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Abstract
Non-isothermal flow through a rotating curved duct with square cross section, driven by a

pressure gradient along the duct, is studied numerically by using the spectral method over a wide
range of the Taylor number, Tr, 0 < Tr 3 2000. A temperature difference is applied across the vertical
sidewalls for Grashof number Gr : I 00, where the outer wall of the duct is heated and the inner one is
cooled. The rotation of the duct about the center of curvature is imposed. The effects of rotation
(Coriolis force) on the flow characteristics are investigated. Though the present study covers a wide
range of the Dean number , Dn, 0 < Dn < 2000 , in the present paper, three cases of the Dean numbers,

Dn : 500, Dn : 1000 and Dn: 2000 are discussed in detail. Steady solutions are obtained by the
Newton-Raphson iteration method and their linear stability is investigated. When there is no stable
steady solution, time evolution calculations as well as their spectral analyses show that the periodic
oscillations, obtained for small Tr and at moderate Dn, tum into steady state if Zr is increased. For
larger Dn, however, the flow undergoes 

" steady ) periodic -+ chaotic -) steady" , if Tr is increased.
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1. Introduction
The study offlow through a curved duct is of

fundamental interest because of its importance
in chemical, mechanical and biological
engineering. Due to engineering applications
and their intricacy, the flow in a rotating curved
duct has become one of the most challenging
research fields of fluid mechanics. Since rotating
machines were introduced into engineering
applications, such as gas turbines, electric
generators, rotating heat exchangers, cooling
systems and some separation processes,
scientists have paid considerable attention to the
characteristics of the flows in these rotating
systems. The readers are referred to Berger et al.

[], Nandakumar and Masliyah [2] and lto [3
for some outstanding reviews on currred duct
flows.

One of the interesting phenomena of the
flow through a curved duct is the bifurcation of
the flow because generally there exist many
steady solutions due to channel curvature. Many
researchers have performed experimental and
numerical investigations on developing and fully
developed curved duct flows. An early complete
bifurcation study of two-dimensional (2-D) flow
through a curved duct of square cross section
was conducted by Winters [4]. Very recently,
Mondal et al. [5] a performed a comprehensive
numerical study on fully developed bifurcation
structure and stability of 2-D flow through a
curved duct with square cross section and found
a close relationship between the unsteady
solutions and the bifurcation diagram of steady
solutions. The flow through a curved duct with
differentially heated verlical sidewalls has other
aspects because secondary flows promote fluid
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mixing and heat transfer in the fluid
(Chandratilleke and Nursubyakto [6]). Recently,
Mondal et al. I7l and Yanase et al. tSl
performed numerical investigations of non-
isothermal flows through curved ducts with
square and rectangular cross sections
respectively, where they studied the flow
characteristics with the effects of secondary
flows on convective heat transfer. They also
studied the transitional behavior ofthe unsteady
solutions by time evolution calculations.

The flow through a rotating curved duct is
another subject, which has attracted
considerable attention because of its importance
in engineering devices. Early works on rotating
curved duct flows were constrained to two
simplified limiting cases with strong or weak
rotations. Ludwieg [9] first analyzed the flow in
a co-rotating (the rotating angular velocity and
the axial velocity are in the same direction)
curved duct by integrating the momentum
equations. Miyazaki t10l studied the
characteristics of the flow and heat transfer in a
rotating curved rectangular duct with positive
rotation. Wang and Cheng [11], employing a
finite volume method, examined the flow
characteristics and heat transfer in curved ducts
for positive cases and found reverse secondary
flow for co-rotation cases. Selmi and
Nandakumar [2] and Yamamoto et al. [13]
performed extensive works on the rotating
curved duct flows and their bifurcations,
Yamamoto et al. [l3], employing the spectral
method, examined the flow structure and the
flow rate ratio for the flow in a rotating curved
square duct and found a six-cell phenomenon in
the secondary flow. In their paper, they
predicted there should be some multiple
solutions but they did not obtain then. Yang and
Wang [14] performed comprehensive numerical
study on bifurcation structure and stability of
solutions for laminar mixed convection in a
rotating curved duct of square cross section.
Transient behavior of the unsteady solutions,
such as periodic, multi-periodic or chaotic
solutions are yet unresolved for the non-
isothermal flow in a rotating curved duct. This
paper is, therefore, an attempt to fill up this gap
with the study of stability analysis of multiple
solutions.

It is well known that, the fluid flowing in a
rotating curved duct is subjected to two forces:
the Coriolis force due to rotation and the
centrifugal force due to curvature. These two
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forces affect each other, so complex behaviors
ofthe secondary flow and the axial flow can be
obtained. For isothermal flows of a constant
property fluid, the Coriolis force tends to
produce vorticity while centrifugal force is
purely hydrostatic. When a temperature induced
variation of fluid density occurs for non-
isothermal flows, both Coriolis and centrifugal-
type buoyancy forces can contribute to the
generation of vorticity (Wang and Cheng I l]).
These two effects of rotation either enhance or
counteract each other in a non-linear manner
depending on the direction of duct rotation,
direction of wall heat flux and the flow domain.
Buoyancy force is proportional to the square of
the rotation speed while Coriolis force increases
proportionally with the rotation speed itself
(Wang and Cheng [11]). Therefore, the effect of
system rotation is more subtle and complicated
and yields new; richer features of flow and heat
transfer in general, bifurcation and stability in
particular, for non-isothermal flows. While some
of such new features are revealed by recent
analytical and numerical works (Wang and
Cheng [11]; Yang and Wang [4]), there is no
known study on bifurcation and stability for
fbrced convection in a rotating curved duct with
the study of time-dependent behavior.

In the present paper, a comprehensive
numerical study is presented for fully developed
bifurcation structure and stability of 2-D viscous
incompressible fluid through a rotating curved
square duct whose outer wall is heated and inner
one is cooled. Flow characteristics are studied
over a wide range of the Dean number and the
Taylor number by finding the steady solutions,
investigating their linear stability and calculating
nonlinear behavior of the unsteady solutions by
time evolution calculations, spectral analysis
and phase spaces.

2. Governing Equations
Consider a hydrodynamically and thermally

fully developed two-dimensional flow of
viscous incompressible fluid through a rotating
curved duct with square cross section. Let 2h
and 2l be the height and the width of the cross
section, although we are considering only the
case of h - I in the present study. Figure I
shows the coordinate system, where C is the
center of the duct cross-section and I is the
radius of curvature of the duct. The x' and y'
axes are taken to be in the horizontal and
vertical directions respectively, and z' is the
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coordinate along the center-line of the duct, i.e.,
the axial direction. The system rotates at a
constant angular velocity O, around the y'axis.

It is assumed that the outer wall of the duct is
heated while the inner one is cooled. The
temperature of the outer wall is To + LT and

that of the inner wall isTn - LT, where AI > 0 .

It is also assumed that the flow is uniform in the
axial direction, and that it is driven by a constant

pressure gradient c (c:-+l along the
\  o z )

center-line of the duct. Then the continuity,
Navier-Stokes and energy equations. in terms of
dimensional variables, are expressed as:

Continuity equation:

^ lo u o v u -
1 +  + : = 0  ( l )
Ar' 0y' r '

Momentum equations:

Au' , Au' , Ou' w''- + u ' - - . * v ' = -  , - 2 C l r w 'At' Ar' fu' r'

I  AP '  f  d 'u '  A 'u '  I  Ou '  u ' )
= -  

i l T i l - r - _ r t ; - -  r l .p o r  l a r -  o y -  r  o r  r - )
(2)

Av'  ,0v'  ,0v'  I  AP'_ + u  _ + 1 .
At'  Ar '  fu '  p fu'

|  ^ r  ,  ^ ,  , ' -  ( 3 )
I  A 'v '  |  0v '  A ' r '  I  n - ,

+ v l  u  + l . . , +  J  l + g p t
l o r -  r  o r  oy  )

A T '  , A T '  , A T '
6t' 0r' Ay'
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velocities are zero at the wall. Here, P' is the
dimensional pressure, T' the dimensional
temperature and /'is the dimensional time. In the
above formulations, p, v, p, rand gare the

density, the kinematic viscosity, the coefficient
of thermal expansion, the coefficient of thermal
diffusivity and the gravitational acceleration,
respectively. Thus, in Eqs. (l) to (5) the
variables with prime denote the dimensional
quantities.

The dimensional variables are then non-
dimensionalized by using the representative
length /, the representative velocity

Uo = vll,where v is the kinematic viscosity of

the fluid. We introduce the non-dimensional
variables defined as:

u '  v '  J2d
u = - ,  l . =  r  h = - l l ,

U,, Un U,,
( x '  l )  v '  z '

I  - t -  -  l .  v  -

\ 1  6 )  I  I

-  T '  U n , . '  d
t  = _ t  .  o  =  _'  

A T '  d ' '  
"  

L '
p l

D -  -
-  

p U : '

where z, v and w are the non-dimensional

velocity components in the x, y and

z directions, respectively; r is the non-
dimensional time, P the non-dimensional
pressure, d is the, nondimensional curvature

defined as 5 =; , and temperature is

nondimensionalized by AT . Henceforth, all the
variables are nondimensionalized if not
specified.

Since the flow field is uniform in the z-
direction, the sectional stream function t4 is

introduced as:

t o w 1 o v
l r d -  a ,  

' = - l * d l  
a *

A new coordinate variable y is introduced

in  t he  yd i rec t i on  asy=a / .  whe re  a :1 i s  t he
t

aspect ratio of the duct cross section. In the
present study, we consider the case for a : I
(square duct). Then, the basic equations for w,

0w' ,0w' , Aw' ut'^,,- + 1 - + l !  - +  + 2 A , u '
6r' dr' 6y' r '

|  |  AP'  f  a t* '  O2w'  7 6w'  , ' f
= - - , - = l l u r J - 1  , - - l r .

p r  o z  l a r -  o y -  r  o r  r - )
(4)

Energy equation:
(6)

I a'�r '  -t dr a'r ' l
=  A r - T  -  r ,

lar'' r' ar' E.r" )
(5)

w h e r e  r ' : L + x
dimensional velocity
and z' directions

. and u'. v' and w' are the
components in the x', y',
respectively, and these
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V and T are expressed in terms of non-
dimensional variables as:

( t  r  a r ) d N ,  
d ( w ' r z - )  -  D ,  *  

6 2 *
r l r  d ( " . r j  l , d ' . r

= ( r + d r ) 4 . . " -  ,  
u  

. u ,  * + d a * -  6 T r a v'  ( t + d r ) d y  6 x  a y '

(7 )

( ^  d  e ) a r 7

\  z  1 + 6 x A x )  A t

_  I  a \ t r v , v ) ,  6- - ( t - d l )  
a , ' . "  

- 1 , _ r ;

- l u r ( , ^  , , , _  3 d  a w  - 4 t , ) _ p y a 2 v f/ l  -  l t ^ t r l _  _ .

L a r l  
2 '  t r d : r d x  a r 2 )  ? x A x A t l

d  l - - a 2 , u  J 6 2  a v l  z d  a- - . . . - - - - - - - Y l J d ; -  - - l - - -  L ^ a

\ l - 6 x ) z  I  a r t  I d ' r l ; r I  I ' d x d x  z '

A w  2  l -  d wt w  I  a ^  a  |  - t r -

o v  2 '  2 '  d v '
(8)

d r  I  a ( r . v )  t ( ^ - .  5  a r )
a,  -g* r4 ;Gt=  pr l ^ ' '  *  

t *5*  a*  )
(e)

where

^ 2 ^ 2 ^
A  : '  + '  . ( / . s ) : ) I d s - A f ) s^2 -  

d*2 ;Z AG.t :  a,d/  
-  

i l ,dr
(10 )

The Dean number Dn, the Grashof number
Gr, the Taylor number Tr and the Prandtl
number Pr, which appear in Eqs. (7) to (8) are
defined as:

^  Gt3 lz t  ^  op^r t3
D n =  - , i - .  1 ; r = '  

,  
.  T r

1 w  \ L  y -

o - -  v

k

znliiar13

.  
( l  l )

wherep is the viscosity of the fluid. In the
present study, only Dn and Tr varied, while d,
Gr and, Pr are fixed as d = 0.1 , Gr: 100, 500
and 1000 and Pr: 7.0 (water).

Rigid boundary conditions for w and y
are used:

w(+1.  y \  =  w(x .  +  l1=  ty ( ! | .  y l  =  ty (x .+  l ) )
O v .  .  d t a  ^  f .:  - ( t l . J ' )  =  ^  ( x . +  l ) :  u  Io x o y )

(12)
and the temperature Z is assumed to be constant
on the walls as:

r( t ,  y)= t ,  r(-  r ,  y):  -1,  r(x,  t  1)= r .  (  l3)

It should be noted that Eqs. (7) to (9) are
invariant under the transformation of the
variables:

Therefore, the case of heating the inner
sidewall and cooling the outer sidewall can be
deduced directly from the results obtained in this
paper.

3. Numerical Calculations
3.1 Method of Numerical Calculation

The method adopted in the present
numerical calculation is the spectral method.
This is the method which is thought to be the
best numerical method for solving the Navier-
Stokes equations (Cottlieb and Orszag [15]). ey
this method, the variables are expanded in a
series of functions consisting of Chebyshev
polynomials. That is, the expansion functions
<D,(x) and Y,(x)are expressed as:

o,( ')= (r -" ' )c,(") y,(x)= (r -"f  c,(*),
( 1 5 )

where C, (x)= cos(ri cos ' (x)) is the n'n
order Chebyshev polynomial. *(t.y.t)

ry(x,y,t) and. T(x,y,t) are expanded in terms

of  the expansion funct ions<D,(x)  and Y,( r )  as:

y = - y ,
* ( r , y , )=  w(x , - y , t ) ,
w( r , y , t )=  - vG, -y , , ) ,
T( * , y , t )=  - r ( x , - y , t ) .

(r4)
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, ( * . . y . , )=  i  i - ^ ^ ' *n  ( t \P  r ( *F r ( , ,  ) .  It u u  n  

r t '

v ( ' , y , ) =  i  i v * n  Q ) v . ( , ) v , ( r )  |
n  r n - t  

I

r ( , ,  y i= f^ i , ,r*n QF *("ts, (" ' )* ' l
( t  6 )

where M and N are the truncation numbers
in the x and y directions respectively. The

expansion coefficients tr^n , V.n and 7., are

then substituted into the basic Eqs. (7) and (9)

and the collocation method is applied. As a

result, nonlinear algebraic equations for w*n ,

ry,, and T.n are obtained. The collocation
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eigenvalue, it is linearly unstable. In the unstable
region, the perturbation grows monotonically for

oi =0 and oscil latori ly for o,+ 0. Finally, in

order to calculate the unsteady solutions, the
Crank-Nicolson and Adams-Bashforth methods
together with the function expansion (16) and
the collocation methods are applied to Eqs. (7)
to (9).

3.2 Numerical Accuracy

points are taken to be:

x  = c o s l , ( , - '  l l .  i = t , . . . , M'  
L  \  M + 2 ) l

,  = c o s l , ] t -  i  l l ,  i = r , . . . , N
L  \  N + 2 ) )

where  i  : 1 , . . . . . ,  M  +1  and , r=1 , . . . . . , 1y '+ l  .

The steady solutions ate obtained by the
Newton-Raphson iteration method assuming
that all the coefficients are time independent.
The convergence is assured bY

takingsn < l0 '0, where subscriptp denotes the

iteration number and e. is defined as:

- r : , y )

Linear stability of the steady solutions is
investigated against two-dimensional (z-

independent) perturbations. To do this, the
eigenvalue problem is solved, which is
constructed by the application of the function
expansion method, together with the collocation
method, to the perturbation equations obtained
from Eqs. (7) to (9). It is assumed that the time

dependence of the perturbation is ed . where

o=o, +lo, is the eigenvalue with o, the rea

parl, oithe imaginary part and i=Jl. lf all

the real parls of the eigenvalue 6 are negative,
the steady solution is linearly stable, but ifthere
exists at least one positive real part of the

In the present numerical
calculations, M =20 and N =20 have been

used for sufficient accuracy ofthe solutions. The

values of Q and ".(O,O), obtained for Gr: 100,

Dn - 1000 and Tr - 100 at 6 = 0. I are shown in

Table I for various values of M, where Q is the

flux through the duct and w(0,0) is the axial

velocity of the steady solutions at (x,y): (o,O).

From Table l, it is found that Q changes
0 .0055% f rom M:14 to  M :16 ,0 .0046% f rom
M: 16 to M : I 8, 0.0005% from M : 18 to M:
20 and 0.000003% from M -- 20 to M : 22;

,(O,O) changes 0.1406% from M: 14 to M:

16,0.0641% from M: 16 to M: 18,0.0325%
from M: 18 to M:20,  and 0.0351% from M:
20 to M:22. Therefore, it is concluded that the

values M:20 and N:20 g ive suf f ic ient
accuracy for the present numerical calculations.

4. Flux through the duct
The dimensional total flux Q' through the

duct in the rotating coordinate system is
calculated by:

w'dx'dY'=Yf,Q ( 1 8 )

.'f,
. 1 ]

( t 7 )

,, =f=, i [{,r,." 
- -';.'f * (vl,!,"'

a f

A = |  I

where
l l

0= J  Jwdxdt

O v

4d

,1  l

is the dimensionless total flux. The mean

axial velocity w' is expressed as:

(  1e)

(20)

In the present paper, Q is used to denote

the steady solution branches and to pursue the
time evolution of the unsteady solutions.
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5. Results
We take a curved duct with square cross

section and rotate it around the center of

curyature with an angular velocity O.

According to the definition of Ir, positive Zr
means that the rotational direction is the same as
that of the main flow. In the present study, we
investigate the flow characteristics only for the
case of positive rotation of the duct (positive Ir)
and discuss the flow phenomena for three cases
of the Dean numbers, Case I'. Dn : 500, Case II'.
Dr : 1000 and Case III: Dn:2000, over a wide

range of the Taylor number 0 3Tr < 2000 .
Thus, an interesting and complicated flow
behavior will be expected if duct rotation is
involved for these cases.

Case I: Dn:500
Steady solutions and their linear stability
analysis

With the present numerical calculations, a
single branch of the steady solution is obtained
for Dn : 500 by using the path continuation
technique as discussed in Keller [16]. In this
regard, it should be noted that Mondal et al. [7]
obtained two branches of steady solutions for
the non-isothermal flow through a curved square
duct without rotation. Figure 2(a) shows the flux

Q through the duct versus the Taylor number Ir
for Dn: 500. As seen in Fig. 2(a), the branch is
very simple and is smoothly extending to larger
Tr. The branch starts from point a (Zr - 0) and
goes to the direction of increasing Tr as Q
decreases, and arrives at point b (Tr : 2000)
without any tuming on its way.

We now discuss the variation of the
secondary flow and temperature profile ar
several values of 7r on this branch for constant
ry and Z. We look at the figures from upstream.

Therefore, from these figures we can understand
the structures of the secondary flow and
temperature distribution in a cross-section of the
duct. To draw the contours of ry and Z, we use

the increments A'ry = 0.6 and LT :0.2 for all

the figures in this paper, if not specified. The
righrhand side of each box ii in a outside
direction of the duct curvature. ln the figures of

secondary flow, solid lines (r4 > 0) show that

the secondary flow is in a counterclockwise
direction while dotted lines (z < 0) are in a

clockwise direction. In the figures of
temperature field, on the other hand, solid lines

ThammasatInt.  J. Sc. Tech., Vol. 12, No. 3, July-September 2007

are those for T > 0and dotted ones forl < 0. As

seen in Fig. 2(b), the steady solution branch
consists of nearly symmetric two-vortex
solutions only. Linear stability of the steady
solution branch is then investigated. It is found
that the branch is linearly stable for any Zr in the
range investigated in this paper. Then, in order
to study the non-linear behavior of the unsteady
solutions, time-evolution calculations of Q are
performed for 0 < Tr !2000. Since the steady
solution branch is linearly stable for any value
of Ir in the range, time evolution of Q also
shows that the value of Q quickly approaches
steady state.

Case IIz Dn:1000
Steady solutions and their linear stability
analysis

We obtain two branches of steady solutions
for Dn : 1000 over the Taylor
number 0!Tr3 2000 . It is found that there
exists no bifurcating relationship between the
two branches. The bifurcation diagram is shown
in Fig. 3 for Dn 1000 using O, the
representative quantity of the solutions. The two
steady solution branches are named the .first
steady solution branch (first branch, thin solid
line) and the second steady solution branch
(second branch, dashed line), respectively. In the
following, the two steady solution branches as
well as the flow pattems on the respective
branches are discussed.

The first steady solution branch
The first steady solution branch for Dn :

1000 is solely depicted in Fig. 4(a)
for 0 ( Tr 3 2000 . It should be remarked that
between the two branches of steady solutions,
only this branch exists throughout the whole
range of Zr. As seen in Fig. 4(a), the branch is
very similar to the branch obtained for Dn: 500.
The branch starts from point a (7"r : 0) and
extends to the direction of increasing Tr and
decreasing Q up to point c (Tr : 2000) without
any turning throughout its way. The change of
the flow characteristics contours of typical
secondary flow and temperature profile are
shown in Fig. a(b) for several values of Zr,
where the contours of ty and Z are drawn with

the same increments as discussed in Case 1. As
seen in Fig. a(b), the first branch is composed of
two-vortex solutions. The secondary flow is an
asymmetric two-vortex solution for small Ir.
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However, as Tr increases, the asymmetry
gradually decreases and the flow pattem is
nearly symmetric due to weak Coriolis force.
With strong centrifugal force, the flow pattem
becomes asymmetric; as Tr increases the
Coriolis force becomes strong,which balances
the centrifugal force, and the flow pattern is
approximately symmetric.

Linear stability of the first steady solution
branch is then investigated. It is found that the
branch is linearly unstable if Tr is
small (Zr < 138.6) . However, as Ir increases,

the steady solution becomes stable and remains
stable onwards for larger Ir. Thus we find that
the steady solution is linearly stable
for 138.6 !Tr !2000. The eigenvalues of the
first steady solution branch are listed in Table 2
where the eigenvalues with the maximum real
part of o (first eigenvalue) are presented.
Those for the linearly stable solutions are
printed in bold letters. As seen in Table 2, the
stabil ity region exists for 138.6 !Tr !2000 and
the perturbation grows monotonically (o, = 0)

for larger Ir. Therefore, the Hopf bifurcation
occurs at Dn=138.6. The region of l inearly
stable steady solution is shown with a thick solid
line in Fig. 4(a).

The second steady solution branch
The second steady solution branch for Dn -

1000, shown by a dashed line in Fig. 3, is solely
depicted in Fig. 5(a). As seen in Fig. 5(a), the
branch starts from point a (Tr: 0) and goes to
the direction of increasing Tr and decreasing p
up to point b (Tr :2000), where it experiences a
smooth turning and goes to the direction of
increasing Q and deueasing Ir up to point c (Ir
: 0). The change of the flow patterns, contours
of typical secondary flow and temperature
profile are shown in Fig. 5(b) for several values
of Tr. As seen in Fig. 5(b), the branch is
composed of two- and four-vortex solutions. It
is found that the secondary flow is an
asymmetric two-vortex solution from point a,
and as Tr increases (fr > SOO) an additional pair

of secondary vortices appear irr the central part
of the right-hand side of the duct cross-section.
These additional vortices are called Dean
vortices, which play an important role in the
enhancement of heat transfer. From point b (Zr
:742) to point c (Tr:0), the secondary flow is
a symmetric four-vortex solution. Linear
stability of the steady solution shows that the
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branch is linearly unstable everywhere, for any
value of Zr.

Time evolution
In order to study the non-linear behavior of

the unsteady solutions, following Mondal [17],
time-evolution calculations as well as their
spectral analysis are performed for Zr in the
range 0 3 Tr 3 2000 at Dn : 1000. Time
evolution of Q for Tr: 100 is shown in Fig. 6(a).
It is found that the flow is time periodic. In the
same figure, the relationship between the
periodic solution and the steady states, the
values of Q for the steady solution branches at
Tr : 100 are also shown by straight lines using
the same kind of lines as were used in the
bifurcation diagram in Fig. 3. As seen in Fig.
6(a), the periodic solution at Tr -- 100 oscillates
in the region between the upper and lower parls
of the second steady solution branch, and the
upper part of the second branch or the first
branch plays a role of an envelope of this
periodic oscillation. Then, in order to see the
change of the flow characteristics as time
proceeds, contours of typical secondary flow
and temperature distribution are shown in Fig.
6(b) for one period of oscillation at Tr : 100,
where it is seen that the periodic solution at Tr:
100 oscil lates between asymmetric two- and
four-vortex solutions. The periodic oscillation
ob ta ined  fo r  T r :  100  a t  Dn :1000  i s  we l l
justified by the power spectrum of the time
change of Q as shown in Fig. 7. In this figure,
the line spectrum of the fundamental frequency

U : 20 Hz) as well as its harmonics are seen
which indicates that the flow is time periodic. If
Ir is increased further, the periodic oscillation
turns into steady state. Time evolution of Q is
then performed for Tr > 139 , where the steady
solution is linearly stable on the first branch, and
it is found that the value of Q quickly
approaches that ofthe stable solution on the first
branch.

Csse III: Dn -- 2000
Steady solutions and their linear stability
analysis

We obtain four branches of steady solutions
for Dn : 2000 over a wide range of Tr for
0 < Tr 3 2000 . The bifurcation diagram of
steady solutions is shown in Fig. 8. The four
steady solution branches are named the first
steady solution branch (first branch, thick solid
line), the second steady solution branch (seconc
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branch, dashed line), the third steady solution
branch (third branch, thin solid line) and the

fourth steady solution branch (fourlh branch,
dash dotted line), respectively. It is found that
the steady solution branches are independent
and there exists no bifurcating relationship
among the branches in the parameter range
investigated in this paper. The steady solution
branches are obtained by the path continuation
technique with various initial guesses as
discussed in Mondal [ 7] and are distinguished
by the nature and number of secondary flow
vortices appearing in the cross section of the
duct. In the following, the fbur steady solution
branches along with the flow pattems on the
respective branches are discussed in detail.

The first steady solution branch
The first steady solution branch for Dn :

2000 is solely depicted in Fig. 9(a) for
03Tr 3 2000 . It is found that the branch is
very similar to the first branch obtained for Tr:
1000. The branch starts from point a (Tr : 0)
and goes to the direction of increasing Tr as Q
decreases which extends up to point d (7, -

2000) without any turning. Then, in order to
observe the change of the flow pattems on the
first branch, contours of typical secondary flow
and temperature profile are drawn at several
values of Ir as shown in Fig. 9(b), where it is
seen that the branch is composed of only two-
voftex solutions which are symmetric with
respect to the horizontal planey:0. Three types
of forces, Coriolis force, strong centrifugal fbrce
and buoyancy force act on the fluid at the same
time, which make the flow patterns symmetric.

Linear stability of the first branch shows an
interesting result. It is found that the branch is
linearly stable in a couple of intervals of Ir, one
for small fr (0 < Tr <329.1) and another one

for larger fr (oOl .z < Tr < 2000) . Thus the

branch is linearly unstable for the
region(329.8 <Tr <907.1) .  The e igenvalues of

the first steady solution branch are listed in
Table 3, where the eigenvalues with the
maximum real part of o (first eigenvalue) are
presented. Those fbr the linearly stable solutions
are printed in bold letters. As seen in Table 3,
the perturbation grows oscillatorily (o, + 0) for

329.7 <Tr t907.2 and monotonically (o, = 0)

for Tr >,907.2 Therefore, the Pitchfork
bifurcation occurs at Tr : 329.1 and the Hopf
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bifurcation at Dn = 901 .2 Linearly stable
steady solution regions are shown with thick
solid l ines in Fig. 9(a).

The second steady solution branch
We draw the second steady solution branch

for Dn : 2000 separately in Fig. l0(a). The
branch has a similarity with the second branch
obtained for Dn - 1000, and the only difference
is that it extends up to larger Ir. As seen in Fig-
10(a), the branch starts from point a (Zr - 0) and
goes to the direction of increasing Tr as Q
decreases and arrives at point b (Tr: 1409.12),
where it tums to the opposite direction with a
gentle turning at point 6. The branch then goes
to the direction of increasing Q and decreasing
Tr up Io point c (Tr : 0). To observe the change
of the flow patterns, contours of typical
secondary flow and temperature profile on this
branch are shown in Fig. l0(b) for several
values of 7r. As seen in Fig. lO(b), the branch
consists of asymmetric two- and nearly
symmetric four-voftex solutions. It is found that
the secondary flow is a two-vortex solution from
point a to point 6, but when the branch turns at
point b down to point c the secondary flow
becomes a four-vortex solution. Linear stability
of the steady solution shows that the branch is
linearly unstable for any value of Ir.

The third steady solution branch
The third steady solution branch for Dn :

2000, shown by a thin solid l ine in Fig. 8, is
exclusively depicted in Fig. l l(a). As seen in
Fig. l l(a), the branch is very entangled with
many turning points on its way, like the third
branch obtained by Yanase et al. tSl for
isothermal flow without rotation. We draw the
contours of secondary flow and temperature
profile at several values of Ir on this branch in
Fig. I 1(b), where to draw the contours of ry and

T we use the increments LV =1.2 and

LT:0.4,  respect ive ly .  As seen in F ig.  l l (b) ,
the branch is comprised of two- and four-vortex
solutions but are different from those of the
second steady solution branch. Linear stability
of the third branch shows that the branch is also
unstable everywhere over the region of Ir
investigated in this paper.

The fourth steady solution branch
We draw the fourth steady solution branch

for Dn - 2000 solely in Fig. l2(a). As seen in
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Fig. l2(a), the branch exists for a small region of
Tr, and the upper and lower parts ofbranch pass
very close to each other. The branch starts from
point a (Tr : 0) and goes to the direction of
increasing Tr and decreasing Q up to poinl b (Tr
: 256), where it experiences a reverse turning
and goes to the direction of increasing Q and
decreasing Tr up to point c (Tr - 0). To observe
the change of the flow patterns and temperature
distributions, contours of typical secondary flow
and temperature profile on this branch are
shown in Fig. l2(b) at several values of 7r,
where it is seen that the branch is composed of
only four-vortex solutions. Linear stability of the
fourth branch shows that the branch is linearly
unstable everywhere.

Time evolution
We perform time-evolution calculations of

the unsteady solutions for Dn : 2000
and0 < Tr !2000. Time evolution of Q for Dn
: 2000 and Tr<329 , at which the steady
solution is linearly stable on the first branch,
shows that the value of Q quickly approaches
that of the stable solution on this branch no
matter what the initial conditions we use. Then.
in order to see what happens when all the steady
solutions are linearly unstable in the
region330 3Tr 3901 , t ime evolutions of Q are
then performed for Ir : 500 and 800. Figure
13(a) shows the time-evolution result for Tr -

500 where it is seen that the flow oscillates
multi-periodically. In the same figure, to
observe the relationship between the periodic
solution and the steady states, the values of Q
for the steady solution branches at Tr:500 are
also shown by straight lines using the same kind
of lines as were used in the bifurcation diagram
in Fig. 8. As seen in Fig. 13(a), the periodic
solution at Tr : 500 oscillates in the region
below the upper, parts but above the lower parls
ofthe steady solution, there are branches, that is,
in the middle region of the steady solution there
are branches. To observe the periodic change of
the flow characteristics and temperature
distributions, contours of typical secondary flow
and temperature profile for one period of
oscil lation. there are at 19.25 < t <19.32 are
shown in Fig. 13(b), where it is seen that the
multi-periodic oscillation at Tr : 500 is a two-
vortex solution. In this regard, it is interesting to
note that though the unsteady flow presented in
Fig. l3(b) for Tr : 500 seems to be multi-
periodic, it is actually periodic, which is justified
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by the power spectrum as shown in Fig. 14. It is
found that only the line spectrum of the
fundamental frequency (f : 14.5 Hz) and its
harmonics are seen which indicates that the flow
is time periodic. Next, the time evolution of Q
together with the values of p for the steady
solution branches, indicated by straight lines, are
shown in Fig. 15(a) for Tr : 800. It is found that
the flow oscillates periodically in the region
along the values of p on the upper parts of the
third steady solution branch. The associated
secondary flow patterns and temperature profiles
are shown in Fig. l5(b). It is found that the
unsteady flow at Ir - 800 also oscillates
between the asymmetric two-vortex solutions.
Then, in order to investigate whether the flow is
periodic, multi-periodic or chaotic, a power
spectrum of the time change of Q is performed
as shown in Fig. 16. It is found that not only the
line spectrum of the fundamental frequeney (f :

14.5 Hz, the same frequency as obtained for Zr
- 500) and its harmonics, but also other line
spectra at small frequencies are seen. This result
shows that the oscillation presented in Fig. 15(a)
may be multi-periodic or chaotic, which is
justified by the phase diagram as shown in Fig
17. lf Tr is increased further, the flow turns into
a steady state. Time evolutions of Q are then
performed at several values of Tr
for 908 {Tr 32000 , and it is lbund that the
value of Q approaches steady state. The reason
is that the steady flow is stable on the first
steady solution branch in this region.

We now discuss the transitional behavior of
the unsteady solutions by drawing phase spaces
atlarger Dn numbers, Dn-2000. The change of
the flow state from multi-periodic oscillation to
chaotic state is explicitly exhibited by drawing
the orbit of the solution in the phase spaces as
shown in Fig. 17(a) for Tr : 500 and in Fig.
l7(b) for Zr: 800, where the abscissa is Q and
the ordinate is 7 . The orbits are drawn by

tracing the time evolution of a solution. As seen
in Fig. l7(a), a multi-periodic orbit is seen for Ir
: 500; for Tr : 800, however, a chaotic orbit is
observed, which was not clearly observed by the
power spectrum of the solutions as presented in
Fig. I 6. Phase spaces are, therefore, found to be
more helpful for the investigation of chaotic
flow behavior. This type of flow behavior was
also investigated by Mondal et al. l7l for the
non-isothermal flow through a curved square
duct and termed as transitional chaos.
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Thus, by the time evolution calculations as
well as by the power spectrum of the solutions,
it is found that stable a steady solutions occur in
the regions for 0 <Tr 3329 and
90837r <2000 , and periodic or chaotic
solutions for 330 3Tr !907 Linear stabil ity
analysis indicates that a stable steady solution
exists for 0 ! Tr ! 329.1 and907 .2 3 Tr < 2000 .
Therefore, the results of the linear stability
analysis and those of the time evolution
calculations are consistent.

6. Discussion
ln this section, a brief discussion on the

plausibil i ty of applying 2-D calculations as well
as the accuracy of the present numerical
calculations will be given by comparing with
some other works. There have been a lot of
numerical and experimental studies that showed
that curved duct flows easily attain asymptotic
fully developed 2-D states at most 270" from the
inlet. Wang and Yang t l8l performed
experimental as well as numerical prediction of
fully developed bifurcation structure and
periodic oscillation in curved square duct flows.
They showed that even periodic flows can be
analyzedby 2-D calculations and these periodic
oscillations take place between the
symmetric/asymmetric 2-cell and 4-cell flows
where there are no stable steady solutions. They
also showed that for an oscillating flow, there
exists a close similarity between the flow
observation at 2700 and the 2-D calculation.
Nearly similar types of flow characteristics are
observed in the present case of rotating curved
duct flows. In fact, the periodic oscillation
observed in the cross section of their duct was a
traveling wave advancing in the downstream
direction. Therefore, it is found that 2-D
calculations can predict the existence of three-
dimensional travelling wave solutions as an
appearance of 2-D periodic oscillation presented
in this paper.

It is noteworthy that even curved duct flow,
which does not attain an asymptotic state, can be
analyzed by 2-D calculations. Yamamoto et al.

t19l performed numerical prediction (2-D
calculations) of isothermal flows through a
rotating curved square duct (rotation of the duct
except the outer wall) and obtained many
branches of steady solutions. They investigated
the secondary flow characteristics with changing
Dn for constant rotational speed (Ir). Very
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recently, Yamamoto et al. t20] performed
experimental investigation of isothermal flows
through a rotating curved square duct by using
the same configuration as were used in their
numerical predictions. They compared their
numerical results with the experimental data and
found good agreement between the two
investigations. In the present case of the non-
isothermal flows, however, we also obtain
nearly similar behavior of the flows as were
obtained by Yamamoto et al. [20]. For the flow
through a spiral duct, on the other hand, Mees et
al. l2ll observed that the flow exhibits an
oscillation between two-vortex and four-voftex
flows first, but turns to a steady two-vortex flow
downstream, which can be explained by the
present bifurcation study. ln the present paper,
we present the bifurcation diagram where it is
shown that there exists a region of stable steady
solutions (two-vortex solutions) in the lowest
Dn region, and oscillating solutions appear if Dn
is increased (an oscillation of two- and four-
vortex solutions). If Dr is increased further, a
region of stable steady solutions again appears
when two-vortex solutions are observed.
Therefore, it is found that our numerical results
may give good agreement with the experimental
observations discussed so far.

There is some other evidence showing that
the occurrence of chaotic or turbulent flow may
be predicted by 2-D analysis. Yamamoto et al.

[22] investigated linear stability of helical pipe
flows with respect to 2-D perturbations and
compared the results with their experimental
data. There was good agreement between the
numerical results and the experimental data,
which shows that even the transition to
turbulence can be predicted by 2-D analysis to
some extent, though it is true that the full
transition process cannot be elucidated by 2-D
analysis. The transition process from the
periodic oscillation to chaotic state, obtained by
the 2-D calculation in the present paper, may
correspond to destabilization of travelling waves
in the curved duct flows like that of Tollmien-
Schlichting waves in a boundary layer. Our 2-D
analysis, therefore, may contribute to the study
of curved duct flows by giving a complete
outline for not only fully developed but also
developing curved duct flows.

7. Conclusions
In this paper, a detailed numerical study on

fully developed two-dimensional flow of

-) -)



viscous incompressible fluid through a rotating
curved duct with square cross section has been
analyzed by using the spectral method over a
wide range of the Taylor number,
0 < 7r ( 2000 , and the Dean number,
0 < Dn < 2000 for the curuature d = 0. I
Though the present study covers a wide range of
Dn, tn this paper, however, three cases of the
Dean numbers, Dn - 500, Dn: 1000 and Dn:
2000 have been discussed in detail with a
temperature difference between the vertical
sidewalls for the Grashof number Gr : 100,
where the outer wall is heated and the inner one
cooled.

After a comprehensive survey over the
parametric ranges, a single branch of
asymmetric steady solution is obtained for Dn :

500;  for  Dn:1000 and Dn:2000,  on the other
hand, we obtain two and fbur branches of
symmetric/asymmetric steady solutions,
respectively. It is found that there exist two- and
four-vortex solutions on various branches. These
vortices are generated due to the centrifugal
force and Coriolis force or by their combinations.
It is found that as Dn increases the number of
steady solutions also increases. Linear stability
of the steady solutions reveals an interesting
result. It is found that the single branch,
obtained for Dn: 500, is linearly stable for any
value of Tr in the range. For Dn : 1000,
however, the same branch is linearly unstable at
small Ir, and if Tr is increased further the steady
solution becomes stable. For Dn : 2000, on the
other hand, it is found that among four branches
of steady solutions, only the first branch, which
exists throughout the whole range of Ir, is
linearly stable in a couple of intervals of Zr, one
for small Tr and another for larger Ir, and thus
the flow undergoes 'steady-stable -+

unsteady-tsteady-stable', if Tr is increased. It
is lbund that the Hopf bifurcation occurs at Tr
on the boundary between the stable and unstable
solutions.

Time evolution calculations as well as their
spectral analyses show that in the unstable
region for Dr : 1000, the unsteady flow
becomes periodic before turning to steady state.
In the unstable region for Dn - 2000, on the
other hand, the unsteady flow becomes periodic
first, then multi-periodic, then chaotic and
finally tums into steady state again, if Ir is
increased. In order to investigate the transition
from multi-periodic oscillations to chaotic states
more explicitly, the orbit of the solution is
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drawn in phase space. Both spectral analysis and
phase space are found to be very useful for the
investigation of chaotic flow behavior. In this
regard, it should be worth mentioning that
irregular oscillation ofthe flow through a curved
duct has been observed experimentally by
Ligrani and Niver [23] for a large aspect ratio
and by Wang and Yang [18] for the square duct.
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Figure 2: (a)Steady solution branch for Dn: 500. (b) Contours of secondary flow (top) and

temperature profile (bottom) on the steady solution branch at several values of Ir'
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Figure 5: (a) Second steady solution branch for Dn: 1000. (b) Contours ofsecondary flow (top) and

temperature profile (bottom) on the second steady solution branch at several values of Zr.
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profile (bottom) for one period of oscillation at 17.20 < / < 17.58.

Figure 7: Power-spectrum of the time evolution of Q for Dn: 1000 and Ir: 100.

Figure 8: Steady solution branches for Dn:2000.
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Figure 9: (a) First steady solution branch with the region of linear stability (bold line) for Dn: 2000.
(b) Contours of secondary flow (top) and temperature profile (bottom) for the frrst steady
solution branch at several values of Ir.
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temperature profile (bottom) for the second steady solution branch at different values of Zr
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Figure l1: (a) Third steady solution branch for Dn:2000. (b) Contours of secondary flow (top) and
temperature profile (bottom) for the third steady solution branch at different values of Zr (from

upper branch to the lower).
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Figure 12: (a) Fourth steady solution branch for Dn:2000. (b) Contours ofsecondary flow (top) and
temperature profile (bottom) for the fourth steady solution branch at different values of Ir (from

upper branch to the lower).

$)

40



w.5

w

4 1 . 5

41

Thammasat Int. J. Sc. Tech., Vol. 12, No. 3, July-September 2OO7

il[[[[ffi[[[[[l'[itlt[[t[lltl|[[il
ul lll 1}}111 1 I trlllll'1 I 1 ill ll ] 1 l 1

time (t)(a)

-ffiffiffiffiffi
"mffiffiffiffi
t t9"2' t9.2V 19.29 19.30 19.3?

(b)
Figure 13: Unsteady solutions for Dn - 2000 and Tr - 500. (a) Time evolution of Q and the values of
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Figure 16: Power-spectrum of the time evolution of Q for Dn - 2000 and Ir : 800.

1 . 5

,|

0.5

v
0

-0.5

-1

0.2468 4.247 0.2472
a(a)

0

0.3

v
0

-0.3

. 0.2475 A.aaA 0.2885 0"28S

(b) a
Figure 17: Phase plots in the Q - y plane for Dn: 2000, where 7 : llrydrdy'  J J '

(a) Tr:500, (b) I /  :  800.

4 . ,



3, July-September 200'l

w(0,0)

t 4
t 6
l 8
20
22

1 4
1 6
l 8
20
22

320.983357
321.001250
320.986431
320.988227
320.98823s

358.1  I  6399
358.620968
358.85 I  I  60
358.967855
359.094040

Table 1: The values of Q and w(0,0) for various M and N (:M at Gr - 100, Dn: 1000
a n d T r : 1 0 0 .

oior

0
50
100

1 3 8 . s

138.6

344.008843
33 r .635861
320.988227
313.685868

3r3.667760

288.738963
266.093461
227.949935
202.620767
184.083345

5.8088
4.5957
2.5119

5.8056x l0 -  3

-2.5583 x l0- 2
-2.0775
-2.2484
-2.6308
-2.9665
-3.2511

+  1 . 8 0 3 9 x  1 0
+  1 . 7 7 5 1 x 1 0
t  1 .5867 x  10
t  1 . 3 1 4 5  x  l 0

1  1 .3136 x  10

0
0
0
0
0

300
500
1000
1500
2000

Table 2z Linear stability of the first steady solution branch for Dn: 1000.

oi

0
100
200

329.7

329.8

500
800

907.1

907.2

1200
1500
2000

s8r.688020
s78.707647
532.350027
508.168972

508.1  s  I  959

482.006081
445.7 t5705
434.818632

434.8088s4

408.932261
386.4s0693
356.047961

-2.0567
-2.1672
-2.2628

-2.5298 x l0- 3

4.4347 xl}- 4

4.3244
2.7692

5 . 5 9 7  5 ,  I  0 -  4

-2.6167 xl0-3
-2.1602
-3.1309
-3.4141

0
0
0

+ 8.6611 x 10

+  8 . 6 6 1 4 x  l 0
+  8 . 9 7 1 5  x  l 0
x9.2969x10
1 9 . 1 3 2 0 x 1 0

t  9 .1318 x  l0

0
0
0

Table 3: Linear stability of the first steady solution branch for Dn:2000.
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