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Abstract
In a competitive manufacturing environment, the quality, cost, and time to market depend not

only on the design and manufacturing but also on the inspection process used. The use of
computerized measuring devices has greatly improved the efficacy of geometric tolerance inspection,
especially for form measurement. However, they still lack an efficient and effective sampling plan for
data collection of a complex form feature like a torus. Factors that could affect plans due to design,
manufacturing, and measurement such as size, geometrical tolerance, manufacfuring process, and
confidence level are studied. Type of manufacturing process, feature size, precision band, and
sampling method are identified as impact factors for sampling strategy. A Hammersley sequence
based sampling method is extended to cover toroidal shape. A neural network based on the particle
swarm optimtzation (PSO) is then applied to determine sample size for torus feature inspection by
taking these impact factors into consideration. The PSO based neural network's algorithm and
architecture are described and its predictive ability on unseen test subsets is also presented. An
effective and efficient sampling strategy can be achieved by using sampling locations from the
Hammersley sampling method and sample size guided by the PSO based neural network.

Keywords: Hammersley sampling methods, torusity, minimum tolerance zone, sample size, neural
network' particle swarm optimization 

all information of that surfhce can be obtained
1. Introduction and the actual error of that part can then be

A basic requirement in manufacturing is to identified. This is very time consuming and

produce a product that meets the specifiiation hence not suitable for a competitive

due to its functional and assembly riquirement. manufacturing environment' This excessive

Hence,inspectionofdiscretemanufacturedparts sample size must be reduced to an acceptable

becomes very critical for conformance of both number while maintaining the same high level

dimensional and geometrical tolerances. In of accuracy' This undoubtedly can lead to a

coordinate metrology, inspection is affected by a decrease in the time required for inspection' A

variety of data iollectlon and data fitting sampling plan or strategy considering a

methods t1]. Many researchers have minimum sample size and points' locations must

investigated data fitting issues in geometrical be developed to obtain an effective and efficient

tolerances, especially for basic form tolerances inspection process' The commonly practiced

under the assumption that the collected data was methods are the uniform sampling, and the

a good represeniative of the inspected shape [2- simple random sampling methods (sR)'

5]. Data collection thus plays an equally Sampling locations based on some mathematical

important role as its data litting counterpart. sequences such as Hammersley (HM) and

Theoreticallv. if the entire surfbce is measured. Halton-Zaremba (HZ) have also been studied
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with some success lI, 6, 71. However, the
selection of sample size which controls
measurement precision is normally conducted
by trial and error, experience, and metrology
handbooks. This results in a relaxed sample size
which gives a trade-off between
precision/accuracy of measurement and
inspection time. Therefore, a suitable sample
size which can represent enough information on
the whole population has to be found with a high
confidence level.

Interestingly, complex forms such as
torusity have been largely ignored and are
normally left to be dealt-with by the use of
profile tolerance definition, except in a few
recent cases [8,9]. The corresponding equations
for toruses are complex. This has partially lec
to a relative absence of research works dealing
with the torusity tolerance in the literature.
Since the equations required for torusity
calculation havejust been found, the study ofits
data collection issue has not been realized yet.
In addition. a sufficient number of industriaL
parts such as outer and inner races in bearings,
and toroidal continuous variable transmission
possess toroidal features, must be effectively
and efficiently inspected. Considering these
many applications, sampling strategies for
torusity estimation, especially sample size
determination, should be studied more
extensively. The need to develop effective and
efficient guidelines for sample size used for
torusity measurement is the subject of this
paper.

The task in doing so is rather complicated
because there are many factors involved such as
size, dimensional and geometrical tolerances,
manufacturing processes, sampling locations,
and accuracy and confidence levels. Thus, an
analytical approach for their modeling is very
difficult due to their unknown nonlinear nature.
Feedforward neural networks have been
considered a very powerful tool for function
approximation and modeling. One of their
advantages is the ability to learn from examples.
Hence, they can be applied to a model
relationship between sample size and its relevant
factors. However, their classical training
algorithm, back-propagation algorithm (BP),
present some disadvantages associated with
overfitting, local optimum problems, and
sensitivity to the initial values of weights.
Particle swarm optimization (PSO), a relatively
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new population based search technique,
demonstrates appealing properties such as
simplicity, short computer code, few parameters,
fast convergence, consistent results, robustness,
and no requirement for gradient information I I 0]
It can be applied to train neural networks by
optimizing their weights in place of the BP.
This should relieve some drawbacks posed by
the BP algorithm.

The purpose of this work is to propose, for
the first time, an efhcient and effective method,
PSO based neural network, for optimal sample
size selection for torusity estimation. To do so,
the following steps are investigated; (l)
identification of relevant factors influencing
sample size of a doughnut-shaped feature
inspection; (2) collection of data of these factors
and corresponding sample sizes; and (3)
development of a PSO based neural network for
optimal sample size determination.

2. Literature review

Form tolerance inspection plays a vital role
in industrial production since it can guarantee
the interchangeability of the parts. Therefore,
probe-type coordinate measuring machines
(CMMs) have been widely used to accurately
measure and analyze parts. However, a main
drawback of CMMs is that an entire inspected
surface can not practically be measured. CMMs
are normally used to measure only a sample of
discrete points on the part feature surface and
these points are used as a representative of the
entire surface. Some other instruments can scan
the entire surface but with lower accuracy and
precision. Hence, a question follows; how well
do the discrete sample points represent the
inspected surface?

Dimensional surface measurements have
involved the use of deterministic sequences of
numbers for determination of sample
coordinates to maximize information collected.
According to Woo and Liang t6], a two
dimensional (2D) sampling strategy based on
the Hammersley sequence shows a remarkable
improvement of a nearly quadratic reduction in
the number of samples when compared with the
uniform sampling strategy, while maintaining
the same level of accuracy. The HZ based
strategy in 2D space was also suggested by Woo
et al. I I ] without a discernible difference in the
performance over the HM strategy. The only
differences are that the total number of sample
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points in the HZ sequence must be a power ol
two and the binary representations of the odd
bits are inverted. Also, Liang et al. [12, 13]
compared the 2D HZ sampling scheme to the
uniform scheme and the SR theoretically and
experimentally for roughness measurement with
similar results. Lee et al. [7] demonstrated a
methodology for extending the HM sequence for
geometries such as circles, cones, and spheres.
Kim and Raman |41 investigated different
sampling strategies and difierent sample sizes
for flatness measurements. Their findings were
similar to others with regards to accuracy
determination. Summerhays et al. [15] proposec
new sampling patterns to guide form
measurements of internal cylindrical surfaces
with some success.

Dowling et al. [16] presented a survey of
statistical issues in geometric feature inspection.
Fitting and evaluation approaches, sampling
design issues, and sources ofmeasurement error
were discussed. The incorporation of the
knowledge of manufacturing processes was also
suggested to improve the accuracy of geometric
form inspection. Prakasvudhisarn [1] suggested
guidelines for cones and conical frustum
inspection by using three sampling sequences,
HM, HZ, aligned systematic (AS) with various
sample sizes. The sampled points were used to
estimate the form error of the f-eature based on
different fi tting al gorithms.

To help circumvent the adequacy of the
data collection problems, Menq et al. [17]
suggested a statistical sampling plan to
determine a suitable sample size which can
represent the entire population of the part
surface with sufficient confidence and accuracy.
Zhang et al. [18] proposed a feedforward back-
propagation neural network approach to estimate
sample sizes of holes' measurements from
various manufacturing operations. Machining
processes, hole diameters, and tolerance bands
were considered as influencing factors.
Similarly, Lin and Lin tl9l developed an
algorithm based on the grey theory to predict the
number of measuring points on the next
workpiece for flatness verification by using data
from the last four workpieces. Raghunandan
and Rao [20] also reported a method to reduce
sample size of flatness estimation by inspecting
the first part in detail and using it as the
reference for succeeding parts in a batch
production.
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Conventionally, statistical methods such as
multiple regression and partial least squares can
be used to determine relationships between
inputs and outputs. They normally suffer from
assumptions of data distribution. Plus, nonlinear
relationships are rather difficult to handle.
Without such limitations, neural networks can
be alternatively used to model the complex
phenomena between factors and outputs of
interest in the manufacturing environment. Thus,
a neural network would be applied to capture
correlation between sample size for torusity
inspection and its relevant factors. However, the
most widely used algorithm to minimize the sum
of squared learning elrors, a gradient based BP
algorithm, struggles with overfitting, local
optimum, and sensitivity to the init ial weights.
The PSO has been introduced in the framework
of an artificial social model that demonstrates
appealing properties such as simplicity, short
computer code, few Parameters, fast
convergence, consistency results, robustness,
and no requirement for gradient information [10],
Compared to other evolutionary search methods
in solving both continuous and discrete
optimization problems, the PSO was the second
best in terms of processing time while it
performed the best in terms of success rate and
quality of solutions [2 1]. In addition, much
work has shown the potential of PSO in neural
network training while alleviating shortcomings
of the BP [22-251.

3. Study of sample size related factors

An artificial Neural Network (ANN) can
capture the relationship between input and
output by adjusting weights on each link while
leaming fiom data. Therefore, selection of data
pairs of input and output for training the
network is an essential step to ensure sufficiency
and integrity of the target function.
Determination of suitable sample size is quite

complicated since it is affected by various
factors such as form fitting criteria, size of the
part, type of error on the part's surface, sampling
location (position of measured point), and
precision band (confidence level on the
measurement results). The first factor was not
included in this study even though various form-
fitting criteria can be used to estimate form
tolerances. The most widely used method for
form error estimation, the least square method
(LSQ), does not guarantee the minimum
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tolerance zone defined by ANSI/ASME, standard

126] In other words, it may overestimate the
tolerance zone and hence reject some good parts.
Therefore, the minimum zone approach, which
is consistent with the ANSI standard. was used
to evaluate the tolerance zone torusity in this
work. The remaining factors are taken into
consideration whether or not they really have an
impact on sample size. Before considering these
factors, some background is discussed in the
next two subsections. Effects of these factors
are then presented afterward.

3.1 Torus generation
To validate the developed model and also

avoid measurement errors from CMMs such as
probe orientation, probe angle adjustment, and
probe compensation, perfect toruses illustrated
in Figure I were simulated with details shown in
Table l.

able 1. Specification o toruses senerated
Area maior radius (r ' ) Minor radius (a)

2369 l 0 t)

947 5 l 2 20
I 4804 l 5 25

Three sizes ofperfect toruses were generated by
using the following formula:

. t l+ z  - a ( t ) ,

where c is a major radius of the torus (from the
center of hole to the center of the torus tube),
a represents the minor radius of the torus (radius
oftube), and
(x, y, t) is the coordinates of the torus' surface.
To imitate the real surface of a manufactured
torus-shaped feature, three selected types of
error, namely, random pattern, sine coupled with
random pattern, and step mixed with random
pattem, were each added to the perfect toruses

[27]. Three pieces of torus were then generated
for each size.
Sine is the sinusoidal oscillation perpendicular
to the torus surface as explained below:

Asin( f i  +  p)  (2) ,

where A represents the amplitude of the
periodic wave;

/represents frequency;
/ ; - t  \

u  :2r l  '  
lwhere N is  the tota l  number of

\ 1 / - 1 ,
simulated points and the position of the point llft
varies from I to y'/: and
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p is the phase angle.
Step is a discontinuity ofthe radius at each cross
section as calculated by:

rS(;r) (3),

where I is amplitude, and
l 0 : r < 0

S/r i  is  uni t  s tep funct ion and s(x)  -  
j  ,  ,  _  o

Random is the random error perpendicular to the
torus surface as described below:

U(a, /J ) (4),

where U(a, /J) is a uniformly-distributed

random value within the range [a, pl .
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Z
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Figure l. Torus definition.

CMMs provide accuracy of about 0.0001 inch or
2.54 microns for the most basic form, flatness,
measurement [28]. A torus, on the other hand,
is a complex feature. Their measurement
accuracy is hardly the same as that of flatness.
Thus, two multiple constants of flatness
accuracy were selected to give the tolerance
zone errors of 5 and 25 microns for generated
toruses. Two groups of nine toruses each were
then generated with the controlled torusity of
five and twenty five microns. Altogether, there
were eighteen toruses included in the experiment.

3.2 Sampling methods
To decrease inspection time while

maintaining a high level of accuracy, various
sampling techniques such as SR, AS, and
mathematical sequence-based, HM and HZ,
sampling have been studied. Interestingly, the
root mean squares errors of these mathematical
sequences are lower than those of commonly
practiced procedures, SR, and a type of AS,
uniform sampling. Hence, HM, AS, and SR
sampling methods were taken into consideration.
Even though the performance of HM and HZ
based methods are not much different, the HM
based method was selected because the number
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of sampling points for HZ must be a power of
two.
3.2.1 Hammersley based method
HM sequence technique was designed to place N
points on the k-dimensional hypercube [11]. In

two dimensions, the HM coordinates (x,,yr)

can be determined as follows:

'lrl

l i

where N is the total number of sample points,
, € 1 = [ 0 , . . . , N _ l ] ,

ft is [log, lr] : ceiling of log, 1y' ,
b; is binary representation ofthe index i,
b;7 denote the j'h bit in bi, and
j : 0 , . . . , k - 1 .

3.2.2 Aligned systematic sampling method

The systematic sampling sequence is a form
of probabilistic sampling which employs a grid
of equally spaced location. There are two types
of systematic sampling; aligned and unaligned
sampling. Aligned sampling is normally called
systematic sampling. The sample is first
determined by the choice of a pair of random
numbers in order to select the coordinates of the
upper left unit and the subsequent points are
taken according to the predetermined
mathematical pattem.

Suppose that a population is suggested in
the form of am rows and each row consists ofbr
units. The basic procedure for arranging the
coordinate of aligned systematic sampling can
be computed as follows:
1. Determine a pair of random numbers (p,4)

where p is less than or equal to m, and q is less
than or equal to r. These random numbers
would decide the coordinates of the upper left

unit by the p" unit column and q'h unit row.

2. Locate the subsequent sampling points for x-
coordinate as p+im where le [0, . . . ,a-1]

Therefore, the row consists of
p, p + m, p + 2m,..., p + (a -l)m .

3. Locate the subsequent sampling points fory-
coordinate as q + jn where i e10,...,b -l]

Therefore, the column consists of
q, q + n, q + 2n,..., q + (b -l)n .
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3.2.3 Simple random sampling method
Simple random sampling is the sampling
procedure that each search element in the
population has an equal chance ofbeing selected.

The above sampling strategies are normally
described for a2 dimensional (2D) rectangle but
the toroidal feature is a 3D problem. Extension
from 2D space to 3D space is required. The
concept of torus generation as shown in Figure 2
was applied to all three sampling methods. The
generated coordinates via the three sampling
methods were transformed from the first picture
(upper left corner) to the last picture (lower right
comer). Therefore, coordinates generated by
each sampling method for toruses would result.

Enmm
M E € G O

Figure 2. Torus surface generation [29].

Note that the sample size attempted for each
transformed 3D sampling method was varied
from 8 to 256 points to measure each group of'
nine toruses. Then, the torusity tolerance zone
would be calculated from such points by [8]:

(7) ,

where 4 is the normal deviation from the
measurement (r,,y,,t,) to the ideal torus

surface; and xs,y6,u,v,c , and ro are searched

parameters for establishing the ideal torus
surface by using the following minimax
criterion:

minimum zone torusity : 2 x min (max d) (8).

Clearly, the torusity zone obtained depends
on the measurements (r,,y,,2,) and hence

sampling strategies used. Different strategies
may give different torusity tolerance zones.
Five levels of quantitative precision (precision
band) were chosen as 0.3, 0.9, 1.5, 2.1 , and 2.1
pm to reflex various sampling strategies
employed lor each precision.

(5 ) ,

(6) ,

= i

- \ - r  r  i 1-  
L " i ' '
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3.3 Effect of surface area
Intuitively, a larger surface area requires

more measurement points than a smaller one to
reach the same accuracy and/or precision. To
verifu such a statement, the impact of changing
surface area on the sample size required for
torusity inspection was studied by using three
different sampling methods, HM, AS, and SR.
Each surface had different surface error patterns:
random, sine*random, and step+random; with a
fixed torusity of 25 microns and precision band
of 1.5 microns as shown in Figures 3-5.

Clearly, Figures 3-5 illustrate that if surface
area (feature size) of inspected workpiece
increases, the number of points required also
increases to obtain the same accuracy and
precision results. Hence, size or surface area of
doughnut-shaped feature must be selected as one
ofthe relevant factors for sample size prediction.

3.4 Effect ofsurface error patterns
Obviously, the manufacturing process used

to produce the part affects its entire surface [20].
Identification of the characteristics of a surface
resulting from a manufacturing process can be
very complicated and it is very challenging to
obtain proven models due to many factors
involved such as characteristics of the process,
vibration, tool wear, workpiece deformation, and
temperature. In the absence of such models,
some selected error patterns such as random
(noise), sine (systematic), and step (systematic)
were added to the surface of those generated
perfect toruses to imitate the acfual surface of
manufactured parts as if they would be produced
from different manufacturing processes.

Figures 3-5 show that with the same size of
workpiece, torusity value, and precision band,
the (sine+random) pattern required the highest
number of points. The random pattern required
more measurements than the (step+random)
pattem for all sampling methods. Therefore,
error patterns (or manufacturing processes) must
be included as a relevant factor for sample size
prediction.

3.5 Effect of sampling locations
As discussed above, the quality of

information from measurement depends on the
number of points collected and their locations.
Three sampling methods, namely, HM, AS, and
SR, were taken into consideration as depicted in

Thammasat Int. J. Sc. Tech., Vol. 12, No. 2, April-June 2007

Figures 6-8. They show that the HM sampling
sequence required a smaller sample size than the
other two sampling methods; and AS
outperformed SR in almost every case.
Obviously, different sampling methods extract
different information from inspected surfaces.
Hence, a sampling method should be selected as
an input for sample size estimation as well.

3.6 Effect of precision band
Precision represents the degree of

repeatability in a measurement whereas
accuracy is the degree which the measured value
agrees with the true value. The true value is not
possible to obtain due to the time, and hence,
cost incurred. Intuitively, if the number of
sample points is finite, the measurement result
does not converge to a single value, but it does
vary within a certain range, the so-called
precision band. Obviously, a tighter precision
band implies that all measurement results are
closer to one another andwould give a higher

2369 94'�75 14804

Surface Area

Figure 3. Sample size versus surface area when
measured by using HM method with tolerance

zone - 25 pm and precision band : 1.5 pm.

Aligned Systematic

2369 94'�75 14804

Surface Area

Figure 4. Sample size versus surface area when
measured by using AS method with tolerance
zone :25 pm and precision band : 1.5 pm.
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Simple Random

2369 94'7s 14804

Surface Area

Figure 5. Sample size versus surface area when
measured by using SR method with tolerance
zone:25 pm and precision band : 1.5 pm.

confidence level of the outcomes obtained.
Figures 6-8 show that the tighter the precision
band the greater the sample size and vice versa.
Thus, the band ofvariation should be taken into
account as a factor for sample size determination-
Note that five experiments for determining
suitable number of points for each precision
band were conducted to ensure that the sample
sizes, an average value ofthese five experiments,
for each precision band were reliable.

In summary, various levels of relevant
factors taken into account in this work are
depicted in Table 2.

Random

1 8 0

t60
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40

20

U
2 . 1  L 5  0 . 9

Precision Band (microns)

Figure 6. Variations of measurement on random
error surface with torusity of 25-pm and surface

area of 2369 mm'.

As clearly seen in this section, the
qualitative correlation between sample size and
relevant factors such as surface area, surface
error pattern, sampling location, and precision
band was clearly identified. The next step is to
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determine the quantitative correlation between
them bv usine artificial neural networks.

Sjne+random

2 .7  2 .1  1 .5  0 .9  0 .3

Precision Band (microns)

Figure 7. Variations of measurement on
sine*random error surface with torusity of 25

pm and surface area of 947 5 mm2 .
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Figure 8. Variations of measurement on
stepfrandom error surface with torusity of 25

pm and surface area of 14804 mm'.

Table 2. Summary of relevant factors for
e size orediction

Parameters Details of each Darameter
Part

dimension
(--')

2369
94'75
14804

Error
pattem

Random
Sine + random
SteD + random

Sampling
sequence

Hammersley
Aligned systematic

Simole random

Precision
band (pm)

0.3
0 .9
1 . 5
2 . 1
2 .7
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4. Artificial n€ural networks
The implementation process of feedforward

neural networks to model relationships between
samples size and its relevant factors can be
roughly divided into four main steps, (1)

assembling the data, (2) creating the network,
(3) training the network, and (4) simulating the
network.

ln step ( I ), measurement data were
collected from simulated toruses as described in
Section 3. Obviously, not all input factors were
represented by numerical data. Some were
categorical variables such as sampling method
and type of surface error. Therefore, these
variables must be encoded to numerical numbers
between -l and l. The three surface error types,
namely, random, sinefrandom, and
step+random, were encoded as 0.3, 0.6, and 0.9,
respectively. Similarly, sampling strategies
were also encoded as 0.3, 0.6, and 0.9 for HM,
AS, and SR, respectively. Normally, input
parameters of the target function are composed
of various magnitudes. The one with higher
magnitude may dominate the one with lower
magnitude. Therefore, preprocessing should be
applied to raw data before training. Thus, the
raw data were normalized to [-1, 1] for every
factor. Since a large data set of 135 points was
collected, the holdout method was chosen as a
validation technique for model selection anc
performance estimation of the constructec
model. This data set was thus randomly divided
into three subsets for training, validating, and
testing. Training the network was performed by
using about 10"/o of the original data (95 data
points) whereas the remaining 40 data points
was split equally for validating and testing. All
of these 135 data are shown in Appendix A.

In step (2), a neural network was created
with 4 inputs and I output. Four inputs were
composed of surface area, effor pattern,
sampling sequence, and precision band while the
only output was the target, sample size. Trial
and error was used to determine the network
architecture including the number of hidden
nodes for each layer and the number of hidden
layers by choosing the highest accuracy
combined from both training and validating
subsets. In one hidden layer architecture, the
number of hidden nodes was varied from 4 to 11
to find the best combined accuracies befween
both subsets. Table 3 illustrates averages
percentage of accuracy of different hidden layer
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nodes conducted for ten runs per structure. As a
result, the structure of 8 hidden nodes was
selected to alleviate the overfitting problem.
Two hidden layers were also attempted and
discarded due to high overfitting results and
longer computational time.

Table 3. Averages percentage ofaccuracy of
different structures for PSONN.

Number of
hidden nodes

7o acCuraCV

Trainins set Validation set
4 88.5805623886.06696142
5 90.159949s2 87.42250469
6 90.99489026 87.58054s76
7 91.02564456 87.65348044
8 91.rs97605 87.69065186
9 91.29307204 8'7.65102572
1 0 91.3316673587.55392991
il 91.5197690687.4947543

The percentage ofaccuracy was calculated by
, \
t l
| | - sunl oredicred - ucruall Io o o c c u r a c Y = l  r ' ,  z l 0 0

I i o'''or ,. -\  t = t  t  

, n ) ,

where 1y' is the total number of data.
The same procedure was also conducted for
BPNN. The best generalization performance
obtained for both BPNN and PSONN were
reached by using 8 hidden neurons. Thus, the
architecture of 4-8-1 (four input nodes, eight
hidden nodes, and I output node) was selected
for sample size prediction of torusity
verification. Note that the standard hyperbolic
tangent sigmoid function or tansig function was
used in the hidden layer to limit its output to
small range (-1, l) whereas the l inear purelin
function was used in the output layer to allow
the network output to be a real number.

In step (3), training the network is an
attempt to minimize the sum of squared error
(difference between actual output and desired
output) by adjusting the weights on each link.
The bases of feedforward back-propagation
neural network and PSO are well documented in
the literature and are not repeated here. The
weaknesses ofthe BP such as slow convergence
during training, possible divergence for certain
conditions, extensive computations (its
performance decreases when the size of problem
increases), and trap in local minima are
alleviated by training the NN with a more
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effective and efficient optimization technique
like the PSO. Therefore, the PSO was proposed
to train the neural network instead of the BP.

4.1 PSO based neural network
The following steps illustrate neural

network training by using the PSO:
1. Initialize a population of particles with small
random positions, presentxfilfd], and velocities,
vlil[d], of the i'h particle in the lh dimension on
problem space D dimensions (number of
weights searched). The position of each particle
corresponds to weights in the neural network
whereas velocity represents the rate of position
change. Also, initialize NN's parameters.
2. Evaluate the desired optimization function,
minimization of sum-squared error, in D
dimensions for each particle. This is done for
every training pair by computing the actual
output via analyzing the network from input
layer to output layer.
3. Compare evaluation with particle's previous
best value, pbestfi). If current value is better
than pbestlil, then pbestfi] - current value and
pbest position, pbestxfi]ffl, is set to the current
position (or weight).
4. Compare evaluation with swarm's previous
best vafue, pbestfgbestl. lf current value is
better than (pbes t[gbest]), then gbest : particle's
array index.
5. Update velocity and position of each particle
by using Equations (10) and (1 l), respectively:

vli)[d)= w x vfil[dl+ C' x rand O x

(pbestx[ilfdl - presentx filldl) + C, x rand 0 x

(pbestxIgbest lfd] - presentx fil[d])
(10 ) ,

presentxli l ldl=presentxfi)fd]+v[i][dl (l l).

A linearly decreasing inertia weight was
implemented by starting at 0.9 and ending at 0.4.
This helps expand the search space in the
beginning so that the particles can explore new
areas, which implies a global search. This
statistically shrinks the search space through
iterations, which resembles a local search. The
acceleration constants Cr and C2 represent the
weighing of the stochastic terms that pull each
particle toward pbest and gbest positions. They
are normally set to 2.0 to give it a mean of I for
the cognition (2"d term) and social parts (3'd
term), so that the particles would thoroughly
search the settled regions [0]. rand0 is a
uniformly random number generator within the

Thammasat Int. J. Sc. Tech., Vol. 12, No. 2, Apil-June 2007

(0,1) range. This makes the system less
predictable and more flexible.
6. Loop to step 2 until a stopping criterion,
either a sufficiently good evaluation function
value or a maximum number of iterations, is met.

In step (4), both trained networks would
then be simulated with all data sets to check
their predictive abilities.

5. Results and analyses

The discussed PSONN was implemented in
MATLAB 7 running on a Pentium lY 2.4 GHz
with Microsoft Windows XP operating system.
The computation of PSO depends on a few
parameters such as population size, inertia
weight, maximum velocity, maximum anc
minimum positions on each dimension, and
maximum number of iterations. Population size
and maximum iterations of 20 and 600 were
selected, respectively. The inertia weight
gradually decreased from 0.9 to 0.4 so as to
balance the global and local exploration.
Particles' velocities in each dimension were
clamped to a maximum velocity, v^o,, to control
the exploration ability of particles. If u.* is too
high, the PSO facilitates a global search; and
particles might pass good solutions. However, if
v^^ is too small, the PSO facilitates a local
search; and particles might not explore beyond
locally good regions. v-* is a problem-oriented
parameter and should be set at about l0-20olo of
the dynamic range of the variable in each
dimension.  In  th is  exper iment .  maximum
velocity(v.u^), was set at l2%o. The maximum

and minimum positions of each variable were
chosen to be 0.5 and -0.5, respectively, so that
they would give small, around zero, initial
weights.

The BPNN was also created by using the
neural network toolbox in MATLAB 7 to
predict the sample size of torusity verification.
Parameter selection in BPNN depends on a few
factors, learning rate (r1) and momentum (2) .

Both are used to control weight adjustment
along the gradient direction. The learning rate is
used to adjust step size of the weight whereas
the momentum factor is used to accelerate
convergence of the network. ry (learning rate)
and ,t (momentum factor) were selected as 0.5
and 1, respectively. In addition, the maximum
number ofepochs was 12000 (number ofepochs
in BPNN : maximum iterationsx size of swarm
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in PSONN). All other things for training both
networks were kept the same.

PSONN can function very well for
prediction of sample size of torusity estimation
with the training subsets and just slightly poorer
for the validating and unseen test subsets as
illustrated in Table 4. Recall that the BP
algorithm has some serious limitations
associated with overfitting and local optimum
problems. The outcomes comparison shows that
the PSONN can avoid local optimum trap and
reach near-optimal results better than the BPNN
can. For both training subsets of torusity enors,
their accuracies were much lower than those of
PSONN. To avoid overfitting for both PSONN
and BPNN, the proper architecture of 8 hidden
layer nodes was selected based on the best
combined results between training and
validating subsets. When applied to both unseen
test subsets, their performance showed a slight
drop from those of training subsets and the
results from PSONN were still much higher than
those of BPNN. This shows good generalization
performance. It can be concluded that the
performance of the trained PSONN is
remarkable and consistent for both training
samples and testing samples.

Classical BP updates weights and biases
based on the gradient descent concept so the
solution obtained might get stuck in a local
minimum easily without any mechanism to
avoid it. Particles in PSO explore new areas in
the beginning and refine the search later on.
while keeping personal best and group best
values. Better solutions can be found based on
this concept. In addition, to avoid local traps,
some mechanisms such as inertia weight and
randj are incorporated in velocity adjustment.
This should result in near-optimal performance.
Coupled with the model selection technique, the
overfitting issue can be avoided to some extent.
Consequently, the results obtained confirm that
improvement of NN can be accomplished when
trained by the PSO.

Table 4. Results of To accuracy comparison
een tne two trar me

Torusity
erTor

PSONN BPNN
Training

Set
Test Set

Training
Set

Test Sel

5 91.1597 85.8066 86.2648 8 r .3906
I J 83.9762 79.6038 78.2935 74.2561
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Since the test subsets were not used for
training, it can be concluded that the neural
network can perform well in determining the
required sample size for torusity inspection with
a certain confidence level. lts performance can
be enhanced by utilizing a better training
algorithm (optimizer). DaIa distribution
assumptions required in traditional statistical
approaches can be discarded in this approach.
In addition, more relevant factors, if any, could
be included rather easily by retraining the
network to obtain a more realistic and
comprehensive model with added factors. For
inspection of other forms, this PSONN could
also be applied, but new training with
corresponding data must be conducted first to
capture new characteristics of that particular
form and its relevant factors. This learning
ability, simplicity, and effectiveness are
important advantages of the neural network
approach.

6. Conclusions and recommendations

In coordinate metrology, an effective and
efficient sampling plan for data collection of a
given feature is difficult to determine since it
can be affected by many factors such as
geometric tolerances, manufacturing processes,
size, and confidence level on the measurement
results. Establishing the correlation between
them is the key leading to such a sampling
strategy. Experimental studies on torusity
produced by different processes (different enor
types) were carried out to identify key factors
that affect the sample size. Surface area, error
pattern, sampling methods, and precision band
were found as relevant factors. An improved
neural nefwork, PSONN, was proposed to model
this relationship with significant improvement
over the original BPNN due to the appealing
properties of PSO such as fast convergence,
consistency results, robustness, and local trap
avoidance. The results from both training
subsets and unseen test subsets demonstrate that
the PSONN has the potential for sample size
selection of a given form feature measurement,
especially when the explicit relationship model
is hard to find or does not exist. The PSONN
can also be easily expanded to cover more
factors so that the correlation model would be
more comprehensive and realistic. Moreover,
the PSONN could be used to handle other form
features by retraining the network with new

between the two traini thods
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corresponding data sets. Therefore, an effective
and efficient sampling strategy can be devised
by selecting a low discrepancy Hammersley
sampling method and a sample size guided by
the PSONN. This should give a good
representative of the inspected shape for data
collection in coordinate metrology.

Just like a black-box, the PSONN still lacks
clear interpretability in expressing and
explaining relationships between sample size
and its relevant factors. This issue should be
investigated in the future. In addition,
systematic parameters selection of the PSO will
certainly enhance its ease of use and should be
investigated as well.
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Surface area
(mm2) Sampling strategy Error pattern

Precision band
(rm)

Sample
size

2369 Hammerslev random 2.7 58
2369 Hammerslev random 2 . 1 84
2369 Hammerslev random t . 5 t 5 6
2369 Hammerslev random 0.9 1 5 6
2369 Hammerslev random 0.3 1 8 4
2369 Alisned Svstematic random 2.7 50
2369 AI sned Svstematic random 2 . 1 40
2369 AI ened Svstematic random 1 . 5 40
2369 AI sned Svstematic random 0.9 44
2369 AI gned Systematic random 0.3 84
2369 mple Random random 2.7 64
2369 mole Random random 2.1 96
2369 Simole Random random 1 . 5 l 1 6
2369 mple Random random 0.9 l 1 6
2369 mple Random random 0.3 1 8 4
9475 Hammerslev random 2.7 62
9475 Hammersley random 2 . 1 92
9475 Hammerslev random 1 . 5 I  l 6
947 5 Hammerslev random 0.9 164
947 5 Hammerslev random 0.3 200
94't5 Aliened Svstematic random 2.7 52
9475 Aliened Svstematic random 2 . 1 140
9475 Alisned Svstematic random 1 . 5 144
9475 Aligned Systematic random 0.9 t64
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Surface area
(mm2) Sampling strategy Error pattern Precision band

l r rm l
Sample

size

9475 Aliened Svstematic random 0.3 200
947 5 Simple Random random 2.7 80

947 5 Simole Random random 2 . 1 98

9475 Simole Random random l . l t28

94'75 Simole Random random 0.9 t32
94'�75 Simole Random random 0.3 t96
4804 Hammerslel random 2.7 76
4804 Hammerslel random 2 . 1 1 0 8

4804 Hammersler random 1 . 5 1 8 0

4804 Hammerslev random 0.9 1 8 0

4804 Hammerslev random 0.3 200
4804 Aligned Systematic random 2.7 J Z

4804 Aligned Systematic random 2 . 1 148
4804 AI gned Systematic random t - ) 196
4804 AI sned Systematic random 0.9 196

4804 Aliened Systematic random 0.3 200
4804 Simple Random random 2.7 92
4804 Simple Random random 2 . 1 132
4804 Simple Random random 1 . 5 148

4804 Simple Random random 0.9 148

4804 Simole Random random 0.3 200

2369 Hammersley sine*random 2.7 / o

2369 Hammerslev sineirandom 2 . 1 96
2369 Hammerslev sine*random 1 . 5 120

2369 Hammerslel sine+random 0.9 t20
2369 Hammerslel sinearandom 0.3 t32
2369 Aliened Systemat sine*random 2.7 64

2369 Aliened Systemat sine*random 2 . 1 84

2369 Alisned Systemat sine+random 1 . 5 l l 6

2369 Alisned SYstemat sine+random 0.9 116

2369 Al isned Svstemat ic sine*random 0.3 160

2369 Simole Random sine*random 2.7 72
2369 Simole Random sine+random 2 . 1 72
2369 Simole Random sine+random 1 . 5 84
2369 Simnle Random sine+random 0.9 84
2369 Simole Random sinelrandom 0.3 I  1 6

9475 Hammerslev sinelrandom 2.7 88
9475 Hammerslev sine*random z . l 20

947 5 Hammersley sine*random t _ ) 28

947 5 Hammersley sine*random 0.9 28

9475 Hammerslev sine*random 0.3 80
9475 Alisned Svstematic sine+random 2.7 04
9475 Alisned Systematic sine*random 2 . 1 8
947 5 Alisned Systematic sine*random t _ ) 8

947 5 Alisned Svstematic sinefrandom 0.9 28
947 5 Aliened Systematic sine*random 0.3 70

947 5 Simole Random sine*random 2.7 84

9475 Simple Random sine*random 2 . 1 84

9475 Simple Random sine+random 1 . 5 120

94'75 Simple Random sine+random 0.9 120

947 5 Simole Random sine*random 0.3 t20
14804 Hammerslev sine*random 2.7 92
I 4804 Hammerslev sine*random 2 . 1 24
14804 Hammersley sine*random 1 . 5 44

14804 Hammersley sine*random 0.9 44

14804 Hammersley sine*random 0.3 1 8 4

I 4804 Alisned Svstematic sine+random 2.7 04
14804 Aligned Systematic sinelrandom ? l 64
i4804 Aliened Systematic sine*random 1 . 5 o4

r 4804 Aliened Systematic sine+random 0.9 64
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Surface area
(mm2) Sampling strategy Error pattern

Precision band
(um)

Sample
size

4804 Aliened Systematic sine*random 0.3 1 8 0
4804 Simple Random sine*random 2.7 04
4804 Simple Random sine*random 2 . 1 2
4804 Simple Random sine*random l . ) 2
4804 Simple Random sine*random 0.9 2
4804 Simple Random sine*random 0.3 2

2369 Hammerslev step*random 2.7 56
2369 Hammerslev step+random 2 . 1 56
2369 Hammerslev step+random 1 . 5 56

2369 Hammerslev step+random 0.9 56
2369 Hammerslev step+random 0.3 88
2369 Alisned Svstematic steD+random 2.7 64
2369 Alisned Svstematic steD+random 2 . 1 64
2369 Alisned Svstematic steo*random 1 . 5 64
2369 Alisned Svstematic steD+random 0.9 64
2369 Alisned Svstematic steD+random t t _  t 76
2369 Simole Random steD+random 2.'7 60
2369 Simole Random steo*random 2 . 1 60
2369 Simole Random steD+random 60
2369 Simple Random steD+random 0.9 60
2369 Simple Random steD+random 0.3 84
947 5 Hammerslev step+random 2.7 64
9475 Hammerslev steD+random 2 . 1 64

9475 Hammerslev steD+random 1 . 5 64
9475 Hammerslev steD+random 0.9 64

9475 Hammerslev steD+random 0.3 92
9475 Alisned Svstematic steD*random 2.7 16
9475 Aliened Svstematic steD+random 2 . 1 / o

9475 Aligned Systematic step+random 1 . 5 / o

94'75 Aligned Systematic step+random 0.9 76
9475 Alisned Svstematic step+random 0.3 80
9475 Simole Random step+random 2.7 / o

9475 Simole Random step+random 2 . 1 76
9475 Simple Random step*random 1 . 5 76
9475 Simnle Random step+random o.9 / o

94'�7 5 Simole Random step+random t r -  t 92
4804 Hammerslev step+random 2.7 72
4804 Hammerslev steD+random 2 . 1 72
4804 Hammersley steD+random 1 . 5 '72

4804 Hammerslev steD+random 0.9 '72

4804 Hammersley steo*random 0.3 1 0 8
4804 Aligned Systematic steD+random 2.7 84
4804 Aligned Systematic steD+random 2 . 1 84
4804 Aligned Systematic steo+random 1 . 5 84
4804 Aligned Systematic step+random 0.9 84
4804 Alisned Svstematic step+random 0.3 120
4804 Simnle Random steD+random 2.7 80
4804 Simnle Random step+random 2 . 1 80
4804 Simple Random steo*random 1 . 5 80
4804 Simple Random step+random 0.9 80
4804 Simple Random steD+random 0.3 100
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