Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

Constructive and Simulated Annealing
Algorithms for Hybrid Flow Shop Problems
with Unrelated Parallel Machines

Jitti Jungwattanakit, Manop Reodecha, Paveena Chaovalitwongse
Department of Industrial Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330 Thatland. jitti.j@student.chula.ac.th
Frank Werner
Faculty of Mathematics, Otto-von-Guericke-University, P.O. Box 4120,
D-39016 Magdeburg, Germany. Frank. Werner@Mathematik.Uni-Magdeburg. DE

Abstract

Most scheduling problems are combinatorial optimization problems which are too difficult to be
solved optimally, and hence heuristics are used to obtain good solutions in a reasonable time. The
specific goal of this paper is to investigate scheduling heuristics, to seek the minimum of a positively
weighted convex sum of makespan, and the number of tardy jobs, in a static hybrid flow shop
environment, where at least one production stage is made up of unrelated parallel machines. In
addition, sequence-and machine-dependent setup times are considered. Some simple dispatching rules
and flow shop makespan heuristics are adapted for the sequencing problem under consideration.
Then, this solution may be improved by a fast polynomial reinsertion algorithm. Moreover, a
simulated annealing algorithm is presented in this paper. Three basic parameters (i.e., cooling
schedules, neighborhood structures, and initial temperatures) of a simulated annealing algorithm are
briefly discussed in this paper. The performance of the heuristics is compared relative to each other on
a set of test problems with up to 50 jobs and 20 stages.

Keywords: Hybrid flow shop scheduling; Constructive algorithms; Improvement heuristics;
Simulated Annealing algorithms.

1. Introduction shop and parallel machines is known as a hybrid
This paper is primarily concerned with or flexible flow shop environment.
industrial scheduling problems, where one first Although the hybrid flow shop problem has
has to assign jobs with limited resources and been widely studied in the literature, most of the
then to sequence the assigned jobs on each studies related to hybrid flow shop problems are
resource over time. It is mainly concerned with concentrated on problems with identical
processing industries that are established as processors, see for instance, Gupta et al., [4] and
multi-stage production facilities with multiple Wang and Hunsucker {5]. In a real world
production units per stage (i.e.,, parallel situation, it is common to find newer or more
machines), e.g. a textile company (Karacapilidis modern machines running side by side with
and Pappis, {1]), an automobile assembly plant older and less efficient machines. Even though
(Agnetis et al., [2]), a printed circuit board the older machines are less efficient, they may
manufacturer (Alisantoso et al., [3]), and so on. be kept in the production lines because of their
In such industries, at some stages the facilities high replacement costs. The older machines may
are duplicated in parallel to increase the overall perform the same operations as the newer ones,
capacities, or to balance the capacities of the but would generally require a longer operating
stages, or either to eliminate or to reduce the time for the same operation. In this paper, the
impact of bottleneck stages on the shop floor hybrid flow shop problem with unrelated
capacities. The mixed character between flow parallel machines is considered, i.e., there are

31

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

different parallel machines at every stage and
speeds of the machines are dependent on the
jobs. Moreover, several industries encounter
setup times which result in even more difficult
scheduling problems.

A detailed survey for the hybrid flow shop
problem has been given in Linn and Zhang [6]
and Wang [7]. Most of the earlier literature has
considered the simple case of only two stages.
Arthanari and Ramamurthy [8] and Salvador [9]
are among the first who define the hybrid flow
shop problem. They propose a branch and bound
method to tackle the problem. However, it can
only be applied to very small instances. Other
exact approaches are proposed by many authors,
¢.g. Brah and Hunsucker {10] and Moursli and
Pochet [11].

When an exact algorithm is applied to large
problems, such an approach can take hours or
days to derive a solution. On the other hand, a
heuristic approach is much faster but does not
guarantee an optimum solution. Gupta [12]
proposes heuristic techniques for a simplified
hybrid flow shop makespan problem with two
stages and only one machine at stage two. The
proposed heuristics are based on extensions of
Johnson’s algorithm. Sriskandarajah and Sethi
[13] develop simple heuristic algorithms for the
two-stage hybrid flow shop problem. They
discuss the worst and average case performance
of algorithms for finding minimum makespan
schedules. Guinet et al., [14] propose a heuristic
for the makespan problem in a two-stage hybrid
flow shop. They compare this heuristic with the
Shortest Processing Time (SPT) and the Longest
Processing Time (LPT) dispatching rules. They
conclude that the LPT rule gives good results for
the two-stage makespan problem. Gupta and
Tunc [15] consider the two-stage hybrid flow
shop scheduling problem where there is one
machine at stage one and the number of
identical machines in parallel at stage two 1s less
than the total number of jobs. The setup and
removal times of each job at each stage are
separated from the processing times. They
propose heuristic algorithms that are empirically
tested to determine the effectiveness in finding
an optimal solution. Santos ef al, [16]
investigate scheduling procedures which seek to
minimize the makespan in a static hybrid flow
shop. Their method is to generate an initial
permutation schedule based on the Palmer,
CDS, Gupta and Dannenbring flow shop

32

heuristics, and then it is followed by the
application of the First-In-First-Out (FIFO) rule.

To obtain a near-optimal solution,
metaheuristic algorithms have also been
proposed. For example, Nowicki and Smutnicki
[17] propose a tabu search (TS) algorithm for
the hybrid flow shop makespan problem.
Gourgand et al., [18] present several simulated
annealing (SA)-based algorithms for the hybrid
flow shop problem. A specific neighborhood is
used and the authors apply the methods to a
realistic industrial problem. Jin et al. [19]
propose two approaches to generate the initial
job sequence and use an SA algorithm to
improve it. It can be seen that the SA algorithm
has been successfully applied to various
combinatorial optimization problems. For an
extensive survey of the theory and applications
of the SA algorithm, see Koulamas e? al., [20].

In this paper, a hybrid flow shop problem
with unrelated parallel machines and setup times
is studied. The goal is to seek a schedule which
minimizes, a positively weighted convex sum of
makespan and the number of tardy jobs. The
constructive heuristics based on dispatching
rules and pure flow shop makespan heuristics
are adapted and SA-based algorithms as iterative
algorithms are proposed.

The rest of this paper is organized as
follows: The problem under consideration is
described in Section 2. Heuristic algorithms are
sketched in Section 3. Section 4 and Section 5
present the variants of the SA algorithm.
Computational results with the heuristics are
briefly discussed in Section 6 and conclusions
are given in Section 7.

2. Problem Statement

The hybrid flow shop system is defined by
aset 0= {1,..., 14,..., k} of k processing stages.
At each stage ¢, t €0, there is a set M' = {1,...,
i,..., m'} of m' unrelated machines. The set J =
{1,..., j,..., n} of n independent jobs has to be
processed on machine of set M',..., M*. Each
job j, j €J, has its release date r, > 0 and a due
date d; > 0. It has its fixed standard processing
time for every stage ¢, t €0. Owing to the
unrelated machines, the processing time p’; of
job j on machine i at stage ¢ is equal to ps’; / V',
where ps’; is the standard processing time of job
j at stage ¢, and V/; is the relative speed of job j
which is processed by the machine i at stage ¢.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

There are processing restrictions of jobs as
follows: (1) jobs are processed without
preemptions on any machine; (2) every machine
can process only one operation at a time; (3)
operations of a job have to be realized
sequentially, without overlapping between
stages; (4) job splitting is not permitted.

Setup times considered in this problem are
classified into two types, namely machine-
dependent setup time and sequence-dependent
setup time. A setup time of a job is machine-
dependent if it depends on the machine to which
the job is assigned. It is assumed to occur only
when the job is the first job assigned on the
machine. ch'; denotes the machine-dependent
setup time, (or changeover time), of job j if job j
is the first job assigned to machine i at stage ¢. A
sequence-dependent setup time is considered
between successive jobs. A setup time of a job
on a machine is sequence-dependent if it
depends on the job just completed on that
machine. s denotes the time needed to
changeover from job / to job ; at stage ¢, where
job [is processed directly before job j on the
same machine. All data are known and
constant.

The scheduling problem has dual
objectives, namely minimizing the makespan
and minimizing the number of tardy jobs. The
objective function to be minimized is:

ﬂfcmax + (1 - 1)777'
where C,., is the makespan, which is equivalent
to the completion time of the last job to leave
the system, 77 is the total number of tardy jobs
in the schedule, and 4 is the weight (or relative
importance) given to C,, and 777, (0 < A< 1).

3. Heuristic Algorithms
Heuristic algorithms have been developed

to provide good and quick solutions. They
obtain solutions to large problems with
acceptable computational times. They can be

divided into either constructive or improvement
algorithms. The former algorithms build a
feasible solution from scratch. The latter
algorithms try to improve a previously generated
solution by normally using some forms of
specific problem knowledge. However, the time
required for computation is usually greater
compared to the constructive algorithms. The
drawback of heuristic algorithms is that they do
not generate optimality and it may be difficult to
judge their effectiveness (Youssefer al., [21]).

33

3.1 Heuristic Construction of a Schedule

Since the hybrid flow shop scheduling
problem is NP-hard, algorithms for finding an
optimal solution in polynomial time are unlikely
to exist. Thus, heuristic methods are studied to
find approximate solutions. Most researchers
develop existing heuristics for the classical
hybrid flow shop problem with identical
machines by using a particular sequencing rule
for the first stage. They follow the same scheme,
see Santos et al., [16].

Firstly, a job sequence is determined
according to a particular sequencing rule, and
we will briefly discuss the modifications for the
problem under consideration in the next section.
Secondly, jobs are assigned as soon as possible
to the machines at every stage using the job
sequence determined for the first stage. There
are Dbasically two approaches for this
subproblem. The first way is that for the other
stages, i.e. from stage two to stage k, jobs are
ordered according to their completion times at
the previous stage. This means that the FIFO
(First-In-First-Out) rule is used to find the job
sequence for the next stage by means of the job
sequence of the previous stage. The second way
is to sequence the jobs for the other stages by
using the same job sequence as the first stage,
called the permutation rule.

Assume now that a job sequence for the
first stage has already been determined. Then we
have to solve the problem of scheduling » jobs
on unrelated parallel machines with sequence-
and machine-dependent setup times using this
given job sequence for the first stage. We apply
a greedy algorithm which constructs a schedule
for the » jobs at a particular stage provided that
a certain job sequence for this stage is known
(the job sequence for this particular stage is
derived either from the FIFO or from the
permutation rule), where the objective is to
minimize the flow time and the idle time of the
machines. The idea is to balance evenly the
workload in a heuristic way as much as possible.

3.2 Constructive Heuristics

In order to determine the job sequence for
the first stage by some heuristics, it is noted that
the processing and setup times for every job are
dependent on the machine and the previous job,
respectively. This means that they are not fixed,
until an assignment of jobs to machines for the
corresponding stage has been done. Thus, for

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

applying an algorithm for fixing the job
sequence for stage one, an algorithm for finding
the representatives of the machine speeds and
the setup times is necessary.

The representatives of machine speed v",-/
and setup time s”; for stage ¢ use the minimum,
maximum and average values of the data. Thus,
the representative of the operating time of job j
at stage ¢ is the sum of the processing time
ps’; 1 v"; plus the representative of the setup time
s"y. Nine combinations of relative speeds and
setup times will be used in our algorithms. The
job sequence for the first stage is then fixed as
the job sequence with the best function value
obtained by all combinations of the nine
different relative speeds and setup times.

For determining the job sequence for the
first stage, we adapt and develop several basic
dispatching rules and constructive algorithms for
the flow shop makespan scheduling problem.
Some of the dispatching rules are related to
tardiness-based criteria, while others are used
mainly for comparison purposes.

The Shortest Processing Time (SPT) rule is
a simple dispatching rule, in which the jobs are
sequenced in non-decreasing order of the
processing times, whereas the Longest
Processing Time (LPT) rule orders the jobs in
non-increasing order of their processing times.
The Earliest Release Date first (ERD) rule is
equivalent to the First-In-First-Out (FIFO) rule.
The Earliest Due Date first (EDD) rule
schedules the jobs according to non-decreasing
due dates of the jobs. The Minimum Slack Time
first (MST) rule concerns the remaining slack of
each job, defined as its due date minus its
processing time. The Slack time per Processing
time (S/P) is the slack time divided by the
processing time required (Baker, [22]).

Palmer’s heuristic [23] is a makespan
heuristic denoted by PAL by proposing a slope
order index to sequence the jobs on the
machines based on the processing times. The
idea is to give priority to jobs that have a
tendency of progressing from short times to long
times as they move through the stages.
Campbell, Dudek, and Smith [24] develop one
of the makespan heuristic methods known as
CDS algorithm. Since Johnson’s rule is a two-
stage algorithm, a k-stage problem must be
collapsed into a two-stage problem. In so doing,
k — 1 sub-problems are created and Johnson’s
rule is applied to each of the sub-problems.

34

Then, a “best” sequence is selected. Gupta [25]
provides an algorithm denoted by GUP, in a
similar manner as algorithm PAL by using a
different slope index and scheduling the jobs
according to the slope order. Dannenbring [26]
denoted by DAN develops a method by using
Johnson’s algorithm as a foundation.
Furthermore, the CDS and PAL algorithms are
also exhibited. Dannenbring constructs only one
two-stage problem, but the processing times for
the constructed jobs reflect the behavior of
PAL’s slope index.

Nawaz, Enscore and Ham [27] develop a
flow shop makespan heuristic, called the NEH
algorithm. It is based on the idea that a job with
a high total operating time on the machines
should be placed first at an appropriate relative
order in the sequence. Thus, jobs are sorted in
non-increasing order of their total operating time
requirements. The final sequence is built in a
constructive way, adding a new job at each step
and finding the best partial solution. For
example, the NEH algorithm inserts a third job
into the previous partial solution that gives the
best objective function value under
consideration (the relative position of the two
previous job sequence remains fixed). The
algorithm repeats the process for the remaining
jobs according to the initial ordering of the total
operating time requirements.

To apply the algorithms to this problem, the
total operating times for calculating the job
sequence for the first stage are calculated for the
nine combinations of relative speeds of
machines and setup times. The best solution is
selected from them.

3.3 Improvement Heuristics

Improvement heuristics start with an
already built schedule and attempt to improve it
by some given procedure. Their use is necessary
since the constructive algorithms (especially
some algorithms that are adapted from pure
makespan heuristics and some dispatching rules
such as SPT, LPT) do not consider due dates.
We will improve the overall function value
concerning the due date criterion. In order to
find a satisfactory solution of the given problem
involving due dates, we use a fast polynomial
heuristic by applying the shift move (SM)
neighborhood as an improvement mechanism.

The SM neighborhood repositions a chosen
job. An arbitrary job 7 at position r is shifted to

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

position i, while leaving all other relative job
orders unchanged. If 1< r <i < p, it is called a
right shift and yields n’= (7;,..., 7.1, sy, ..., 7,
ooy). I£ 1< i <p < p, it is called a left shift
and yields n'= (7@),... 7%, B Tty Borgs ooey 7).
For example, assume that one solution in the
current generation is selected, say {59873 16
2 4], and then a couple of job positions for
performing the shift is selected, e.g. positions 2
and 7 (in this case, it is a right shift). The new
solution willbe [S8 73 1 6 92 4]. However, if
positions 7 and 2 are selected (i.e. it is a left
shift), the new solution will be [56 987 312
4]. In the SM neighborhood, the current solution
(S..») has (n—1)* neighbors.

We apply the SM neighborhood by
considering only jobs that are tardy in a left-to-
right scan and move each of them left and right
to all »-/ possible positions (all shift-move
algorithm). In each step, the best schedule is
selected if it improves the objective function
value. Since every job is considered at most
once (if all jobs under consideration are late), at
most O(#%) job sequences are examined by the
improvement heuristics).

4. Simulated Annealing Heuristic

A simulated annealing (SA) heuristic has
been introduced by Kirkpatrick et al., [28]. It is
an enhanced version of local optimization, in
which an initial solution is repeatedly improved
by making small local alterations, but an SA
procedure often accepts a poor solution to avoid
being trapped in a poor local optimum.

A basic SA algorithm starts from an initial
solution s € §, and it generates a new solution
s'e § in the neighborhood of the initial solution
s by using a suitable operator. This new point's
objective function value f{s') is then compared to
the initial point's value As) (the objective
function value of the full schedule generated
from the job sequence for the first stage is
taken). The change in the objective function
value, & = f(s')As), is calculated. If the
objective function value decreases (& < 0), it is
automatically accepted and it becomes the point
from which the search will continue. If the
objective function value increases (5> 0), then
higher values of the objective function may also
be accepted with a probability, usually
determined by a function, exp (—~&T), where T €
R is a control parameter of an SA algorithm

35

called the temperature. The role of the
temperature 7 is significant in the operation of
an SA algorithm. This temperature, which is
simply a positive number, is periodically
reduced every NT iterations, where NT denotes
the epoch length, so that it moves gradually
from a relatively high value to near zero as the
method progresses according to a function
referred to as the cooling schedule. In our tests,
we investigated in particular the influence of the
chosen neighborhood and the cooling scheme
for controlling the temperature. We used a
geometric (i.e., T, = axT,,) and a Lundy-Mees
reduction [29] (ie., Thew = Tod(1+xT,1)
scheme and tested the parameters of these

schemes (initial temperatures, temperature
reductions and neighborhood structures).
Concerning the neighborhood, we

considered both an SM neighborhood (see
Section 3.3) and a pairwise interchange (PI)
neighborhood. The idea for the PI neighborhood
is to exchange a pair of arbitrary jobs, 7. and 7,
where 1 <j, r<mand i #r. Such an operation
swaps the job at position » and one at position i,
which yields n°= (7),..., 7.;, %y Torty ...y 71,75
Ti+i,...» 7). For instance. assume that the
current solution is [5 9 8 73 1 6 2 4], and then
randomly the couple of job positions to be
exchanged is selected, e.g. positions 1 and 3.
Thus, the new solution will be [8 9573162
4]. For the selection of a neighbor, one of all
possible nx(n-1)/2 PI neighbors is checked and
then compared to the starting one.

5. Choice of an initial solution

An SA algorithm has been shown to be
effective for many combinatorial optimization
problems (see Koulamas er al., [20]), and it
seems easy to apply such an approach to
scheduling problems. To improve the quality of
the solution finally obtained, we also
investigated the influence of the choice of an
appropriate initial solution by using particular
constructive and fast improvement algorithms.
We used one constructive algorithm of: SPT,
LPT, ERD, EDD, MST, S/P, PAL, CDS, GUP,
DAN and NEH; we also used another fast
improvement heuristics as an initial solution.

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

6. Computational results

Firstly, we studied the algorithms from
Section 3 (determination of an initial solution
for SA) which are separated into four main
groups. The first heuristic group includes the
simple dispatching rules such as SPT, LPT,
ERD, EDD, MST, and S/P. The second heuristic
group contains the flow shop makespan
heuristics adaptation such as PAL, CDS, GUP,
DAN, and NEH. The third and fourth heuristic
groups are generated from the first two
heuristics by applying additionally an all-shift-

constructive heuristics. We used problems with
10 jobs x 5 stages, 30 jobs x 10 stages, and 50
jobs x 20 stages. For all problem sizes, we
tested instances with A e {0, 0.05, 0.1, 0.5, and
1} in the objective function. Ten different
instances for each problem size have been run.
The results for the algorithms from Section
3 are given in Table 1. We give the average
(absolute for A = 0 and percentage for A > 0)
deviation of a particular algorithm from the best
solution in these tests for all problem sizes nx k
(the overall best variant is given in bold face).

move algorithm (see Section 3.3), and they are
denoted by the letter “I” before the letters for the

Table 1 Average performance of constructive and fast improvement algorithms

% Problemsize SPT LPT ERD EDD MST SP PAL CDS GUP DAN NEH
10%5 25 17 28 31 32 3.0 19 17 18 20 05
0 30x10 8.0 8.9 8.3 124 12.3 122 8.0 6.4 7.8 7.7 24
50x20 74 8.6 7.7 16.2 162 143 9.7 7.3 79 93 23
Sum 177 192 188 317 317 295 19.6 154 175 19.0 52
10%5 18.82° 1281 2423 2409 2221 2210 1166 1003 1412 1147 252
0.05 30x10 1778 1472 1961 2091 1821 17.61 1680 1235 147t 1477 059
' 50%20 853 828 1014 1175 1096 987 790 699 803 843 030
Sum 25.14 3581 5308 5675 5137 49.58 3636 29.36 3686 34.67 3.4l
105 1790 1182 2201 2267 2021 2052 1071 879 13.05 1032 2386
ol 30x10 1661 1312 1846 19.14 1638 1571 1559 1117 1330 1361 040
: 50%20 813 775 972 1047 965 877 121 645 157 179 0.8
Sum 2264 3269 5108 5228 4625 4500 3357 2640 3392 3172 3.33
105 1748 1121 2217 2194 1881 1921 1033 787 1244 974 298
05 30x10 1612 1229 1801 1813 1530 1446 1503 1050 1260 13.04 026
: 5020 8.11 759 968 971 884 812 704 628 750 756 0.9
Sum 3171 3100 4986 4978 4294 4179 3241 2465 3255 3034 333
10%5 1748 1121 2217 2194 1881 1921 1033 787 1244 974 298
o 30%10 1634 1246 1824 1829 1543 1457 1524 1068 1277 1324 038
: 5020 812 758 969 963 875 805 703 627 150 754 0.08
Sum 2194 3124 5010 4985 4208 4182 3259 2482 3272 3052 3.44
A Problemsize ISPT ILPT IERD IEDD IMST IS/ [PAL ICDS IGUP IDAN INEH
10%5 1.0 0.7 14 0.7 1.0 09 06 05 0.9 1.0 05
0 30%10 42 45 43 32 24 57 44 40 4.1 44 24
50%20 36 43 35 3.5 39 7.8 46 45 48 53 23
Sum 8.8 95 92 74 73 144 96 9.0 98 10.7 5.2
105 506 360 382 684 532 543 264 339 363 346 252
005 30%10 603 666 775 800 1115 829 707 478 684 624 059
50%20 446 522 510 603 566 628 422 353 483 538 030
Sum 1555 1549 1667 2088 2214 1999 1393 1170 1530 1508 341
105 463 395 460 640 578 448 1.80 201 3.20 194 2386
ol 30x10 610 614 839 794 993 783 623 278 557 551 0.40
: 50%20 427 522 478 556 566 461 378 315 488 473 0.8
Sum 1499 1531 17.78 1989 2136 1693 1181 793 1366 1218 3.33
105 431 284 491 601 580 398 171 224 255 080 298
30x10 613 610 894 78 918 720 519 165 488 595 026
0.5 50%20 437 472 481 528 544 473 4.06 292 479 461 0.09
Sum 1481 1366 1866 19.14 2042 1591 1096 682 1222 1136 333
10%5 431 284 491 601 580 3.98 171 224 255 080 298
1o 30x10 633 618 917 772 933 740 529 169 498 595 038
: 50%20 439 501 491 517 545 409 405 293 477 459 0.8
Sum 1504 1402 1898 1801 2058 1547 1105 _ 686 1231 1134 3.44

*average absolute deviation for A =0, and ® average percentage deviation for >0

36

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

From these results it is obvious that the
algorithms in the fourth heuristic group (i.e.,
IPAL, ICDS, IGUP, IDAN, and INEH) can
improve the pure makespan heuristics from the
second heuristic group (i.e., PAL, CDS, GUP,
DAN, and NEH), and they are better than the
dispatching rules in the first heuristic group (i.e.,
SPT, LPT, EDD, MST, and S/P) as well as the
third heuristic group improved from them.

Among the simple dispatching rules
(heuristic Group I), the SPT rule outperforms
the other dispatching rules for A = 0, and the
LPT rule is better than the other rules for A > 0.
Among the adapted flow shop makespan
heuristics in the heuristic Group II, the NEH
algorithm is clearly the best algorithm among all
studied constructive heuristics. = The CDS
algorithm 1s certainly the second rank algorithm,
whereas the remaining algorithms differ slightly
from each other.

When we apply a fast (re-)insertion
algorithm (denoted by the letter “I” first) to the
dispatching rules and adapted makespan
heuristics, we have found that the quality of the
solution can be improved by about 50-70
percent except for the NEH rule. It is noted that
the NEH rule is not improved by using the
improvement heuristics in algorithm INEH
because the NEH algorithm is embedded by
such an (re-) insertion algorithm itself.
However, the improvement of the heuristics
from the adapted pure makespan heuristics in
the heuristic Group IV is better than the

improvement of the heuristics derived from the
dispatching rules in the heuristic Group III.

Secondly, we studied the SA algorithm
with a random initial solution. The purpose of
this study is to determine the favorable SA
parameters, i.e., initial temperatures (100
through 1000, in steps of 100), neighborhood
structures (PI and SM), and cooling schedules
(CS1 — CS3 refer to a geometric reduction
schedule with o e {0.85, 0.90, and 0.95}, and
CS4-CS6 are the schedules by Lundy and Mees
with £ € {0.0005, 0.001, and 0.002}).

Given the above three different problem
sizes, the SA parameter values were tested.
From our preliminary tests, we set the time limit
equal to one second for the problems with ten
jobs, ten seconds for the problems with 30 jobs,
and 30 seconds for the problems with 50 jobs.
Table 2 through Table 4 present the effect of the
initial temperatures, neighborhood structures
and cooling schedules by using the average
(absolute resp. relative) deviation from the best
value as the performance measure.

From the full factorial experiment, we
analyzed our results by means of a multi-factor
Analysis of Variance (ANOVA) technique using
a 5% significance level. We have found that for
neighborhood structures and cooling schedules,
there are statistically significant differences,
whereas there are not statistically significant
differences in the initial temperatures. A low
initial temperature is however slightly preferable
(we recommend 100). It can be observed that PI

Table 2 The effect of various initial temperatures on the performance of the SA algorithm

A Problem size 100 200 300 400 500 600 700 800 900 1000
10x5 0.019* 0.022 0.019 0.011 0.025 0.019 0.019 0.017 0.022 0.025

0 30x10 2.747 2.781 2.767 2.781 2.792 2.822 2.811 2.839 2.864 2.883
50x20 2.461 2.531 2.561 2.561 2.539 2.603 2.628 2.608 2.653 2.681

Sum 5.227 5.334 5.347 5.353 5.356 5.444 5.458 5.464 5.539 5.58%

10x5 1.954° 2.140 2171 2.079 2.010 2.195 2.195 2.192 2.261 2.251

0.05 30x10 7.662 7.727 7.979 7.816 7.880 7.809 7.925 7.877 7.770 7.838
50%20 3.901 4.010 4.100 4.161 4.117 4.145 4.151 4.232 4.197 4277

Sum 13.517 13.877 14.250 14.056 14.007 14.149 14.271 14.301 14.228 14.366

10x5 1.707 1.647 1.840 1.917 1.922 1.864 1.839 1.969 1.895 1.893

0.1 30x10 6.126 6.137 6.218 6.237 6.218 6.254 6.304 6.291 6.386 6.361
’ 50x20 3.440 3.446 3.535 3.596 3.608 3.652 3.626 3.658 3.750 3.675
Sum 11.273 11.230 11.593 11.750 11.748 11.770 11.769 11.918 12.031 11.929

10x5 0.850 0.884 0.873 0.947 0.962 0.959 0.968 1.048 1.025 1.030

05 30x10 3.723 3.781 3.814 3.898 3.931 3.909 3.947 3.926 3915 3.974
50x20 2.125 2.240 2.285 2.312 2.360 2.404 2.381 2.377 2414 2.338

Sum 6.698 6.905 6.972 7.157 7.253 7.272 7.296 7.351 7.354 7.342

10x5 0.513 0.641 0.633 0.653 0.690 0.726 0.705 0.756 0.721 0.684

10 30x10 3.337 3.392 3.470 3.452 3.504 3.497 3.520 3.554 3.546 3534
50%20 1.761 1.837 1.847 1915 1.924 1.987 1.942 1.963 2.007 1.953

Sum 5.611 5.870 5.950 6.020 6.118 6.210 6.167 6.273 6.274 6.171

* average absolute deviation for A =0, and ® average percentage deviation for 1> 0

37

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

Table 3 The effect of various neighborhood Table 4 The effect of various cooling schedules on the
structures on the performance of the SA performance of the SA algorithm

algorithm
5, ~ Problem PI SM Problem .o, g3 (cS3 CS4 CS5 CS6
Size slze
10%5 0.016° 0.024 105 0.000 0.002 0028 0033 0022 0035
o 30x10 2794 2.823 o 30<10 0653 0915 1663 4625 4562 4433
50%20 2.522 2.643 50x20 0320 0.638 1.880 4237 4283 4.137
Sum 5332 5.490 Sum 0973 1555 3571 8.895 8867 B.605
10%5 2270° 2.020 10<5 0936 1052 1930 3.42 3043 2767
00s 3010 8.098 7522 00s J0%10 3388 3443 4614 12314 12034 11068
' 50%20 4192 4.067 05 50x20 1059 4411 3101 6559 6472 6171
Sum 14.560 13.609 Sum 5383 8906 9.645 22.015 21549 20.006
10%5 1973 1.725 10<5 0.855 0959 1561 2770 2.696 2255
op 30710 6.522 5.985 o 30<10 2741 2839 3725 10487 9717 8Ol
: 50%20 3.646 3.551 1 50x20 1.000 1295 2620 6008 5758 4911
Sum 12.141 11.261 Sum 4596 5093 7906 19.265 18.171 15177
10%5 1.136 0.773 10x5 0658 0636 0920 1.755 1149 0.610
05 30x10 4.249 3515 05 30710 2450 2560 2940 6833 4816 3.63
: 50%20 2425 2222 S 50x20 0959 1168 1969 4429 3.103 2313
Sum 7.810 6.510 Sum 4.067 4364 5829 13017 9.068 6.616
1075 0.865 0.479 10x5 0590 0546 0782 [122 0628 0364
10 30x10 3.897 3.065 Lo 30x10 2754 2700 3102 5051 3885 3393
50%20 2.049 1.778 Y 5020 0963 1157 1827 3167 2400 1.968
Sum 6811 5322 Sum 4306 4403 5711 9340 6913 5726

*average absolute deviation for A=0and b

moves are better than SM neighborhoods for A =
0, whereas SM neighborhoods are better than P1
moves for the other values. Consequently, the
neighborhood structures should be based on PI
moves for L = 0 and on SM neighborhood
otherwise. For the cooling schedules, we have
observed that a geometric cooling scheme
outperforms the other cooling schedules. In
particular, the reduction scheme 7., ~0.85%T,,
where T,.. and T,, denote the new and old
temperatures, can be recommended.

Finally, we used the recommended SA
parameters to test the choice of an appropriate
initial solution. The letters before SA denote the
heuristic rule for finding an initial solution for
the SA algorithm. For example, SPTSA means
that the SPT rule is used as an initial solution for
the SA algorithm.

From these results in Table 5, we have
found that there are no statistically significant
differences when using different initial
solutions. We have however found that the
IEDDSA rule is a good algorithm for problems
with A= 0, and the NEIISA and INEHSA rules
are slightly better than the others for problems
with A > 0. Consequently, in general the
NFHSA atu INEHSA algorithms are good
wices for the SA algorithm with using a biased
tnitial solution.

38

average percentage deviation for 4> 0

7. Conclusions

In this paper, we have investigated both
constructive and iterative (SA-based)
approaches for minimizing a convex
combination of makespan and the number of
tardy jobs for the hybrid flow shop problem with
unrelated parallel machines and setup times,
which often occurs in the textile industry. All
algorithms are based on the list scheduling
principle by developing job sequences for the
first stage and assigning and sequencing the
remaining stages by both the permutation and
FIFO approaches. The constructive algorithms
are compared to each other. It is shown that the
NEH and CDS algorithms outperform the
others, respectively. In particular, the NEH
algorithm is most superior to the other
constructive algorithms regardless of
improvement heuristics. After the application of
the fast improvement heuristics, the INEH
algorithm based on the NEH rule is still better
than the other algorithms.

In addition, we have used SA-based
algorithms as improvement algorithms. Before
we studied the influence of the initial solution
on the performance of the SA algorithm, we
tested the SA parameters, i.e., initial
temperatures, neighborhood structures, and
cooling schedules. We have found that a low
initial temperature is slightly preferable (we
recommend 100). The neighborhood structures
should be based on PI moves for A = 0 and on

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

SM neighborhoods otherwise. The geometric
cooling scheme 7,.,=0.85xT,;, is recommended.
For the recommended SA parameters, we
investigated the selection of a starting solution
by using several constructive algorithms. The
variants NEHSA and INEHSA can both be
recommended in general.

Further research can be done to use other
iterative algorithms such as tabu search, genetic

algorithm, or ant colony algorithms. The choice
of good parameters for them should be tested.
In addition, the influence of the starting solution
should be investigated. = Moreover, hybrid
algorithms should be developed by using
simulated annealing as a local search algorithm
within a genetic algorithm or the other
algorithms.

Table 5 Comparison of the SA algorithm with different initial solutions

A P';’i‘;f"“ SPTSA LPTSA ERDSA EDDSA MSTSA S/PSA PALSA CDSSA GUPSA DANSA NEHSA
10%5 o 0 0 0 0 0 0 0 0 0 0
3010 084 076 08 082 076 076 076 078 084 078 082
5020 034 0.3 044 032 030 034 036 028 038 044 038
Sum 118 1.06 13 114 106 110 112 106 122 122 120
T0x5 070° 038 072 045 059 060 056 063 066 052 052

oos 30X10 243 269 28 253 270 263 279 263 239 257 23

05 Sox0 100 107 112 121 106 125 115 116 106 101 LIl
Sum 120 414 467 419 435 448 449 442 411410 396
10%5 064 051 039 043 065 055 050 044 059 055 048

o 30<10 200 237 241 222 220 207 236 19 233 200 200

1 S0x0 086 090 092 096 103 09 108 090 L10 113 080
Sum 359 378 372 360 388 358 394 331 402 378 328
T0%5 048 039 030 039 033 034 027 036 034 043 043

s 300 199 205 182 198 18 206 210 179 19 210 L0

S 5x20 097 094 08 079 075 090 088 080 086 077 0.63
Sum 344 337 205 306 296 330 325 296 314 329 276
10%5 040 033 034 024 023 038 035 030 027 028 036

o 30410 238 202 229 208 234 200 194 208 21l 231 205

O Sox20 083 092 080 081 090 085 102 086 096 073 0.66
Sum 361 327 343 303 348 333 330 324 334 333 307

a Froblem iSPTSA ILPTSA IERDSA IEDDSA IMSTSA ISPSA IPALSA ICDSSA IGUPSA IDANSA INEHSA
10%5 0 0 0 0 0 0 0 0 0 0 0
30<10 082 078 088 068 078 086 08 072 074 072 074

0 Sox20 036 032 034 012 042 046 050 034 032 042 040
Sum 118 110 122 080 120 132 136 106 106 114 114
10%5 051 054 039 049 038 061 054 045 062 046 050

005 30<10 257 260 264 281 236 238 254 282 239 276 232
5020 147 142 130 LIs 117 (16 113 LI n 121 1.09
Som 324 426 452 445 391 414 422 438 41l 443 391
10%5 059 065 055 042 064 036 070 048 044 066 037

o 0<0 214 221 212 245 206 241 204 222 203 237 204

1 Sox0 094 091 119 102 o2 105 099 106 104 104 082
Sum 367 377 386 390 382 382 373 376 351 407 323
10%5 028 038 033 032 032 025 040 042 037 028 037

s 30X10 18s 170 206 224 207 209 193 193 187 1% 181

S 5020 08 083 078 081 083 080 090 096 080 089 0.3
Sum 396 2901 317 338 322 345 323 331 313 307 252
T0%5 030 028 016 024 027 026 040 032 021 022 037

o 30<0 205 209 225 205 215 230 188 207 215 194 203

0 5020 093 081 083 090 082 08 08 090 088 0.8 0.67
Sum 338 309 325 3.8 324 345 3.1 329 324 298 307

*average absolute deviation for A =0, and ® average percentage deviation for >0

39

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

Acknowledgements
This work was supported in part by INTAS
(project 03-51-5501).

References

[1] Karacapilidis, N.I. and Pappis, C.P,
Production Planning and Control in Textile
Industry: A Case Study, Computers in
Industry, Vol.30, No.2, pp.127-144, 1996.

[2] Agnetis, A., Pacifici, A., Rossi, F., Lucertini,
M., Nicoletti, S., Nicolo, F., Oriolo, G.,
Pacciarelli D., and Pesaro, E., Scheduling of
Flexible Flow lines in an Automobile
Assembly Plant, European Journal of
Operational Research, Vol.97, No.2,
pp.348-362, 1997.

[3] Alisantoso, D., Khoo, L.P., and Jiang, P.Y.,

An Immune Algorithm Approach to the

Scheduling of a Flexible PCB Flow Shop,

The International Journal of Advanced

Manufacturing Technology, Vol.22, No.11-

12, pp.819-827, 2003.

Gupta, JN.D., Kriiger, K., Lauff, V,

Wemner, F., and Sotskov, Y.N., Heuristics

for Hybrid Flow Shops with Controllable

Processing Times and Assignable due Dates,

Computers & Operations Research, Vol.29,

No.10, pp.1417-1439, 2002.

Wang, W., and Hunsucker, JL., An

Evaluation of the CDS Heuristic in Flow

Shops with Multiple Processors, Journal of

the Chinese Institute of Industrial Engineers,

Vol.20, No.3, pp.295-304, 2003.

[6] Linn, R. and Zhang, W., Hybrid Flow Shop
Scheduling: A Survey, Computers &
Industrial Engineering, Vol.37, No.1-2,
pp.57-61, 1999.

[7] Wang, H., Flexible Flow Shop Scheduling:
Optimum, Heuristics, and Artificial
Intelligence Solutions, Expert Systems,
Vol.22, No.2, pp.78-85, 2005.

[8] Arthanari, T.S. and Ramamurthy, K.G., An
Extension of Two Machines Sequencing
Problem, Opsearch, Vol.8, No.1, pp.10-22,
1971.

[9] Salvador, M.S., A Solution to a Special
Case of Flow Shop Scheduling Problems,
in: Elmaghraby SE (ed.), Symposium on
the Theory of Scheduling and Applications,
Springer, New York, pp.83-91, 1973.

[10] Brah, S.A. and Hunsucker, J.L., Branch and
Bound Algorithm for the Flow Shop with
Multiple Processors, European Journal of

(4]

(5]

40

Operational Research, Vol.51, No.1, pp.88—
99, 1991.

[11] Moursli, O. and Pochet, Y., Branch and
bound algorithm for the hybrid flowshop,
International ~ Journal of Production
Economics, Vol.64, No.1-3, pp.113-125,
2000.

[12] Gupta, JN.D,, A Functional Heuristic
Algorithm for the Flowshop Scheduling
Problem, Operations Research Quarterly,
Vol.22, No.1, pp.39-47, 1971.

[13]Sriskandarajah, C. and Sethi, S.P.,
Scheduling Algorithms for Flexible
Flowshops: Worst Case and Average Case
Performance, European Journal of
Operational Research, Vol43, No.2,
pp-143-160, 1989.

[14] Guinet, A., Solomon, M.M., Kedia, P.K,,
and Dussauchoy, A., A Computational
Study of Heuristics for Two-stage Flexible
Flowshops, International Journal of
Production Research, Vol.34, No.5,
pp.1399-1415, 1996.

[15] Gupta, JN.D. and Tunc, E.A., Scheduling a
Two-stage hybrid Flowshop with Separable
Setup and Removal Times, European
Journal of Operational Research, Vol.77,
No.3, pp.415-428, 1994.

[16] Santos, D.L., Hunsucker, J.L., and Deal,
D.E., An Evaluation of Sequencing
Heuristics in Flow Shops with Multiple
Processors, Computers & Industrial
Engineering, Vol.30, No.4, pp.681-691,
1996.

[17] Nowicki, E., and Smutnicki, C., The Flow
Shop with Parallel Machines: A Tabu
Search Approach, European Journal of
Operational Research, Vol.106, No.2-3,
pPp.226-253, 1998.

{18] Gourgand, M., Grangeon, N., and Norre, S.,
Metaheuristics for the Deterministic Hybrid
Flow Shop Problem, In: Proceeding of the
International Conference on Industrial
Engineering and Production Management,
IEPM’99, Glasgow, pp.136-145, 1999.

[19] Jin, Z., Yang, Z., and Ito, T., Metaheuristic

Algorithms for the Multistage Hybrid
Flowshop Scheduling Problem,
International Journal of Production

Economics, Vol.100, No.2, pp.322-334,
2006.

[20] Koulamas, C., Antony, S.R. and Jaen, R., A
Survey of Simulated Annealing

Thammasat Int. J. Sc. Tech., Vol. 12, No. 1, January-March 2007

Applications to Operations Research
Problems, Omega International Journal of
Management Science, Vol.22, No.1, pp.41-
56, 1994.

[21] Youssef, H., Sait, S.M., and Adiche, H.,
Evolutionary Algorithms, Simulated
Annealing and Tabu Search: a Comparative
Study, Engineering Applications of
Artificial Intelligence, Vol.14, No.2,
pp-167-181, 2001.

[22] Baker, K.R., Introduction to Sequencing
and Scheduling, John Wiley & Sons, New
York, 1974.

[23] Palmer, D.S., Sequencing Jjobs Through a
Multi-stage Process in the Minimum Total
Time—A Quick Method of Obtaining a
Near Optimum, Operational Research
Quarterly, Vol.16, No.1, pp.101-107, 1965.

[24] Campbell, H.G., Dudek, R.A., and Smith,
M.L., A Heuristic Algorithm for the n-job
M-machine Sequencing Problem,
Management Science, Vol.16, No.l0,
pp-B630-B637, 1970.

41

[25] Gupta, JN.D., A Functional Heuristic
Algorithm for the Flowshop Scheduling
Problem, Operations Research Quarterly,
Vol.22, No.1, pp.39-47, 1971.

[26] Dannenbring, D.G., An Evaluation of Flow
Shop Sequencing Heuristics, Management
Science, Vol.23, No.ll, pp.1174-1182,
1977.

[27] Nawaz, M., Enscore, Jr. EEE., Ham, 1., A
Heuristic Algorithm for the M-machine, n-
job Flow-shop Sequencing Problem,
Omega International Journal of
Management Science, Vol.11, No.l., pp.
91-95, 1983.

[28] Kirkpatrick, S., Gelatt, Jr. C.D., and
Vecchi, M.P., Optimization by Simulated
Annealing, Science, Vo0l.220, No0.4598,
pp.671-68, 1983.

[29]Lundy, M. and Mees, A., Convergence of
an Annealing Algorithm, Mathematical
Programming, Vol.34, No.l1, pp.111-124,
1986.

