1 1 )

The flow rate across the sectional area a-a
is calculated by integrating the velocity profile
equation (6) over the cross sectional area.

A f l r ^
Vr' :  l lu,  lzf t rdr

!

Next, the flow rate across the cross
sectional area b-b is calculated by integrating the
velocity profile equation (10) over the cross
sectional area.
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Substituting (12) and (13) into (11), we
obtain the relation between the pressure gradient
in a liquid slug and the radius of the following
Taylor bubble in capillary tubes as following.

4. Relation Verification
To verify the relation obtained in the

previous section, some empirical formulas are
employed. The equilibrium radius of Taylor
bubbles can be predicted by the Marchessault
and Mason's formula, which is referred to in
Thulasidas et al. [91.

I

r  - v  f  , ,  U  I

f ,  \on  )

f o r 7 x l O 6 < C a < 2 x l 0 t  r 1 s )

Next, the pressure gradient on the left hand
side of (14) can be estimated by the pressure
drop formula used in Garimella et al. [5,6f.

Q, ="!lu,lznra,

|  |  r  \ l=i,:{,,,[' tf)']
. #l' - ̂a:)' . [f ). [, - -' [f ))]],',,

( a P \  - (  + \ '  l 8 p , u ,
la ,J , , -1.4,  1--

*r,rl o-( t l' [,-o'f t ]llI,,.,
L  \ { / \  \ r ' ) ) l 1

[a") _ r pul,
\  a, )  ,-  

' ' '  4,.= !,:l^, - *(# -, r)r,1 (,2)
(a(P-  p,cz) \  ,  pu: ,
r 

-------l-- 
| 

- 
., i. 

-

( dr ),, 
" '" 4r,

( aP\ - oul
|  .  |  =J t , - ; ' +P rS
\oz / t ,  +r ,

(  l 6 )

The friction factor ( "f ) on the right hand
side of(16) is calculated by Churchil l 's equation
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[6], which is applicable to both laminar and
turbulent flows, and is better than Blasius's
turbulent equation [5].

l r  R  ) ' '
f  = 8 1 1  -  

|' ' l '  
l l R e , .  , J
t '

+ 0 . 1 3 5 i

/  \ ' u ,  ' s l i l :

1 3 7 5 3 0  1  I  |  ( l 7 y
1 r - r  |  

|I  R e ,  . /  |

Herein, Re,, is the Reynolds number of the

flow in the liquid slug and is defined as a
function ofthe tube size, the fluid properties and
the velocity of the l iquid slug.

Re,, = 2p,u,,r"lp, (18)

Thulasidas et al. l9l have also suggested
the empirical formula proposed by Fairbrother
and Stubbs [14] for calculating the relative
velocity ratio between Taylor bubbles and liquid
s lugs as below:

14 /  -u t  
- u r ,  

:  I  . 0 (Ca )1 ,
ub

f o r  7 . 5 x 1 0  s  <  C a  <  0 . 0 1 4  ( 1 9 )

These can be used to calculate the velocity

of the liquid slug and Re,, when Ca (or el, ) is

known.

So far, the accuracy of the theoretical
relation (14) can be verified at a certain Ca

between Jx10-6 and 2xl 0 o by substituting

4 calculated from (15) into (14) to get the

theoretical pressure gradient in the case that the

fluid properties and 4 are known. Then the

empirical pressure gradient will be calculated
wi th (16)  (19)  and used'as a compar ing
reference. The results shown in Table 1 3 are
calculated for the case of air-water slug flows
for 3 different radiuses of capillary tube, i'e. 0.5,
1.0 and l.5mm. The properties of the fluid are
(in SI units):

P , : 9 9 8
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l r : 8 ' 9 l x l 0  
o

on :J  '28x10 2

The capillary tubes are considered as

smooth pipes, corresponding to laminar

conditions, so the roughness of tube surface

is set to zero. The percent of relative
discrepancy between theoretical and empirical
pressure gradients is calculated by:

(aP tu\ -(aP dz)
6  

_ \  
' t t h \ t r . t h | i l  \  ' \ l n r t t h \ t t  

, 1 0 0 %  t : o t
( APr Azl
\  |  t m D l l l t \ l l

Tabte l: Relative discrepancy between
theoretical and empirical pressure gradients at

various Ca in the case of 0.5 mm 4, (SI units).

7.0x 10-6

2.0x 10-s

4.0x l0-5

6.0x 10-5

8.0x10-s

I .0x l0-a

1.2x10-a

t , 4 x t u

L6x10-a

l . 8x l0 -a

2.0x l0-a

5.72x10-a

I .63x I 0-l

3 .21x103

4.90x I 0 r

6 .54x  l 0  3

8 .  l 7x  l 0 -3

9.80x10-3

1 . 1 4 x 1 0 - 2

I  . 3 1 x 1 0  2

l .4 lx l0-2

I  .63x l0-2

5 .0 l6x l0 -a

5 .008x10  a

5.000x l0  a

4.993x104

4 .988x10  a

4.983x I  0  a

4.979x10-a

4.9'75x104

4.97lx10 a

4.968x l0-a

4.965x|0-a

5.4 7.01x103

1.3 1.64x103

9 .1  7 .59x10 -3

10 .9  7 .00x10  3

12.1 5.93x l0  3

14.5 4.42x103

16.3 2.49x10-3

I 8.0 I .95x I 0-a

Table 2: Relative discrepancy between
theoretical and empirical pressure gradients at

various Ca in the case of 1.0 mm 4 (SI units).

UrCa

ReoUyCa

7 .0x10 -6  5 . l 2x l \ *

2.0x10-5 l .63xl0 ' l

4 .ox lo-s 3.27x103

6.ox l0-s 4.90x l  o  l

8 .0x10-5 6.54x10- l

l . ox10 -a  8 .17x lo -3

l . 2x lo -a  9 .8ox l0  3

l . 4x lo -a  l . l 4x l0 -2

l . 6 x 1 o - a  1 . 3 1 x 1 0 2

1.8xlo-a 1.47x10-2

2.oxlo-a l .63xlo-2

1 . 0 0 3 x 1 0  3

1 .002x10  r

9.999x10 o

9 .986x  l 0  a

9 .9 l6x l0a

9.966x10-a

9.958x l0-a

9.950x 1 0 a

9.943x104

9 .936x10  a

9.929x104

1  .3  1 .46x10  3

10 .9  L79x10  3

14.5 l .93xl0-3

l8 . l  1 .92x10 -3

21.1 1.76x10- l

25 .3 I .47x I 0-3

28.9 1.06x10 3

32.5 5.39x10-a

3 6 . 1  - 8 . 7 5 x 1 0 5
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demonstrate clearly, (14) has to be re-arranged
as follows:

Table 3: Relative discrepancy between
theoretical and empirical pressure gradients at

various Ca in the case of 1.5 mm 4 (SI units).

ttn 16 Reo d

7.0x10-6 5. '72x104

2 .0x10 -5  l . 63x l0  l

4.oxlo-5 3.27xlo-3

6.0x10-s 4.90x10-3

8.0x10-5 6.54xl  o-3

1 .0x  1o -a  8 .17x  10  3

l .2x lo-a 9.8oxlo- l

l . 4x l0 -a  l . l 4x1o -2

1 .6x10 -a  1 .31x10 -2

l .8x l  o-a l .4 lx1o-2

2 .0x10 -a  L63x10  2

1 .505x10  3

1 .502x10  3

1 .500x10 - r

I .498x10-3

1 .496x l0-l

1 .495x10  l

1.494x103

1 . 4 9 3 x 1 0 l

L49 l x l  0  3

1 .490x10  3

1 .489x10  l

16.3 7.94x10'

21.8 8.56x10'a

27 .2 8.43x10 a

32.6 7.62xl0a

3 8 . 0  6 . 1 9 x 1 0  a

43.4 4]9x104

48.8 1.64x10-a

54.1 -I.42xl0a

According to the tables, the percentages of

relative discrepancy between theoretical and
empirical pressure gradients are confined within

the interval of +10 2 This confirms the

accuracy of the theoretical formula (14). One
interesting point is that the discrepancy is high

when Ca is low. This may be because 2,. is

extrapolated from (19) when Ca is lower than

the  app l i cab le  range  (  7 .5x  l 0  t  <  Ca  <  0 .014  ) .

Therefore, R€,, calculated from the

extrapolated u,, , possibly has some implicit

error. However, the discrepancy for the cases of
low Ca is still acceptable.

In the tables, some rows with low Ca are

omitted since 4 is much greater than r,.. They,

thus, are physically meaningless. However d

for low Ca may be obtained by changing the
working fluids to adjust the first term on the
right hand side of ( I 5).

The corresponding Reynolds numbers in all

cases presented in the tables are much less than
2300. which is the conventional criterion for

laminar  f low in c i rcu lar  p ipes.

5. Discussion
The relation (14) shows that the pressure

gradient along the tube centerline is a function
not only of fluid properties but also of the

bubble-to-tube radius ratio. This means that the
presence of a Taylor bubble affects the change
in the pressure gradient ahead of it. To

f  aP )  8p,uo [ ,  (  ,^ \ ' )zp,u^
t - l
\ 0 ' ) , ,  r . l  L  \ { / ] r . l

* p,rf Ll ' [o-f rl '  (, - o^( a]l l,r,,- f + , t [  
\ t i  |  \ r , ) ) )

The first term on the right hand side of
(6.1) is equal to the pressure gradient for the

case of one-phase laminar flows in circular pipes,

which is calculated by:

f a P )  -  , P t l
lE ) 

- ' '  
4,,

where f =!! un4p.e,-2P'''"
Re, ltr

( AP \ 8p,un

l a , ) -  , '

(22)

(23)( dP \ 8tt,u, 8tt,u,,
| - | =---=------
\ Az ), r,. r.'

t t- l
,,, = 

Ll 
.0 - (Ca ): _lr,

Since the velocity of one-phase flows is

equal to the velocity of liquid slugs, (22) can be
re-written in a single formula as:

Next, the velocity of liquid slugs can be
determined with ( 19), that is:

(24)

For the case of slug flows in a capillary
tube whose Ca is much smaller than unity, the
velocity of the liquid slugs can be estimated as:

ut, = uh (2s)
Substituting (25) into (23), we get the

pressure gradient for one-phase laminar flow in

circular pipes as below:

(26)

Next, subtracting (21) with (26), the

difference between the pressure gradient of slug

flows and the pressure gradient of one-phase
flows is equal to:
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f aei) : -[,-f r\ ' ]u4,
\ A z ) , , . 0  |  t t l l  r , '

.*elw,9'[,-'g)]
20,000

I 0,000

T.
8 o
LL

€"

- r 0,000

-?0,00CI

-30,000

-40,000

, . . . ; t*7/

!--- --,C--.*^-

,
t

= 0.5 wn
- * - - r c  =  l . O m m

" - " " - " ' ? c -  i . 5 m w

8.7 0.8 0.9 I
7*s

Figure 3: The additional pressure gradients
due to the presence of a Taylor bubble in 3
different capillary tubes as a function of
bubble-to-tube radius ratio.

Hence, we have found that the presence of
a Taylor bubble in capillary tubes added the
pressure gradient (27) to the front liquid slug.
This is Because zu is dependent of Ca, which is

a function of the bubble-to-tube radius ratio
according to (15) .The magni tude of  the
additional pressure gradient of a fluid mixture is
a function of bubble-to-tube radius ratio. For
example, in the cases of air-water slug flows in
capillary tubes, the relations between the
additional pressure gradient of ihe nuld mixture
and the bubble-totube radius ratio are shown in
Fig.  3.

The curves in Fig. 3 reveal that the
additional pressure gradient is positive when the
bubble-to-tube radius ratio is close to unity. All
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(27)

carves asymptote toward a certain value equal to
hydrostatic pressure difference ( p,g ). In

contrast, the additional pressure gradient
becomes negative when the bubble-to-tube
radius ratio is approaches zero. The critical
value of the bubble{o-tube radius ratio, where
the additional pressure gradient equals to zero
depends on the size of capillary tubes.
Obviously, Fig. 3 shows that the larger the
capillary tube is, the higher the critical bubble-
to-tube radius ratio is. It should be noted that the
results shown in Fig. 3 are extrapolated to the
region of low bubbleto-tube radius ratio where
(14) has never been verified. However, the trend
of curves gives the idea that there is possibly a
critical bubble-to-tube radius ratio for slus flows
in capillary tubes.

For slug flows in capillary tubes, some
researchers ! l,l2] assumed that the shape of
the Taylor bubble head was a hemispherical cap.
The shape of the Taylor bubble head is indeed
not exactly a hemispherical edp, but is
controlled by either the surface tension of gas-
liquid mixtures or Ca [2,8]. However, the
relation between the pressure gradient in a liquid
slug and the radius of the following Taylor
bubble in capillary tubes is independent of the
shape ofthe Taylor bubble head since the shape
of the Taylor bubble head is not considered
when (14) is derived.

Although (14) is derived for application
with vertical slug flows, the application for
horizontal slug flows may be possible by little
adjustments, namely setting the gravity
acceleration ( g ) to be zero, then, the use of

using Figs. 5 and 7 in Thulasidas et al. l9l
instead of(15) and (19), respectively.

If the dimension of slug flows in capillary
tubes can be depicted as shown in Fig. l, the
pressure gradient of the slug unit will be equal
to:

(ap) (ar)
\ d x i ,  ( d x l u !.fg.] !"!L (28)

l ,  \Ax ) ,  I

Since the pressure gradient occurring in the
falling film is very weak, the pressure drop of
the slug unit in capillary tubes can be estimated
by:

rg.l :rg) L 2s)
l a x / ,  \ a x ) , , t ,
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(30)
z  : 2

^  l r .  I  l f ^
F = a l :  |  + ; i

\ rn  )  r t ,

According to Thulasidas et al. [9], the
relationship relating the Taylor bubble velocity
with the length of the Taylor bubble and the
total length of the slug unit is:

I

w h e r e  a - " t
u,

R  - ' b  
-  t ' b

, l
' l

Therefore the pressure gradient of a slug
unit can be approximately determined in the

case that superficial gas velocity ( "t" ) and the

velocity of the Taylor bubble ( a, ) are given.

Considering (6), the shape of the velocity
profile in liquid slugs is affected by the pressure
gradient along the axis of capillary tubes
According to (6), the velocity on the surface of

capillary tube ( r = r, ) is equal to uu . The

velocity will be higher at the centerline of the

capillary tube ( r=0 ) if dPlAz < p,g . The

parameters which affect the condition that

1PlAz<ptg , may be explicitly shown by

analyzing the order of magnitude of terms in
(14) as follows:

t r  r  l ,  1 2  r ^l / F P \  |  l r ,  \  l 8 p , u uO l l - - l  l : O 1 l  2 l r  .
l r  : -  J  |  | . .  |  |  r '
L \ u L  / h )  l \ t c /  \  ,
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f z ^ ^ , 1  ( /  -  \ l
^ l ( o r \  |  ^ l l  6 u , u ,  l lo l  l .  I  l = o l l - ? * p , s l l  1 3 2 )

l \  oz /^l l.\ r, ))

This means that the pressure gradient on the

left hand side of (32) will be less than p,g if uu

is negative. According to (24), in the case that

Ca is much less than unity, uo will be negative

if a,. is negative (downward flow). Figure 4

illustrates how al,. affects the velocity profile of

the air-water slug flows in a capillary tube

where 4.: 0.5 mm. For the cases that r,: 1.0

mm and r,: 1.5 mm, the velocity profiles are

similar to the case that r,: 0.5 mm. Besides,

(32) still informs us that the pressure gradient on
the left hand side is more sensitive to the change

of uo in the case that 4 is small.

0,00 r l .  r0 B.2B 0 30 0.40 0.50

r1 ftrun)

Figure 4: Velocity profiles in liquid slug at

various el," in the case of 0.5-mm 4 .

6. Conclusion
L The relation between the pressure

gradient in a liquid slug and the radius of the
following Taylor bubble in capillary tubes (14)
has been derived theoreticallv under some
assumptions, i.e.:

1.1 Laminar flow
1.2 Steady flow
1.3 Axis-symmetrical flow
l�4 The liquid slug is much longer than 2D

F
E u

s

Since r, > 9.9r" for all cases, we

approximate that ro = 4 . Then (31) yields:

[ r , ^ p t  I  f  - ( 8 l r , r u
o l  l : l  l = o l ( r ) ' 1  ,

L \ o z / ^ l  l .  |  {

\ \-ll Ir | [ l
, " ) ) ) ) )

( 3 t )

* p,sl l - (  l  ) '  (3-4tn ( '  ) ) ] I . |' ) )
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1.5 The Taylor bubble must be long enough
to achieve the equilibrium film thickness

1.6 No dispersed bubble in the l iquid slug
L7 lsothermal  condi t ions

2. The relation (la) is independent of the
shape ofthe Taylor bubble head.

3. Not only for vertical slug flows but the
relation (14) may be applied also for horizonta.
slug flows with some adjustments.

4. Employine Q9) and (30), the pressure
gradient of slug units can be approximated from
the pressure gradient ofliquid slugs; (14).

5. The shape of the velocity profile in liquic

slugs depends on both u^ and r".

6. Furthermore, we can see that the
Reynolds number is also a parameter affecting
the pressure gradient of slug units by re-
arranging the first term in the seconcl
parentheses on the right hand side of (14) as
follows:

where Reo = 2p,uur,. f p,
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