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Abstract
Dispersed bubbles in a liquid slug are investigated by theoretical and computational methods. The

size ofa dispersed bubble is varied to gain the knowledge how it affects the trajectory ofthe dispersed
bubble in the region around the Taylor bubble nose. Considering the translational velocity of the
dispersed bubble, the results show that a small dispersed bubble tends to penetrate into a Taylor
bubble, whereas a large dispersed bubble tends to turn away from a Taylor bubble.
Theoretical analysis explains that the phenomenon is mainly controlled by the terminal
velocity of the dispersed bubble, which is high in the case of a small dispersed bubble.
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1. Nomenclatures
l.l Characters
a Radius of sphere
D Pipe diameter
f Volumetric fraction
g Cravity acceleration
I Coordinates index (2, r, A
k Turbulent kinetic energy
n Bubble number per unit volume
P Static pressure
R Radius in spherical coordinates
r Radius in cylindrical coordinates
S Surface
I Time

t ^
V Tota l  ve loc i ty .  lu_ i_+u, i ,' l

z Yertical distance in cylindrical
coordinates

1.2 Symbols
p Added mass coefficient
e Dissipation
p Viscosity
f, Volume
0 Angle in spherical coordinates
p Density

1.3 Superscripts and Subscripts
0 Initial
B Bubble
d Drift

Dispersed bubble and Translational velocity

e Effective
G Gas-phase (or Bubble)
Z Liquid-phase
starl Start position
stop Stop position
ter Terminal

2. Introduction
Pipelines in engineering applications

usually contain gas-liquid mixtures. Under
proper conditions, slug flow occurs. Typically,
slug flow is known as a succession of liquid
slugs separated by elongation bubbles (Taylor
bubbles). For simplicity, slug flow is often
studied by being divided into a unit. One unit of
slug flow consists ol 3 important constituents.
i.e. one Taylor bubble, a falling film and a liquid
slug. Although the Taylor bubble seems like the
only bubble obviously noticeable in a slug unit,
there are, as well, many dispersed bubbles
suspended in a liquid slug. The dispersed
bubbles affect the characteristic ofslug flow, for
instance if the speed of dispersed bubbles is
slower than the speed of the Taylor bubble, they
will be merged into the Taylor bubble, resulting
in the expansion of the Taylor bubble.

Even though the existence of dispersed
bubbles is important, most computational
research considers slug flow as a purified liquid
without dispersed bubbles {e.g. Mao and Dukler

[2]]. A few works consider also the influence
of dispersed bubbles by considering them as a

+ uoiol
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void fraction in a liquid slug without regard to
their dimension {e.g. Bugg et al. l2l and Clarke
and lssa [a] ]. In this work, dispersed bubbles
are seriously investigated. The computational
algorithm, employed in this work, considers
both size and translational velocity of dispersed
bubbles, so that the pathline of such bubbles will
be clearly demonstrated. The radius of a
dispersed bubble (R6) will be varied to see how
it affects the trajectory of the dispersed bubble,
especially in the region in front of a Taylor
bubble, where a liquid-phase flow field develops
due to the presence ofthe Taylor bubble.

3. Computational Algorithm
The algorithm used in this work consists of

9 equations and is shown below:
A "
I  lp ,  [ ,dQ+ lpr . f  ,V,  nds = 0 (4.1)
o r 3  ;

. f  ,  =1 - . f "
A

: l -  ^ n R l n c  ( 4 . 2 )
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The continuity equation; (4.1), and the
momentum equations; (4.3) and (4.4), are
adjusted for goveming two-phased flow by
coefficient f., which is calculated by G.2)

The k-e equations; (4.5) and (4.6), look
similar to the one-phased model. The only
adjustment is the use of effective viscosity (4").
The dispersed phase can increase viscosity in a
flow system as presented in Ishii and Zuber [10].

The equation of bubble population

conservation is presented in (.4.1). The
meaning of the equation is that the number
of dispersed bubbles at inflow must be equal
to the number at outflow. This implies that
there is neither fission nor fusion of the

dispersed bubbles in the considered flow.
The last equations are the equations ofa

bubble translation motion; (4.8) and (4.9),

are used for calculating the translational
velocity of a dispersed bubble in z and r
directions, respectively. According to the
equations, the constituents, which affect the
motion of a dispersed bubble, are added
mass, pressure difference and drag.

4. Computational Setup
The computational domain covers the unit

of slug flow as shown with a gray shade in Fig.
5.1. In this work, axis-symmetric cylindrical
coordinates are exploited, due to the symmetry
around a pipe centerline of flow in a cylindrical
pipe.

For slug flows, most of the experiments use
pipes, whose diameters range from 20 to 100
mm. In this work, pipe diameter is chosen to be
50 mm so that it is consistent with the size of
pipes used in many experiments as shown in
Table 5.1. The length ofslug and Taylor bubbles
are also selected to be consistent with
experimental results from previous works as
shown in Table 5.1. Most of the experiments

revealed that there was a likely equilibrium size
for slug length but not for Taylor bubble length.
According to the information in Table 5.1, the
length ofslug and Taylor bubbles are selected to
be 15D and 5D, respectively. Although the
length ofTaylor bubbles is rather short, they are
long enough to prevent the effect of outflow,
which may affect the flow field around a Taylor
bubble nose.

The shape of a Taylor bubble is predicted
with the model proposed by Barnea [1]. The
advantage of this model is that it considers as
well, the influence of pipe wall friction.

l 5 D

i Region of'
i Interest
;
I

I

Figure 5.1: The schematic diagram of
computation domain, confined to the shaded

area.

In simulations, a Taylor bubble is
considered as a fixed object, obstructing flow in
pipe. Water flows toward-a Taylor bubble nose
with density of l000kg/m', absolute viscosity ol
l0-'Ns/m' and drift velocity calculated by:

u, ,  :0 .345. , [gD (5.1)

which is proposed by White and Beatmore

[17]. A no-slip condition is posed on the pipe
wall. A free-shear boundary condition is posed
along the gas-liquid interface since the gas
density and viscosity are much less than those of
the l iquid as explained in Bamea []. Along the

I  -  r -  - -  r ,

2oR,',  
p,6' , , \V,, - V r l lu,,,

lLt + o. l5 Rel"*, )
1 R t , '
|  0 .438

- u r , )

Re, < 1000

Reo > 1000

5D
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centerline of the pipe, a symmetry boundary
condition is posed.

On an inlet plane, the velocity is fixed with
the value calculated by (5.1). The number of
dispersed bubbles is fixed to satisfy the void
fraction of 0.26 fsee also (4.2)]. This is because
Mao and Dukler [11] have found that the void
fraction in a l iquid slug was 0.26-0.29 and Mi et
al. l14l have reporled that the void fraction was
greater than 0.15 in the l iquid slug. Referring to
Hibiki et al. [6], the radius of dispersed bubbles
ranges from 0-5.45 mm. Herein, the radius of
dispersed bubbles is fixed at two certain sizes,
namely 0.1 mm and 0.5 mm, to investigate how
the size ofdispersed bubble affects the trajectory
of the dispersed bubble.

Most of the variables' gradients are set to
be zero on the outlet plane, except pressure,
which is computed to satisty thc condition of
mass conservation and Drevent a backward
shock wave.

Table 5.1: Statistical Parameters of Gas-Liquid
Slug Flow along Vertical Pipes

References Pipe Slug Bubble
Dia. lensth lensth

Clarke and
Issa f4l

50 mm l0-46D 5-23D

discrepancy of mass flowrates across the
sectional area at any: is not greater than l%
between coarse and refined crids.

5. Results and Discussion
In this paper, the influence of dispersed

bubble size on the trajectory of the dispersed
bubbles is investigated. Since the trajectory of'
dispersed bubbles is investigated in the region
around Taylor bubble nose, the results are
shown in the region of interest (shown in Figure
5 . t ) .

Figure 6.1 compares l iquid-phase
velocity fields between 2 cases of different
dispersed bubbles, namely the left part
belongs to the case that dispersed bubbles
have a radius of 0.I mm and a right part
belongs to the case that dispersed bubbles
have a radius of 0.5 mm. It shows that the
difference between the 2 cases is not
significant. This is because the momentum
of the gas phase is much smaller than the
momentum of the liquid phase. Average
void fraction is as much as 0.26.

In contrast, the density distributions
between the 2 cases are obviously different. The
density is quite uniform in the flow field when
R6 eQuals 0. I mm, i.e. the density of a gas-liquid
mixture becomes as high as the density of the
purified liquid just within a narrow space
adjacent to the Taylor bubble nose. There is a
large space close to Taylor bubble nose where
the density of the gas-liquid mixture becomes
high when R6 eQuals 0.5 mm. The buffer region
where the density of the mixture is as high as the
density of purified liquid reveals that dispersed
bubbles cannot flow into this region. This can be
explained by gas-phase velocity fields illustrated
in Figure 6.2.

Vector plots on the left-hand-side of Figure
6.2 show the velocity field of dispersed bubbles
with 0.1 mm R6. Vector plots on the right-hand-
side of the Figure show the gas-phase velocity
field in the case that Rc equals 0.5 mm. It is
obvious that, along the centerline of pipes, the
velocity of smaller dispersed bubbles is faster
than that of larger ones. As a result, small
dispersed bubbles are more difficult to stop.
This can also be proven by theory. Along the
centerline of the pipe and at steady state, the
velocity of dispersed bubbles can be predicted
by integrating (4.8).

Mao and
Dukler il 31

50.8
mm

6.2D

Shemer [16] 24 mm 16.3D
Hout et al. 17) 24 mm

54 mm
- t 1 D

in24 mm
pipe

4-18.9D
in 54 mm

pipe

Hortt et al. l9l 24 mm t6.3D 6.3-28.6D

Flow around Taylor bubbles is predicted by
the computational algorithm presented above.
The algorithm is discretized by a pressure
correction scheme on a finite volume framework.
A cylindrical collocated grid system is used. The
technique called "Treatment of pressure" is
employed to prevent the problem of
checkerboard distribution. The no-slip condition
along the pipe wall is treated with a wall
function, which relies on a logarithmic velocity
profile and the equilibrium between production
and dissipation of turbulent kinetic energy. The
detail of the numerical algorithm can be found
in Ferziger and Peric [5].

Grid independence is assured by doubling
grids around Taylor a bubble until the
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Figure 6.1: Density distribution and liquid-
phase velocity field around a Taylor bubble nose
(a) R6 :0. 1 mm and (b) RG:0.5 mm [The vector
plots show only every sec'ond axittl location and

every /burth radius location.for claritl'.1

0.0'l 002

Figure 6.2: Density distribution and gas-phase
velocity field around a Taylor bubble nose

(a) Rc :0. 1 mm and (b) R-0.5 mm [The vector
plots show only every second axial location and

everyt.fourth radius location Jbr cl arity.]
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lf dispersed bubbles approach the Taylor
bubble nose with terminal velocity, the
magnitude of velocity is calculated by
neglecting the left-hand-side of (6.1).
Consequently, we obtain:

,  l R ; e p( u ,  - u ,  ) = - : " r ; " r
9 u, tz

2p,,R,lu,-" (6.2)
ltt

lf we assume that dispersed bubbles can
achieve terminal velocity very far from the
Taylor bubble nose (within the region
between point A and B in Figure 5.1),
liquid-phase velocity will equal u,1 and
pressure gradient will equal pLg. This
changes (6.2) to be:

2 R,2,p, s
l l . . -  .  . . .  = "  9  u ,

f  ,  , 1 0 . 6 8 7 1 1
r  r  z o ,  K .  t u . , _  -  u t : l  

l  |  ( 6 . 3 )
l l + O . l s l  -  |  l
L t. ltt .) )

The equation above implies that the
magnitude of u6.. depends on R6, and it reaches a
maximum when Rc is zero.

The consequent question is whether or not
dispersed bubbles can achieve terminal velocity

[ ' . 0  
'  ' (

-'l- u , l
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before they reach point B in front of the Taylor
bubble nose as the previous assumption.
Therefore the distance needed for achieving
terminal velocity is to be estimated by re-
ananging (6. 1) as:

tz = -pp,ft.ui,, - u  )

- u

Then, substituting pressure gradient with

p1g, and assuming that the liquid phase is fully
developed in a liquid slug. This is true when a
liquid slug is long enough.

t - l

A2,,, : -Flri,.,, - ul.., l  lg + \u,,- - u, -)

f  ,  , 1 0 . 6 8 7 l l  
I

2 / , ,  . l  , *0 . ,  , f2p,R, , lu , , - -u , ,1  I  l t2 p , R i L  t  F  l  l l
-  (6.4)

With (6.2), (6.4) and approximatTnflr6-.-
tt1.) - 0.5(u1;,.tet.-Ltd), we will be able to calculate
u6, p, &rrd A2,",. as shown in Table 6.I .

Table 6.1: Terminal velocity and distance
needed to achieve the tetminal velocity of
dispersed bubbles with different R6; s.

Rc; U(;..tn, Lz,u, Re s.u,
(mm) (m/s) (m) .
0.1  0 .225 0 .73x10 '  3 .3  I
0 .5  0 .128 3 .33x10 t t 4

Note: Let 1t6,11:t14.

It is clear that dispersed bubbles can
achieve terminal velocity since A2,,,,. is much
shorter than the length of a liquid slug (see
Table 5.1), consistent with the assumption. In
addition, Table 6.1 shows that the terminal
velocity of a small dispersed bubble is
approximately 2 times larger than that of a large
dispersed bubble. This agrees well with the
simulation results in Figure 6.2. Faster terminal
velocity tends to push a small dispersed bubble
to flow toward the Taylor bubble nose before
the bubble stops very close to the nose. The
distance needed for stopping a dispersed bubble
may be predicted. However, before predicting
the distance needed for stopping a dispersed

-  n , r l , l \ * . *u (;,

bubble along the pipe centerline, it is necessary
to estimate the pressure gradient along the pipe
centerline in the region close to the Taylor
bubble nose. Referring to the work of Mao and
Dukler [12], the geometry in the front of a
Taylor bubble nose looks like a sphere. The
conventional velocity functions for flow around
a sphere thus, are exploited.

/ 2 3 \

t ! ,  =  L t , l  t - a . o r ' o + ! . s i n ' d ]
I R ' � 2 R ' )
( 3 o '  ^ )

u , . . = - L t , l  -  ,  S l n a c o s a  I"  " l 2 R '  
)

in which, R and d are spherical coordinates
as illustrated in Figure 6.3.

Figure 6.3: Flow around a sphere (radius:a)
and the coordinate system.

In the case that we consider only liquid-
phase velocity along pipe centerline (&0), we
obtain:

u r , : 0

The pressure gradient in the liquid around
the sphere can be calculated by using the
momentum equation of steady inviscid flow.

I  p r u  t . y  r  . n c l J

f ^ :  |  , ^= - J r r , . . n d J  +  ) P , E a s z  
( o . / )

s { )

Using divergence theorem (6.7), this
leads to:

/  - \
lp ,Y  . lu , .V , l i tdQ

G:p
p

2prR,,2+lr+o rs[
2 R:,1 (

t)""1]

, , r=-rr?,-k) (6 .5 )

(6 .6 )

o

6 l
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estimated by substituting (6.11) and (6.12)
into (6.1).

" A P  I=- l+ , to+  lp ,g -dQ
6 0 2  6

dP, ( du, .1, 
a" " \

^ : prs_ p,t__:__L*y!+o I to.al
o z \ o z o r )

Since we have known that, along the pipe
centerline in front of a Taylor bubble nose, R' -

(-z')2, the gradients of velocities products in
(6.8) can be determined by employing (6.5) and
(6.6) :
^  /  , ) o ,
ou tzu L:  :  -6rr , l  t+  ! -  l -

I  t i  I  t 4
o z  \  z  ) z

@r,ozfo r; * r +s[r . &){t -)

- - Rz p,cl,. r +[r . :;1*]-
lu", \,2ptRos [  (

-  u ,  |  1 +  0 . 1 5 12 - l  ( ,
(u", - u,,)tt

Fr )""l
(6 e)

o u t u t ,  - g  ( 6 . 1 0 )
Ar

Moving the origin of the coordinate system
in Figure 6.3 to the nose of Taylor bubble so that
it will be consistent with the coordinate system
in Figure 5.1, (6.9) becomes:

^ / : \ lO u r . u r .  = - 6 u r , l l +  
a  

, l  
o  

, ,  ( 6 .  l l )
0z 

" 
\, l t - o)' )\, 

- o)"

Substituting (6.10) and (6.11) into (6.8), we get:

AP, ,( . q' ) o'
^  : P t 4 + i P L u J l l + - r -
uz r .  ( r  -"1 )(r-"Y

Using (5.1) to determine ua, and approximating
that D x 2q , finally we get:

A P .  l r ' � \ ' a l
? = p,g l  t+  l .a l  l+- -  i -  

l ,  
"  

' .  I
0 z  L  \  l z - a l ) \ z - q )  )

-(6.r2)

The equation above states that a pressure
gradient in a liquid around a sphere is a function
of z. The maximum pressure gradient is
approximately l.3pE, occurring at z=-0.2a. The
second term in parentheses on the right-hand-
side of (6.12) decreases to be 0.1 at z:-0.9a
(-0.45D) and 0.01 at z:-2.5a (--1.25D). This
agrees well with experimental results, which
demonstrate that the influence of the Taylor
bubble is detectable in the liquid slug only at a
distance closer than lD from the Taylor bubble
nose. {Hout et al. l8l, Bugg and Saad [3],
Polonsky et al. ll5ll

The distance needed for stopping a
dispersed bubble along the pipe centerline is

@o, -ur,)l
According to Figure 5.1, point B is

assumed to be the last point where a
dispersed bubble can maintain its velocity to
be terminal velocity, before the velocity of
the dispersed bubble starts to develop, due
to the presence of the Taylor bubble. This
probably assumes that point B is located on
the position where z : -2.5a, since the
influence of Taylor bubble on a pressure
gradient is only 1%o of the gravity effect as
predicted by (6.12). Assuming that at z:-2.5a,

2 2
U Gr-rtort 

= u Gr-,", '

Mstop = -p\o -rto,.*,)

( l  |  1 ) o .  lj l t + t . + ( r * f \ l + * l * l g
lL  \  ( -3 .sr ] ( -3 .s) - .1

t  , - , . 0 b 8 ?
Q  t t  |  _ (  2 p , R , . \ u , . - - u , . 1  \

+ '  * t . l l + 0 .  1 5 1  
- r L  a t u :  L z t l

2p,R'oL l .  t r t  )

M,n,p : -FQ?,,.,,.n -,

{['.' -o . ofr.

*2 o,  " l r*0. ,
2 prR;L
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Mrtnp = fu'o..u,

{ t .ot+g

(6 .13)

Substituting uG,,,",, R(; from Table 6.I and
assuming that (tX;,-ur) : 0.5(u6,.1",-ul), (6.13)
gives:

Lz,,,n - 4.66 mm for R6 - 0. I mm, and
L,2,y,,1,: 1.26 mm for R6: 0.5 mm.

That is, the discrepancy between the 2 cases
is 3.4 mm, while the simulation results in Figure
6.2 shows that the discrepancy of L2,,,,, between
the 2 cases is approximately 4 mm. Hence (6.13)

underestimates Lzu,,r, but still gives results in the
same order of magnitude. The equation shows
that the distance A;.,, mainly varies with 46,,,o,.,
which is high for small dispersed bubbles,
resulting in long A2.,,,,,. This explains the reason
why small dispersed bubbles can flow closer
toward the Taylor bubble nose than large
dispersed bubbles.

6. Conclusion
l. Small dispersed bubbles tend to

penetrate into Taylor bubbles, whereas large
dispersed bubbles tend to tum away from

Taylor bubbles.
2. The trajectory of dispersed bubbles

leads to a buffer region in front of Taylor

bubble noses, where dispersed bubbles
cannot penetrate inward.

3. The size of buffer regions is resulted
from:

3.1 Terminal velocity of dispersed bubbles,
3.2 Gravitational acceleration.
3.3 The trajectory of liquid phases,
3.4Drag on dispersed bubbles.

However, the first constituent is the most
imporlant for bufler size.
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