
Thammasat Int. J. Sc. Tech., Vol. 12, No. l, January-March 200'7

A Heuristic for Solving a
Stochastic Knapsack Problem with

Discrete Random Capacity

Suwitchaporn Witchakul,
Prapaisri Sudasna-na-Ayudthya

and Peerayuth Charnsethikul
Operations Research and Management Science Units

Department of Industrial Engineering
Faculty of Engineering, Kasetsart University

Bangkok, Thailand

Abstract
In this paper, a set of r items with a, and c- as the weight coefficient and cost coefficient of item

j, j:1,2,...,n, must be decided, to allocate within a discrete random capacity b,, in order to

minimize the total cost plus the cost of not meeting the capacity, with g and h the per unit penalty
costs. The problem can be formulated as the stochastic knapsack problem with discrete random
capacity (SKPDRC). A heuristic for solving SKPDRC is proposed and computationally
experimented.
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1. Introduction
Consider a class of stochastic knapsack

problem with discrete random capacity
(SKPDRC) as follows:

_l_
( l  )  Minimize . f  :  1",* ,  * l {n,Su,+p,hv,)

Subject to sf
)  a . x  + u . - v  = D

4 t l

0 ( x, < /, and integer

I n  = l

where x,

t

a, is the weight coefficient of item 7

and a,  > 0,  for  j :  I ,2 , . . . ,n ,

c, is the cost coefficient of item 7 and

c , 2 0 , f o r  j : 7 , 2 , . . . , n ,

b, is the capacify ofalternative i, bt>0

fo r  i :  1 ,2 , . . . ,m ,
p; is the probability of having capacity

b i ,  p ,  20 fo r  l  :  1 ,2 , . . . ,m ,

g is the per unit cost of having ui. g 2 0 ,
ft is the per unit cost o[ having vi. h > 0 .

.  Assume that b < b,, , .  for i  = 1,2,. . . ,m -1,
lS a OeclSlon varlaDle, Ior 1=54... .n

, is an upper bound ofx; , for

j  = 1 , 2 , . . . , n  ,

c  c . .
a n d  J 3 L ,  f o r  1  = 1 , 2 , . . . , n - 1  .

a  4 . .
I  t + )

al, is the slack variable and zr. > 0, for
The basic problem statement of the above

i=l'2'" ' 'm ' model (l) can be described as fbllows. Given
v  i s t h e s u r p l u s v a r i a b l e a n d  v  > 0 . f o r  c i . o , , t , ,  f o r  j = 1 . 2 , . . . , n ,  p , , b , ,  f o r

i  = l '2"" 'm '  i  =  1.2, . . . .m,  g and f t ,  the decis ion problem is  to

search for  r , ,  for  j  =7,2, . . . ,n ,  and u, ,v , ,  for



i  :1,2,...,m, so that all constraints are satislted

in order to minimize the obiective function.

2. Literature Reviews
Dantzig [2] founded the general concept of

linear programming (LP) including introducing
LP with uncertain parameters referred to as
stochastic linear programming (SLP). SLP was
described by Birge and Louveaux [1], and Kall
and Wallace [4].

In many realistic situations, the objective
coefficients c; &r€ not known with certainty.
This case mostly arises in resource allocation
problems, capital budgeting problems, and
project selection problems. Parks and Steinberg

Ul and Henig t3l described dynamic
programming to solve this type of stochastic
knapsack problem. Moreover, the weight
coefficients a1 ma\ not be known with certainty.
Pisinger [8] presented a knapsack problem with
stochastic weight. Furthermore, Kleywegt et al.

[6] and Kleywegt and Papastavrou [5] studied a
knapsack problem when both objective
coeffrcients c1 and weight coefficients a; are
stochastic. However, studying uncertainty in a
capacity b; is also important. For example, in a
capital budgeting problem, we may be faced
with the problem that there is a probability of
how much budget we wil l receive. ln a cutting
stock problem, it may have a variation in
standard length. ln a cargo loading problem,
when the truck has many customers to load the
items. And we do not know how many items
that the previous customers loaded into that
truck. Hence, the remaining capacity of the
truck is uncertain. In a carrying problem, there
are many persons that can carry the different
weights. And we do not know exactly which
one will carry the items at that time.

There are two types of random capacity:
discrete random capacity and continuous
random capacity. The studied problem is a class
of stochastic knapsack problem with discrete
random capacity.

3. Methodology
First, we relaxed the integer constraint of

SKPDRC and solve the relaxed problem
(SKPDRCR). Then we proposed a heuristic for
solving SKPDRC by using the optimal solution
of SKPDRCR as an initial solution.
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SKPDRCR is shown as follows.

.1 +(2 )  M in im ize . f  :  
/ r ' , x ,+  / (  p ,gu ,  +p ,hv , \
i = l  i = l

. s f
Subject to Lo ," , + u, - v, : b,

j = l

0 < x , 1 t

20,:,
where

x,  is  a decis ion var iable,  for  i  =1,2, . . . ,n ,

t, is an upper bound of x1 , for i =1,2,...,n ,

a, is the slack variable and l;- > 0, for

i : 1 , 2 , . . . , m ,

v is the surplus variable and v. > 0, for

i  = 1 , 2 , . . . , m  ,

a, is the weight coefficient of item 7 and

o . ,  ) 0 , f o r  j : 1 , 2 , " ' ' n '

c, is the cost coefficient ofitem 7 and

c ,  >  0 ,  f o r  j : 1 , 2 , . . . , n ,

b, is the capaciry ofalternative i, b,>0

f o r  i : 7 , 2 , . . . , m ,
p; is the probability of having capacity b1,

p ,  > 0 f o r  i -  1 , 2 , . . . , m ,

g is the per unit cost of having ui, g 2 0,
/r is the per unit cost of having vi.h>g.

Assume that  b,  3 b, , , ,  for  i  =1,2, . . . ,m-1,

c .  c
and --L < --r ' '  , for j --1,2,...,n-1 .

a .  a
I  l + l

The following theorem proves optimality of
the results obtained by the proposed algorithm
for SKPDRCR.

There exist four cases that are the following:

Case I: the optimal solution is as follows.

x ,  =0 ,  Y j

v '  =0 '  V i

u,  = b, ,  Y i

where :L > g
al



Proof

.l-
u ,  :  b ,  -  

L o  , r  ,  +  v  .  i  : 1 . 2 . . . . . n
i=1

Next is to substitute basic variables into the
objective function as follows.

. + \ 4 , +
|  =  / c , x , + g L p , ( b , -  / a , x , + v , l

/ = l  i = l

. , s a+ n  )  D v .
4 ' t l

s a  ,  \ - .= s >  n . h . +  >  ( { ' + h l n v
o L / r i " i  z J \ 6  

" ' r .

l = l  i = l

s a .  s - l
+  >  l c  - s a  >  D  l x

?  l  u  1 4 r t  1

s- , \-1 .= g L p , b , + / \ 8 + h ) p , v ,
i = i  i = l

*trc, -  ga, lx,
J = l

The minimum value oflfcan be found when
all reduced costs of nonbasic variables are
greater than or equal to zero. In this case,
nonbasic variables are x,forall j and

v, for all l. In order to obtain the minimum

value of f the reduced costs of these nonbasic
variables must be greater than or equal to zero as
follows.

1 .  ( C  +  h ) p , 2 0 ,  Y i

2 .  ( c  - s a  ) > 0 . V j.  
I  a  t '

Since g,h> 0 and p, > 0for all i ,

(g + h)p, > 0, for all i. To minimize /,
(c, - Ea,) > 0, for all 7 must be greater than or

c
equal to zero, that is equivalent 1s -1 > g for all

d.i

c .  c
j. According to the assumption ' I ''' 

,
aj a j*,

for i =1,2,...,n- l, the condition for this case is

C.- 2 g . In this case. the minimum value of /
a1

s
l s g  )  p . 0 . .

i = 1

Case II: the optimal solution is as follows.
x  = t , , y j

.r-
v ,  =  / . a , ! , - b , a n d u , = 0 .

j = l

, +
u ,  :  h , - / a , l  , a n d v , = 0 .

j = t

w h e r e  B ,  = { t = 1 : m ' . b  > i o l , } ,
' l = l

.:-
B r :  l i  : l ' .  m :  b ,  <  / a , t , l

C s-=r I  p -h>p,
a n  i e R t  i e l )

i e B ,

i e B ,

Proof

r  = t  - r  . Y i
t l

r  ) O  V i
I '

u,  = b,  - i t l , * io , r ,  +v, ,  i  e  B,
l = t  J = l

, +  +v , = - b , + L o , l  , - L o , r ,  + u , .  r e 8 2
. l = L  l = l

Next is to substitute basic variables into the
objective function as follows.

.i- -1
" f  . l r , t t  - r , l + g l n , f t , - \ a  t ,  t l a , r , + v , \

J=t  ieBt  t= t  j= l

+ hl  n,v *  hf  p t -b * io, ,  ,  - io , ,  *  u, l
teBr  ieB.  j= t  i= l

* gtp,u,
i€8,

=t, , * s't  p,tb, -\a,t ,)
i € B  t = l

+ hl r ,Gb,+la,t ,)
i e B 2

s r .  s . .+ / ( s + h ) p v  * L ( s + h ) p , u ,
i eBt  ieB2

+ . 4
+ ) t - c + s a ) D - h a F p t r

L l '  
- i  o - ' ; / J r i  - - ' ' / 2 r ! t ' l

i eB-



In this case, nonbasic variables are

v, for I e B, u, for i e B, ar.d r, for all i . ln

order to obtain the minimum value of f the
reduced costs of these nonbasic variables must
be greater than or equal to zero as follows.

1 .  ( g +  h ) p , > 0 , Y i

$ +2.  ( -c ,  + ga,  L p,  -  ha,  L p, l  zu.  vJ
i eBt  i€B)

Since g,h > 0 and p,2 0 for all i ,

condition I has been met. To minimize f
A - a

1-c, + ga,lo - ho,l r) for all 7 must be
i eR l i .B,

greater than or equal to zero,that is equivalent to

c .  +  - +J< gLp,-hLp, for allT' According to the
A 

i  ieBt  ieBz

c L .

assumpt ionl  !L ,  for  7 = 1,2, . . . ,n-1,  the
a  j  a , n t

condit ion for this case is Lrrio,-r io,.
an ieBt  ieB.

In this case, the minimum value of / is

-i- !- -!-

lc ,t , + sL p,@, -la,t,) + hl r,(b, +la/ ,).
i eB.
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k e {1, . . . ,n ]suchthat  la , t ,  <boand

f o , , , .  b n .  l f  i a , r , <  b ,  t h e n
J = t  j = 1

k : n .

Proof
Suppose k and q have been specified:

- g
- f  ( q l  = L r , r , +  c t x t  +  L ' , * ,

q l  q - l

+ sLp,u, + hl n,v
i = l  t = l

* s i p u  * t f  r , , ,
i = q + l  i = q + l

+gpnur+hpnv ,  ( l )

Let,
x  :  t , ,  i  = l ' . ' . , k  - l

I  1 ' "

( b n  -  u n  *  r ,  - � | . o , * ,  -  i  o , r , ,

a,

. ,  \ - r
( b  - u - + v . -  )  a . l

q c q - t j

+-  >  a x  I
4 t l '

i eB j

4,.

Case III: the optimal solution is as follows.

x , = t , ,  i = 1 , . . . , k - l
k l

b  - f  a rq ?

^ k  -

0,.

x i = 0 ,  i = k + 1 , . . . , n

v '=  bo -b '  and  u  =0 '

i  = 1 , 2 , . . . , q  - l

un= 0 and vn =0

u , = b , - b n  a n d  v  = 0 '

i = q + l , q + 2 , . . . , m

where
q e {1,...,m\ such that:

c,  i3 
q- l

( -a+  sLp , -  nLp , )  >  0  and
Ak i=q i=l

r -3-
t \ * h Z p t - c > ,  p , ) > o

Ak i= l  Fq+ l

:  b o - b , + u  - t 4 q + v q ,

i  = 1 , 2 , . . . , q  - l

, s a:  D i  + v , -  L A  j X j - A A X k

k - l
sr sa

v :  >  a x . + a . x . +  )  a x
t 4 t 4

j = l  j = k + l

l l
sr
4 t l

i=1

+ u  - b ,

(bo -un , - t  oo)t+ v  -
q

*ar

+l o,*

4,.

+ u  - b

- L o,,,



- clk

- 2 o,*,
j = k + l

: b - b + v + u - v .
r  q  t  q  q '

i = q + l , q + 2 , . . . , m

The next part is to substitute basic variables
into equation l. Thus equation I becomes:

&- l

.f (t) =1",t,

(bo -un *r, -f o,t, -

In this case, nonbasic variables are
x ,  f o t  i = k + l , k + 2 , . . . , n , u ,  f o r  i = 1 , 2 , . . . , q - 1 ,

, f. i=q+l,q+2,...m,uoufrvn.In order to obtain

the minimum value of f the reduced costs of
these nonbasic variables must be greater than or
equal to zero as follows.

c, -a,
l . c , - Y  > 0 .  j  = k + l , k + 2 . . . . , n

" 
clk

2 . ( C + h ) p , > 0 ,  Y i

r  3- q- l

3.  ( -a+ sLp, -  h l t , \>o
ak i=q i=l

r J -
4 .  ( L + n l n , - s I  p , ) > o

ak i= t  Fq+ l

From assumption, 
ci 

aci" , for
ai Qj*t

j  =  1 ,2 , . . . . n  - l  t hen  ,  - ' - oo i ,  g  f o r
' 

ctk

j  =  k  + l , k  +2 , . . . , n .  S ince  g ,h>  0  and  p .  >  0

for all l, condition 2 has been met.

q l

To min imize  f .  t -L*s }p  -n \n , l
a* i=q i=l

and (a+ nip,-sip,)must be greater than
Ak l=l  i=q+l

or equal to zero. Therefore, we select q such
that:

q - l

eL* sLp -tt ln)> 0 and
ak i=q r=l

( t *n in , -s i  i l>0 .
Ak l- l  i=q+l

We also select fr. tf iat,<bo, then:

k = n . Otherwise, select ft from i"l, = bo and
j=1

-!-

L" l ,>Dr. In th is  case,  the min imum value of  /

k l
, s a= 0 , + v , _  L a , x ,

J = l

( b  - u  + v
q q

-Zo,', - sa
)  a x  I

I a,x,)
j = k + l

+ )
j=k+l

q - l

+r!' " / - /
j - l

* ' $' o  
/ -

i = q +

*h i

q - \

+ BZp,r,

, ,  s r
t - t  

( b q -  
L a / , l

: Z r / l , + c ^ L
j=t Clk

q - l

+ hl n,(bo - b,) + gl r,@, - b,)
l = l  1 = q + l

* i r,, -Tr*,* i,, + h\p,u,
t  A - l  u k  t = l

g c n q - )
+  |  l s  +h )p ,v ,+ ( -a+  sLp , -h l r , )u ,

i=q+l Ak i=q i=t

+(L+nin,_-st 0,r,,
Ak i=l  i=q+1

(bo

,(b,

.v. )

I

n (

D .
' l

P'

+

t

q - l

,t' - l - /

j - l

q - l

t
Z-/ )
j - l

t
Z-/

t = q  + l

s
L

- b . + u  - u  + v  \
q  q '

- b + v + u - v \
q  t  q  q '

+ SPnuo+ hpovo



t b  _ � l a t  t
k . t  q  4  I  t  {  I

i s ) c ,1 ,  t  ( t L  +  h l  p , f t n  -  b , )
u t t

t = l  
u  

t  t - l

€-
+g ). p,(b, -hn ). Thus. the theorem is proven.

Case IV: the optimal solution is as follows.

x  = t . ,  i = 1 . . . . , kt l

r  = 0 ,  i = k + 1 , . . . , n
k

v ,= \a , t ,  - b ,  and  u ,  =0 ,
' l = l

i : 7 , 2 , . . . , Q
*

ut :  b,  ->,a,t  
,  and v,= 0,

l = l

i = q + t , q + 2 , . . . , m

where
q e {1,...,m1 such that

, ' ^ ' * r f , - o i , t > o
Q l . t  i = l  i = q * \

ke l l , . . . ,n l  suchtha t  Zo , r , rbo  and
i = l

k

l a t  < b , '
' / = l

Proof
Suppose k and q have been specified:

k n q

f  (q) :2", ' ,+ l  ' , ' ,+ 8LP'u,
j - t  i = k + l  i = l

q n

+ h l  n ,v ,+c I  p ,u ,  +  hL  o , r ,
i = q + l  i = q + l

(2)
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k n

:  S - ,  *  T
L - , ' t  / - r a , X , + u ,  

- D , '

/ = l  . i = k ' )

, ' _ 1 , )
t  -  L . 2 . . . . . q

k n
, \ - \ -

u , ' b , + v , - L a i x i -  L o , x ,
i = l  i = k + l

k n
, s - \ -:  b i  + v , - L a l , -  L a , x , .

i = t  j = k + l

i = q + l , q + 2 , . . . , m

The next part is to substitute basic variables
into equation 2. Thus equation 2 becomes:

k n

. f  (q )  = l r , t  ,  +  Z  , , r ,+  sL  p ,u
i = l  j = k + t  i = l

q k
, \-  .s- ,  \-

+ h > D ( ) a . t - b + u + )  a x l
L / r  ' ' L /  '  2

i = l  j = r

+s t  pJb , - f ' ,  * ,  - f  o , r , t
1 = q + l

, tir
+n L p,v,

k q k

=2,  / ,+  h l r , ( la , t  i

+  gZ  p ,@, - l a , t , )+

.a
+  )  l e + n l p v

4 - "

i = q  + l

*  i  t , ' ,  * no f  p , - sa , i  o , r * ,
i = l  1 = q + 1

In this case, nonbasic variables are

x , f o r  i = k + l , k + 2 , . . . , n ,  u  f o r  l : 1 , 2 , . . . , q ,

4  f o r  I  =q+7 ,q+2 , . . .m .  I n  o rde r to  ob ta in the

minimum value of f the reduced costs of these
nonbasic variables must be greater than or equal
to zeto as follows.

- f i )

s . .
>  ( s + h l p u

4 - "

t = l

, ' _ 1  l -
a  t .  , - 1 . . , , . n

t t .

k n
sr sf

v t :  L o t x t +  L a t x
i = l  i = k . l

l .  ( g +  h ) p , > 0 ,  Y i
q ! _

2 .  ( c ,  +  t t a , l  n  -  so ,Z  p  )>0 .
j = l  F q + l

j = k + l , k + 2 , . . . , n

Let,

+ u  - b



Since  C ,h>0  and  p ,20  fo r  a l l  i ,

condition I has been met. To minimize f
q n

sl sr( c ,  +  ha , ) . p ,  -  ga ,  ) -  n , \ f o r  i  =  k  + l . k  *2 . . . . . n
t = t  i = q + l

must be greater than or equal to zero that is

c .  . q  L

equivalent to 11+ hln, -  e> p,)>O for
A  

i  i = r  i - q + l

j  =k+1,k+2,...,2. According to the assumption

c .  c
t < t + l

a  4 . .

c .
for this case is 1lJ-r . .  n\  n,  -  sZ p l ,  o

A  k * t  i = l  i = q + l

Therefore, we select k and q such that :

c , ,  . * s -  i l  
t

( ' o '  +  n Z p , _ � s L  p , ) > 0 .  l a , r ,  > b ,  a n d
ar* ,  t= l i = q + l  i = l

L" / ,. 4., . In this case, the minimum value
j = l

k q ks  ' s  \ - - r  - A to f  . l  f s  L c t t , + h / p , ( 7 _ - , . ,  - ; ,
j = l  i = l  J = t

n k

+gl p,@, -la,t,). Thus, the theorem is
i = q + t  i = l

proven.

At this point, the optimal solution for
SKPDRCR is reached. Next is to propose a
heuristic for solving SKPDRC.

The flow chart of a heuristic for SKPDRC
is shown in Figure 1.

In this study, the proposed method is
developed for SKPDRC and written in
MATLAB software as an M-file program and
compared with a general purpose method using
LINGO software. An experiment is conducted
by varying m and n and the elapsed time and
solutions obtained are collected and compared.
All computations are tested on a PC notebook
with Pentium M. 1.6 Ghz and 512 MB RAM.

c, ,a. i , t . i  ,  for  j :1 ,2, . . . ,n ,  is  generated wi th

uni form[0,10] .  b ,  for  i  =1,2, . . . ,m,  are

generated with uniform P.f a ,t, ).
I = l
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pp,
p , : - f L  w h e r e  p p , .  f o r  i : 1 . 2 . . . . . m .  i s

lnn,
generated with uniform [0,1]. g and h are
generated with uniform[0, I 0].

4. Results and Discussion

Table 1 The average computing time of general
purpose method using LINGO when r and m are
varied.

Table 2 The average computing time of the
proposed method when r and m arc varied.

Table 3 The percent error between general
pu{pose method using LINGO and the proposed
method when ri and m are varied.

Remark: N/A means that LII.{GO cannot solve
the studied problem of srze (n,m) .

n

average computlng tlme

(excluding parameter generating) (sec)

m:  100 m:500 m: 1000 rr : 5000

100 0.0769 0.53 85 t.301'1 29.1538

500 1.0'769 3.4615 9.7692 t63.46t5

I 000 5.4706 10.3077 21.6923 608.4615

5000 t22.07t4 r 2 8 . r 5 3 8474.7692 N/A

n

average computlng tlme

(excluding parameter generating) (sec)

m - 1 0 0 m:500 lz - 1000 m:5000

100 0 . 0 1 1 5 0.0584 0 .1172 0 . 9 t t 7

500 0.0865 0 .3  816 0.7746 3.9164

1000 0.233 0.8872 2. t07 | 8.5669

s000 4.591 20.1234 38.8557 198.3927

n

averaqe percent error

m - 1 0 0 m:500 m - 1000 n - 5000

100 0.00087 0.00014 0.00005 0.00003

500 0.00016 0.00004 0 0

1000 0.00004 0.00004 0 0

5000 0 0 0 N/A



According to Tables I and 2, the average
elapsed time of the proposed method is shorter
than the average elapsed time of the general
purpose method using LINGO. Moreover, the
percent error between the proposed method and
the general purpose method using LINGO is very
small as shown in Table 3. However, the general
purpose method using LINGO cannot solve the
studied problem when m and n are very large,
e.S.  n=5000 and m=5000.

5. Conclusion
A heuristic method for a stochastic

knapsack problem with discrete random capacity
has been developed and compared with a general
purpose method. The results indicated that the
proposed method is faster than the general
purpose method. However, the general purpose
method using LINGO cannot solve the studied
problem when z and n are very large, e.g.
r = 5 0 0 0 a n d z = 5 0 0 0 .
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Figure I Flow chart of a heuristic for SKPDRC


