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Abstract
Tracking an object in three dimensional space is a major issue in computer vision which is

normally solved through the extraction of representative features of the object. Two-dimenston
coordinates of the series of these image features are used to compute the position of the object. A
typical system uses a binocular stereovision system. For an environment with obstruction, two
cameras only are not practical, multiple cameras are used instead. When multiple cameras are used, a
certain similarity measure among extracted features from any two stereoscopic images helps to match
the correspondences. In this way, a three-dimensional measurement can be obtained from the 2-D
coordinates of the feafures extracted from the different cameras. In this paper, a multiple cameras
system (four cameras) and PC-cluster (two microcomputers) are used for estimating both position and
velocity of a specified moving object. Noise filtering and features extraction of images are performed

in the PC-cluster at video rate. Then, the extracted f'eatures from every camera are used to locate the
object. This is done in the main computer. A synchronization mechanism between computers has been

developed using PCI-Io-PCI data movers with fiber optic connection. We propose a modified
distortion model of Zhang's calibration method to reduce the computation time in the 3-D
reconstruction process. In our experiments, we set up the system to track 3-D paths which are
generated by the PAIO robotic arm. The results show that the system can track both position and
velocity of a moving object in real-time with acceptable accuracy. Moreover, we show that the system
can be adapted to be used for the reverse engineering applications.
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1. Introduction
A lot of effort has been carried out to

reconstruct the spatial geometry ofa scene using
binocular stereovision systems. Most of the
algorithms use a certain similarity measure
between both stereoscopic images in order to
match the correspondences. Unfortunately,
matching homologous points between images is
not always possible and false matches may
appear. Thus, given a point in one image,
prediction algorithms must be used to find the
position of the homologous point in the second
image. A computationally effective solution to
overcome these difficulties relies on the use of a
multiple cameras vision system to reduce the
amount of false matches. This is done by using

epipolar geometry to predict conespondences.
However, using multiple cameras represents a
great deal of effort, since there are a lot of image
data to be processed and there are many cameras
to be calibrated. To realize a vision-based
multiple cameras system which satisfies the
real-time tracking requirement, a high-
performance hardware and fast image
processing algorithm are needed. To overcome
this requirement, a PC-cluster using a fiber optic
connection through PCI-to-PCI data mover
interface is used.

ln the early period, most of the work for
real-time 3-D pose estimation used binocular or
stereovision. Tanaka, Maru and Miyazaki [1]
proposed a 3-D object tracking technique using
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an active stereo vision system. The object and
corresponding coordinate were extracted from
the background for each camera (time delay or
latency between cameras exist) and epipolar
geometry was used to calculate the 3-D
coordinates of the object.

To improve the visual information, a multi-
camera system will be used. Yonemoto, Arita,
Matsumoto and Taniguchi [2,3] developed a
real-time coordinate capture system of a
specified 3-D object based on a multi-camera
system using color markers. To improve the
performance of computation, the system was
implemented on a PC-cluster with network time
protocol for PC-PC communication. Each
camera was connected to a dedicated PC, so that
real-time 3-D tracking was possible. However,
this work did not concentrate on the tracking
accuracy. The main purpose of the work was for
tracking human motion behavior.

Garcia, Batlle and Salvi [4] developed a
trinocular stereovision system for real-time pose
detection. Each camera was embedded with a
real-time image processing hardware to perform
object labeling and noise filtering at video rate.
Both 3-D position and velocity could be
obtained with this method.

Camera Calibration plays a very important
role for our application. Most of the vision-
based systems fbr pose estimation of a scene
require accurate prior knowing of system
parameters, which can be estimated through a
camera calibration process. The camera
calibration process is based on the analysis ofan
image feature of one or more views. A number
of camera calibration methods have been
proposed for the best result. They can be
classified into two categories: the
photogrammetric calibration and the self-
calibration or auto-calibration. The
photogrammetric calibration is performed by
observing a calibration pattem whose
geometries in 3D space are known accurately.
The 2-D coordinates, with conespondence 3-D
data, obtained from each camera, are used to
calculate the camera parameters. There are many
calibration methods that can be done very
efficiently, such as: Tsai'calibration method [5]
which used a monoview with coplanar or non-
coplanar set ofpoints ofthe known pre-specifigd
object, to compute camera parameters, including
the radial lens distortion using the projective
geometry and Taylor's series expansion. A
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three-step camera calibration method t6],
proposed by Bacakoglu and Kamel, used linear
least-squares to approximate camera parameters
in the first step. In the second step, Bacakoglu
and Kamel developed an altemative formulation
to obtain an optimal rotation matrix from
approximated parameters. Then translational and
perspective transformations were optimized
based on the optimized rotation matrix. In the
third step, non-linear optimization is performed
to handle lens distortion. Batista, Araujo and de
Almeida [7] proposed an iterative multi-step,
explicit camera calibration method, which is
based on an iterative approach to avoid the
singularities obtained by the calibration
equations when monoplane calibration points
are used. Zhang [8] proposed a calibration
procedure based on known coplanar points in 3-
D ofthe calibration object. The object was taken
in different view points using the same camera.
Using homography, both intrinsic and extrinsic
parameters can be found.

The self-calibration methods do not use any
calibration object. Just by moving a camera in a
static scene, the rigidity of the scene provides
constraints to intrinsic parameters. The
correspondences between images, which are
captured by the same camera in different view
points, are sufficient to recover both intrinsic
and extrinsic parameters. A 3-D pose can be
reconstructed up to a similarity. However, we
cannot always obtain reliable results because
there are many parameters to be estimated.

In addition to camera calibration, a 3D-
reconstruction routine is needed in the 3-D pose
estimation. In a multiple cameras vision-based
system for pose estimation, when the number of
image points (from two or more cameras used)
of the calibration object are precisely known, as
well as the intrinsic and extrinsic parameters of
the calibrated cameras, the 3-D coordinates can
be determined from the intersection in space of
back projection rays. Each ray passes through
the optical center and the known 2-D point in
the image plane of the corresponding camera.
These rays will intersect at the same point. Due
to the presence of noise, these rays are not
guaranteed to intersect at a single point. There
are some commonly-suggested methods to
overcome this problem such as:

Midpoint of the common perpendicular to the
two rqvs.'
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This method computes a 3D-point by
minimizing the sum of the square distances of
the 3D-point to each projected ray. However,
this method is strictly valid only in a Euclidean
coordinate frame. Beardsley and Zisserman

[9] suggest an alternative method based on a
Quasi-Euclidean frame to find the average of the
midpoint of the common the perpendicular
between any two rays. This method consumes
less computation time and gives acceptable
results especially in a Euclidean Frame,
otherwise the error still exists but the result of
reconstruction is better than the orieinal
midpoint method.

Least-Square.s and Iterative Least-Squares :
This method uses less computation time

and gives high accuracy. For N cameras, the 2N
linear equations are obtained fiom the
relationship between camera model and points
in the image planes. The Least-Squares method
uses Singular Value Decomposition (SVD) or
Pseudo-invert matrix to solve the 2N linear
equations with 3 unknowns to obtain 3D-points.
This method has no geometrical meaning [9,10]
and its results vary with the weights upon its
l inear equations. Hartley and Sturm tl0]
proposed an alternative method called the
iterative least-squares method. The original
least-squares method is modifled by adding
weighting factors to the l inear equations. The
suitable weighting factors are adjusted in each
iteration. The result is more accurate but
consumes more computation than the original
least-squares method.

Liu et al. I l ] use a least-squares method to
reconstruct 3D-points from corrected image
points. The first-order maximum likelihood
est imat ion was used lo correct  image points.
which assumed a Gaussian noise distribution
embedded in the measurement. This method can
reconstruct 3D-points more efficiently than both
the original least-squares method and the
iterative least-squares method.

Bundle Adiustment:
Bundle adjustment is the method to solve

the problem of refining a visual reconstruction
to produce a jointly optimal 3D-structure and
viewing parameter l12l by using some
optimization method such as Levenberg-
Maquardt. There are many optimization
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methods used in bundle adjustment as shown in

1121.
Hartley and Zisserman [13] seek the

maximum likelihood solution assuming that the
measurement noise is Gaussian. They minimize
the image distance between the detected image
points and reprojected points.

Bartoli [14] introduces an algorithm for
bundle adjustment based on quasi-linear
optimization to obtain a 3D model from long
rmage sequences.

In this paper, we propose a vision system
that uses multiple cameras for tracking a moving
object in 3-D space. The developed system uses
multiple computers in order to increase speed
and efficiency. It can tracks the object in real-
time.

2. System Overview
In this paper, we developed a real-time

tracking system using multiple cameras. The
system is implemented on a PC-cluster (in our
case, we are using two computers and four
cameras) connected through a fiber cable. The
synchronization mechanism between PCs is
through a PCI-to-PCI data mover interface. The
flow of the conceptual process is as follows:

i. Cameras calibration.
i i. Two-dimension features extraction for

each view.
ii i . Three-dimension pose estimation for the

object.
iv .  Real- t ime render ing.
v. Perform i-iv for each frame

Fig. I shows the arrangement of the
processing modules developed. Each processing
module has been designed as fbllows:

1. Image Capturing Module: This module
consists of image capturing and resizing
(1280x1024-320x240\ for each camera. The
captured image data is sent to a 2-D image
processing module.

2. 2-D Image Processing Module: The
image data received from the Image Capturing
Module is used for 2-D image feature extraction.
This 2-D image feature is used by the 3-D Pose
Estimation Module.

3.3-D Pose Estimation Module'. This
module is used for estimating the 3-D position
and velocitv of the obiect.



Fig.f . An arrangement of the processlng
modules on a PC-cluster.

3. Camera Calibration
3.lCamera Model
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Fig. 2. The pinhole camera model
Fig. 2 shows the pinhole camera model

defined as the 3x4 homogeneous camera
projection matrix P. This projection matrix P is
used to transform a 3-D point in a world
coordinate to a computer image point. The 3-D
point is represented by a homogeneous 4-vector

as X-  = (  r , ,  y . .  z . ,  l ) '  .  And the computer

image point is represented by a homogeneous 3-

v e c t o r a s  x - ( r r  "  l ) t .

The transformation can be written as:
x = P X * ( l a )

wnere
T is the translation vector.
R is a 3x3 rotation matrix which can be

expressed as Rodrigues's formula with a

rorat ional  3-vector  .  :  [ r  , ,  ,1 '  whose

direction is the rotating axis and magnitude is
the rotating angle.

K is a 3x3 camera calibration matrix which
consists of five camera parameters described as
follows:

i] Q,
d \, u , represent the focal length of the

camera in term of pixel dimensions in the x and
y direction. respectively.

a,,,r,,, ore the principle points in terms of

pixel dimensions.
, is referred to as the skew parameter.

The parameters used in the transformation
can be categorized into the two following
classes:

L Extrinsic Parameters: These parameters
are used in the transformation from the world
coordinate system to the 3-D camera coordinate
system. The origin of the camera coordinate
system is at the optical center. There are six
extrinsic parameters or components: ' three
components for the rotation vector and three
components for the translation vector T.

2. Intrinsic Parameters: These parameters
are used in the transformation from 3-D object
coordinates represented in the camera coordinate

system (.r, ..r, . ., ), to the computer image frame

buf fer  coordinates G, . " , ) .  For  the p inhole

camera model, there are five intrinsic
p a f a m e t e f s :  d  . r  . u . . . \  a n d '

3.2 Computation of the Camera Matrix P
Camera calibration means to compute the

camera intrinsic and extrinsic parameters which
relate the 3-D world coordinate system
I y , ,  . - , r  t o  t h e  2 - D  c o m p u t e r  i m a g e

coordinate system 6,. r ) b] giving a number of

points whose coordinates in the world
coordinate are known and whose image
coordinates are measured. Zhang [4] uses a set
of images of a calibration pattem which are
captured from different view points. The
calibration pattem provides a set ofpoints on the
same plane whose 3-D coordinate can be
measured accurately. Zhang relates 2-D image
point position with 3-D point in world

la.  s

" = l  o  d ,
l 0  0

xs
Y r t

\l
zw'..........-0

[,] [. I
l " l = * t R t r l l r , " l  { r b )
L  r  L i l
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coordinate system with homography H which
defines the scale factor.
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be calculated directly, given enough 2-D image
points, and its corresponding 3-D positions with
respect to the world coordinate system.

By using orthonornal constraint between
r, and rr:

(3)

tl e)

s m = H M
where:

g =K[r ,  12

given:

H : [tr, h2 h, ] (5)

then:

[tr, h2 h, ] = 2K [r, 12 t] (6)

) is an arbitrary constant and h, is a 3-
vector of column i of homography H which can

h fK 'K ' t r ,  : o (7)

hlK- 'K- 'h ,  -h tK- 'K ' 'h ,  =o (s)
K tK-' is known as an imase of absolute

conic;

B = 11-r11-t (e)

1
1

a:

s
- 1
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"iqi ai
r  1 2
l v , , s -u ,a , , I  y !

u  + - i + l
c{;a, ,  d;

K t K ' =
s

- 1

d , d  ,

vos - uoq r

a1a,

(10 )

a?ai,

From equation (8) and (9), a single image
of a calibration plane gives 2 sets of equations.
But the calibration matrix K has 5 degrees of
freedom, so at least 3 images of a calibration
pattern are needed.

When the homography of each image is
known, all intrinsic and extrinsic parameters can
be determined as follows:

\8,.8,.  -  8,,8,.)
r'= (B'8, BJ

E = 8 . , -
Bi + v, (-8,.8,. B,,B

,  = s u "  - B ' . o '
a , t

rr = 2K 'hr

rr: LK-th,

L  = r l  x12

t : , tK - rh :

( l  6 )

(r7)
( 1 8 )

(  1e)

(20)

(21 )

8, ,

when( t  l )

(12)

( 1 3 )

(14 )

(  l 5 )

t7
-  _  I '"  -1 /a

Where each r ,, is an element of matrix B

at the i-th row and j-th column.
In this paper, an 8 e 8 2 cm. square

chessboard will be used as the calibration,
pattem as shown in Fig. 3, whose 49-point
correspondences have been used in order to
compute the camera matrix. The plane of the
pattern is called the model plane.

B . q  a ,
.t = --

E

, -  |  -  I" - 
ll" rr ll 

- 
llx 'n,ll

(  8, ,

\a,,n.. - n,'.)
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Fig. 3. The chessboard pattern for calibration

3.3 Radial Distortion
From the camera model described in the

early section, the point in world coordinates, the
image point, and the optical center are collinear.
For real or actual lenses, this assumption will be
not true. The most important deviation is
generally a radial distortion [5]. In practice, this
error becomes more significant as the focal
length ofthe lens decreases.

The actual projected point is related to the
ideal point by radial displacement. Zhang
modeled an actual projected point as a function
of distortion factors, which is considered as a
Taylor's expansion function, multiplied by an
ideal point position as follow:
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xd is the acfual normalized image

coordinate, after radial distortion, xd =$a,ya) .

r is the radial distance from the

center for radial distortion.

kr' ,ki are first and second order lens
distortion coeffi cients.

For our developed system, an object is
being tracked in real-time, so we need to
minimize the computation time in the
reconstruction process. ln the reconstruction
process, the actual image position, from image
view, of the object is known, but the ideal image
position (in 3-D world coordinate) needs to be
calculated. From equation (22), it is difficult to
calculate the ideal image position from the given
actual image position. A polynomial of degree 5
needs to be solved and it will consume a lot of
computational time. To reduce computational
time, we modeled the ideal image position as a
function of actual image position instead as:

\ , = x a \ l + l e , r j  + k r r j )

where:

r, is the radial distance

center for radial distortion.
kj,k2 are first and

distortion coefficients.
(22) Let (u,,v,) and (uo,vr) be ideal and

actual pixel image points respectively. Our
strategy is to estimate ft,and kr, after having
estimated the other parameters. From (23), we
have two equations for each point in each
image:

(23)

From the

second order lens

\a =xu(1+ rirj * t irl)
where

x,, is the ideal normalized image
coordinate (which obeys linear projection)
x , ,  = l x , , y , ) .

il * vi,

*to + Yt,

(24)
-,, )(',i * )'j )'.hk, f | (u, - u,)f
-,,)(*,0* rj ) ' ]Lo,.] 

= 
l{ ". -', ).1

-u')\t' + ti)
f '
|  \ua
L
L(%

(u,

-v,)(x) + yj) Q,

Given m points in r images, we can stack
all equations together to obtain in total 2mn
equations. Then, linear least-squares
optimization is used to obtain ft, and k" from

Q4).

In order to obtain the best solution of
intrinsic parameters, extrinsic parameters and
radial distortion coefficients, the Levenberg-
Marquardt optimizer [5,7,8,15] has been used.
The optimization will start with the intrinsic and
extrinsic parameter values, computed by
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Zhang's calibration method. The minimization
function of Levenberg-Marquardt is :

I I l l ' ,  - i (K,k,, fr , ,R,t , ,xj) l l  Qs)
t = t  l = l

where
r is the number of images of model plane.
z is the number of points on model plane.

R, is the rotation matrix which corresponds

to image l.
t, is the translation vector which

conesponding to image l.
i (K, f t r , t r r ,R, , t i ,X, )  is  the pro ject ion of

point X, in image l.

4. Feature Extraction
Accurate detection of image features is

required in applications of 3-D reconstruction.
In this paper, a spherical ball whose image is
always a circle (2-D image) has been used as a
tracking target. Application of the Hough
transformation to detection of circular objects
has been employed to detect the center point and
radius of a tracking object as shown in Fig. 4.

Fig. 4. Circle detection using Hough
transformation

5. Pose Estimation
Consider a multiple cameras system which

has r cameras, given P, is the i-th camera

matrix, and x, is a point in the i-th image of the

3-D world point X and corresponds to camera
matrix P, . Then, we have x, : P,X . By using

the relation ofvector cross product:
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Then:

(27)

where:
p,l' is the j-th row of camera matrix P,

From each camera, only 2 equations are
independent. We will choose 2 equations from
each camera. A matrix L can be obtained by
stacking up equation (27) as [ 1 0, 1 3, I 6] :

' ,  (ni 'x)- (n)'x)= o

r, (ni'x)- (ni'x) = o
', (ni'x)- r, (nl'x)= o

L X = X = 0  ( 2 8 )

Because of noise embedded in the captured
data point, we can not obtain the exact solution
of the above equation. The solution for x can
be obtained by least-square solution (LS) of
equation (27). LS gives an accurate result but it
has no geometrical meaning. The other method
is the bundle adjustment with Levenberg-
Marquardt optimization (LM). This method tries
to minimize geometric image distance between
measured image points and reprojected image
points of the estimated 3D world points. LM
gives a better accuracy solution but it is too slow
because LM is an iteration-based method. In
contrast. LS is faster than LM but the error is
also more than LM.

6. Software Implementation
In this section, we propose a software

architecture that follows the outline of the
developed system mentioned earlier. This
prototype application is suitable for real-time
tracking of an object (spherical ball) using
multiple cameras. The developed software is
implemented in a PC-cluster connected via PCI-
to-PCI using fiber optic cable.

t 'P i ' -P l '

v,p i ' -p i '
t 'Pl '-Pl '

YrP)'-P1'
M

1 I  I Tr"p; - p;.

y,p)' -pl'�

x ,  x ( ( X ) =  0 (26)
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Fig. 5. An arrangement of the developed
software

Fig. 5 shows a diagram of the proposed
software which can be divided into the
following application processes as:

L Service Applications: Service
applications are Windows-based applications
which run in the background of Windows NT
operating systems. In each PC, a service
application will be responsible for image
capruring and 2-D image processing. so an
image capturing module and a 2-D image
processing module are contained in this service
application. Moreover, the service application
has been developed to communicate between
PCs in a PC-cluster system via fiber optic cable
with a PCI-to-PCl data mover card and it also
provides interfaces to other Windows
applications.

2. Control Application: In a PC-cluster
system, one PC has been used as a main PC. It
controls other remote PCs for tracking target
objects. In the main PC, the control application
has been developed up on top of the service
applications described earlier by using
Component Object Modeling (COM)
architecture. Control applications receive 2-D
image coordinates of the target from service
application and estimate the 3-D position of the
target in the world coordinates. So, the 3-D pose
estimation module is contained in this
application. Moreover, the control application
also provides application users interfaces. Users
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can control the tracking system through this
application.

7. Experiment
Our setup system consists of 2 PCs. The

main PC has dual-CPUs which are Pentium IV
3.2 GHz and 2GB of RAM installed. The
remote PC has a single CPU which is a Pentium
IV 2.0 GHz with 512 MB of RAM. They are
connected together via hber optic cable with a
dataBLIZZARD PCI{o-PCI data mover card.
Each PC has 2 CCD cameras. PixeLINK PL-
A741-BL, with l6mm lens connected through
IEEE 1394 por ts .

Fig. 6. The system setup for testing accuracy of
measurements

The first experiment is to demonstrate the
accuracy of the multi-camera system by
detecting known locations (comers of the small
squares of the calibration pattern). Fig. 6 shows
the arrangement of the system. Images appear in
each camera as shown in Fig. 7 and are labelled
by camera serial numbler. Table I shows the
error, standard deviation, and the maximum
error obtained from the experiments. lf the
object is viewed by all the cameras, we obtain
around I mm. accuracy. The accuracy is reduced
if some cameras are obstructed. Better results
are obtained if we use better cameras.

59



Thammasat Int. J. Sc. Tech., Vol. 12, No. 2, April-June 2007

Fig. 7. Images appear in each camera

Table l. The error obtained from the measurements
No. of cameras Average error

(mm.)
Standard deviation

(mm)
Maximum error

(mm)
A
+ 0 0t 0.044 0 . 1  8 7

3 (wo 7410265 0 25 0.049 0.203
3 (wo 741 l0l  5 0. Z J 0.048 0.220
3 tuo 7411064 0 35 0.054 0.244

2 ( w 1 40265.74 0 l  s ) 0. 88 0.067 0.328
2 ( w 7 4 0265.74 064) 0. 63 0.064 0.291
2 t u 7 40265.74 065) 0. 48 0.046 0.278
2 ( w 7 4t0t5" 74 064) 0 46 0.050 0.235
2 ( w 7 4t015.74 065) 0 69 0.112 0.664
2 ( w 1 4t064.74 065) 0.265 0 . 1 3 6 0.595

w: with, wo - without
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The developed system can detect a moving
target, which is a spherical ball attached to a
Mitsubishi PA-10 robot arrn as shown in Fig. 8.
We generate motion for the robot arm and the
system will track the moving target. We found
that the calibrated cameras system can detect
positions of a spherical ball with acceptable
accuracy (position error smaller than 1 mm
within a working volume) as shown in Figs 9,
10,  I  1 ,  12,13,  and 14.  F igs.  9,  10,  and I  I  show
the comparison of the result from the
measurements and the robot arm moving in XY-
plane, YZ-plane, and ZX-plane, respectively.
The speed ofthe robot arm is set to 0.05 radlsec.
Figs 1 1, 12, and 13 show the system detecting
the target moving helically in Z-direction, Y-
direction, and X-direction, respectively. Again
the velocity of the robot arm is set as the same.

The developed system can be used as the
coordinate measuring machine for reverse
engineering applications. Fig. 15 shows the
collection of points measured along a complex
surface using the spherical ball as a probe. The
tri-angular mesh created from the measurement
data is shown in Fig. 16. The measurement or
the quality of the triangular mesh can be
improved by can be improved reducing the size
of the probe as well as increasing the number of
points measured.

Fig. 17 shows the tracking of the target
object with s-curve velocity profile. The robot
arm is programed to move in the y-direction
with acceleration and deceleration set equal to
20 mrn/s2. The total distance is 300 mm with 40
mm,/s constant velocity. The results show that
the system can track the target very well. We
can improve the tracking by using faster
cameras. A well-defined environment can be
used to reduce exposure times of the cameras.
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Fig 8. The robot arm holds a target

Fig. 9. The target moves in the XY-plane

Y (mm) 
"ra d 

x{mm}

Fig. 10. The target moves in theYZ-pIane
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Fig. 12. Helical motion in z-direction
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Fig. 15. The collection of measurement points of
ex surface

Fig. 16. The tri-angular mesh created from the
measurement points
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8. Conclusions
In this paper, a real-time 3-D tracking

system using multiple cameras has been
developed. The developed system can track a
moving target, which is a spherical object, with
acceptable accuracy. Four cameras are used in
our experiments. Better quality cameras can be
incorporated into the system, and better
measurements can be obtained. The more
cameras, the more versatile the measurement.
The system can be adapted to track targets
which are not spherical objects by changing the
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Fig. 11. The target moves in the ZX-plane
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recognition algorithm. There are many methods
that have been developed such as Generalized
Hough Transform algorithm for detecting
arbitrary shapes. Besides 3-D pose estimation,
the system can be adapted to be a coordinate
measuring system fior reverse engineering
applications. The system will be much cheaper
than conventional systems available in the
market.
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