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Abstract

We present in this paper a prototype optimization model for generating continuous move plans for
the large-scale truckload pickup and delivery problem. Our model matches truckload moves for a
given set of origin-destination (OD) pairs, allowing continuous moves of trucks (i.e., multiple and
sequential pickups and deliveries) when possible.
describe a solution algorithm based on the column generation technique. We test the model on large-
scale problems with more than one million variables. Computational results show impressive runtimes
and significant reduction of empty-haul distances, which translates to major saving in fuel and other
operating costs as well as reduction in pollution released to the environment.

We present a set partitioning formulation and
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1. Introduction

Truckload (TL) transportation is a mode of
land freight transportation, in which each truck
picks up goods from an origin, transports, and
delivers all goods to a destination without mid-
route pickups or deliveries. From a given set of
origin and destination (O-D) pairs, transport
planners determine first the best route for each
O-D pair, and later assign trucks to these
predetermined routes. The problem of
determining the best assignment of trucks to O-
D routes is referred to as the Truckload Pickup
and Delivery Problem (TPDP) and is typically
cast as an assignment problem, where trucks are
assigned to routes or lanes such that all lanes are
covered and transportation costs are minimized
(or other objectives achieved).

With each head haul move of the truck,
goods are transported from its origin to its
destination and revenue is generated. Without
goods, the truck moves an empty haul, in which

only costs are incurred and no revenue generated.

If attempts to secure a transportation order from
a destination location back to the location where
that truck originates are unsuccessful, the truck
will run an empty haul. These empty hauls
represent a serious problem for truckload
carriers, the trucking industry, as well as the
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country’s economic system, as each empty haul
does not generate any economic values.

The scale of the problem in Thailand is of
serious concern. According to the statistics
compiled by the Department of Land Transport
{7], almost 690,000 trucks in the kingdom
account for more than 89% of nationwide freight
movements. Together they make over 71.7
million trips, covering more than 12,145 million
kilometers and consuming over 3,470 million
liters of fuel annually. It is projected that 46%
of truck movements in the kingdom are empty
haul moves, which equates to 33 million trips or
5,587 million kilometers of empty haul moves,
translating to over 1,596 million liters of fuel or
22,538 million baht lost per year. This is a
major economic loss for the country, especially
in the current situation where fuel prices have
skyrocketed. The Department of Land
Transport’s statistics also note that over 160,000
tons of pollution is released to the environment
directly as a result of empty haul moves. The
Department of Land Transport estimated that a
decrease of 1% in empty haul moves will lead to
a total monetary saving of over 720 million baht
and a pollution reduction of 2,488 tons per year.
Thus, empty hauls are a serious problem which
need immediate attention.
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A few remedies to the empty haul problem
exist, e.g., back haul moves and continuous
moves. In back haul moves, carriers secure
goods for transporting back to the initial origin,
thus making the back haul move a revenue and
value generating move. In continuous moves,
attempts are made to match multiple truckload
pickups and deliveries to one truck in sequential
order such that the prior delivery is made before
the next pickup in the sequence. The benefit of
continuous moves derives from the overall
reduction in empty haul distances. Careful
planning can ensure that the relocation of a truck
from the prior delivery location to the next
pickup location will minimize the overall empty
haul distances for the entire network.

In this paper, we focus our attention on
finding optimal routes for the continuous move
problem, using a large-scale mathematical
model. We employ the set partitioning
formulation and devise a solution algorithm
based on the column generation concept to solve
quickly large-scale problems with over a million
variables.

1.1. Contributions

Qur contributions include:

1. apply advanced operations research
techniques to solve the large-scale
continuous move plan problem,

2. design specifically for the problem, a
column generation based solution
algorithm, and

3. implement and test the model using
large-scale data sets.

1.2. Paper Organization

We give the formal description of the
problem in Section 2. In Section 3, we review
related literature and present a set partitioning
model for constructing continuous move plans
for large-scale truckload pickup and delivery
networks. A solution algorithm based on the
column generation technique is later presented
in Section 3. Our implementation details and
test results are shown in Section 4. Sections 5
and 6 contain discussions and conclusions of the
findings and insights.

2. Problem Description
In this section, we begin with a detailed
description of the problem. Next, we formalize
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the problem statement and detail our

assumptions.

2.1. Definitions and Terminologies

A truckload trip, t” , is defined by its origin
i el and destination j € J , where / and J are

sets of origins and destinations respectively.
The exact route that a driver may take to deliver
goods from i to j is predetermined. This can be
done using any shortest path algorithm to
achieve a pre-specified goal of minimizing
distance, time, fuel consumption, or any
combination thereof. Each truckload trip is
followed immediately by an empty haul move

back to its origin. For each truckload trip t,
we compute the trip cost, ¢/, which may include
fuel, driver, maintenance, depreciation costs,
and other relevant cost items for the entire
journey, including the empty haul return trip.
(Note that we can easily change the objective of
our model from cost minimizing to other
objectives by changing the terms associated with
each truckload trip here. For details see the
discussion in Section 5.)

A continuous move (c-move) Irip, p, occurs
when two or more truckload trips are
Wi

sequentially combined. That is, if trips #*/ and

" are combined, a c-move trip p will require a
driver to (i) deliver goods from origin i to
destination j, (ii) make empty haul move to a
new origin i, (iii) pick up goods from origin i
and deliver them to a final destination j,, and
(iv) return to the initial origin i,. The exact
route a driver may take from the prior
destination to the new origin is predetermined in
a similar manner to that of the head haul
truckload trip. For each c-move trip p, we
compute its cost, ¢,, which includes (i) the
summation of the costs (excluding those
associated with the empty haul return trips) of
all truckload trips included in p, (ii) the costs of
empty haul relocating trips from the prior
destinations to the new origins, (iii) the costs of
empty haul return trip from the final destination
of the day back to the initial origin of the day,
and (iv) other ¢-move specific costs that may
exist.

2.2. Assumptions
We assume the following in this paper:
1. daily operation,
2. deterministic truckload trip demand,



Thammasat Int. J. Sc. Tech., Vol. 11, No. 4, October-December 2006

3. no delivery time requirement, and

4. fully combinable truckload trips.

We only consider a daily operation, in
which all trips are planned for one day of
operation in order to enforce and simplify truck
location requirements, which dictate that all
trucks beginning the day of operation at an
origin i must return to that origin by the end of
the day. The second assumption excludes
stochastic and dynamic considerations. This is
justifiable as the model that we propose is meant
as a planning tool, not as an operational tool.
The third and fourth assumptions allow us to
consider more alternatives in creating ¢-move
trips. It is easy, however, to relax these two
assumptions as detailed in Section 5.

2.3. Problem Statement

The Continuous Move Planning Problem
can be defined as follows:

Given a truckload distribution network
comprising of origins, destinations,
predetermined routes connecting the origins
to/from the destinations along with the costs
associated with each route, and truckload trip
demands over the network, find the cost
minimizing continuous move plan satisfying all
truckload trips demanded.

3. The Model and Solution Algorithm
In this section, we describe our model in

details. We begin with relevant literature review.

Next, we move on to explain the notations,

present  the  formulation,  discuss its
characteristics, and describe the solution
algorithm.

3.1. Relevant Literature

There are two major approaches to solving
vehicle routing problems: heuristics and
mathematical programming.  Heuristics are
often employed to solve large-scale vehicle
routing problem because of their ease of use and
quick solution time compared to those of
mathematical programming approaches. There
are many heuristics one can use to suit specific
problem specifications.  Examples include:
Clatk and Wright [5], Kinderwater and
Savelsbergh [9], and Renaud and Boctor [11].
Even though heuristics are easier to use, their
drawbacks are often the inconsistent quality of
the solutions.
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Recent advancements in  computing
technology have enabled researchers to build
and solve many previously intractable large-
scale optimization problems. The vehicle
routing problem also receives a lot of attention
due to its wide applicability. Many models have
been proposed for different variations of the
problem. See, for examples, Fisher [8], Toth
and Vigo [12], and Bramel and Simchi-Levi [4].
A majority of the literature in this area focus on
ways to reduce the complexity of the problem or
improve the solution time by introducing
various techniques such as cut generations (to
improve the effectiveness of the search in the
branch-and-bound tree), column generations (to
reduce the size of the problem), or both column
and cut generations, in which case the full scale
implementation becomes branch-and-price-and-
cut, which is highly complicated and has not
been shown to solve effectively large-scale
problems.

In this paper, we introduce a mathematical
programming formulation for solving a vehicle
routing problem, but do not rely on the
traditional solution approaches. Instead, we
introduce a heuristic solution algorithm that
guarantees optimality within a finite number of
iterations. The remainder of this section details
our approach.

3.2. Notations

We summarize and present all notations
used below to facilitate our discussion of the
model in the next subsection.

Variables

is the number of times a c-move trip p is
used, or, equivalently, the number of
trucks making the c-move trip p.

is the number of trucks beginning the day

X

P

i

n at an origin /.

Parameters

¢, isthe cost of a c-move trip p.

, is the daily cost of using a truck from an
i origin i.

S50 is the number of times“a c-move trip p
P covers a truckload trip #*.

a equals 1 if a c-move trip p begins the day

P atan origin , 0 otherwise.
is the number of demanded truckload
trips from i to j .
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is the number of trucks available at the

N beginning of the day at an origin i.

Sets

P is the set of c-move trips, indexed by p.

I is the set of origins, indexed by i.

I is the set of destinations, indexed by ;.

0 is the set of origin-destination (O-D)

pairs, indexed by ij.
Note that in order to simplify the notations used, a
single truckload trip is defined as an elementary c-
move trip using the same notation p (comprising of a
single truckload trip).

3.3 Model Formulation

Our Continuous Move Planning (CMP)
Model is:

Min Zcpxp + Zr’n'

peP iel (1)
Subject to:
o,x,=T"
peP (2)
VijeO
Za’ﬁxy -n'=0
v ! 3)
Viel
.xp >0 and @
integer
<n' <N'
‘ 0<n <N and (5)
nteger.

3.4 Model Characteristics

Notice that the CMP model presented in
Formulation (1)~(5) takes the form of the set
partitioning model, in which the truckload trips
between a given O-D pair have to be covered the

exact required number of times ( 77 ) by the
optimal combination of c-move  trips

(Z/)ep 5/’{ x, ). Modeling the Continuous Move

Planning Problem using the set partitioning
formulation has a potential drawback in that the
number of possible c-move trips grows
exponentially with respect to the number of O-D
truckload trips. In the extreme case, one has to
enumerate all possible combinations of the
required O-D truckload trips to get the complete
set of possible c-move trips. Consequently, the
model’s size and complexity become intractable,
and brute force attempts to solve these large-
scale problems can be computationally
prohibitively expensive.
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We employ three column elimination
measures, exploiting certain problem
characteristics, to help eliminate infeasible and

redundant columns in our CMP model. These
include:
I. removing c-move trips with total

distance exceeding the daily maximum
allowable distance,

2. removing c-move trips containing more
O-D truckload trips in a single c-move
trip than demanded for that O-D, and

3. removing redundant c-move trips

originating from the same origin and
containing the same truckload trips but
in different order.

The first and second measures aim to
exclude infeasible c-move trips from the model.
The third measure is used to remove redundant
columns. Note that if delivery time assumption
is relaxed, we need to modify the third measure
to ensure delivery time requirements are met,
which may positively or negatively affect the
effectiveness of the measure depending on the
requirements put in place. Section 4 shows the
combined effectiveness of these measures in our
computational tests. Lastly, note that these
measures do not affect optimal solution quality
as they do not completely remove any feasible
solutions from the problem.

3.5 Solution Algorithm

Despite the column elimination measures
described in the previous subsection, the total
number of columns in the CMP model is still
very large for reasonable size, real life problems
(see Section 4). It is, therefore, necessary to
employ an advanced solution algorithm to solve
the CMP model. In particular, we devise a
solution algorithm based on the column
generation concept.

Column generation i1s a methodology for
solving large-scale linear programs (LP),
especially those with a large number of columns.
It first removes a majority of the columns from
the original problem (called master problem or
MP) to form a restricted master problem (RMP).
The necessary requirement for the columns to be
included in the RMP is that they are sufficient to
form a basic feasible solution. Once a proper
RMP is constructed, the first iteration begins by
solving the RMP to optimality. Next, shadow
prices from the optimal RMP’s solution are used
to compute or “price” the reduced costs of the
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excluded columns. If there exist columns with
reduced costs that can improve the solution,
those columns are added to the RMP. A new
iteration begins. This process continues until no
more columns are generated, at which point the
algorithm terminates with optimal solution to
the original Master Problem. There are many

Start

Construct
Master Problem (MP)

variations of column generation
implementations. Interested readers are referred
to Ahuja, Magnanti, and Orlin [1] or other
advanced operations research texts for a proof
and a more thorough review of the technique.

A

Solve LP Relaxation of MP

\ 4
Construct
Restricted Master Problem (RMP)

Y

Branch-and-Bound ¢
MP’s
LP Relax Bound No »

Add columns

+
Yes

New columns
generated?

Price columns
{Check reduced costs)

A

Achieved?

Yes

optimal node of the last B&B to get

Resolve LP Relaxation of the

shadow prices

Column Generation

( Stop }«

Figure 1: Solution Algorithm for the CMP Model

When column generation is applied to
integer programs (IP), a much more involved
process, called branch-and-price, in which
columns are generated inside the branch-and-
bound tree, is used. The problem is made much
worse in large-scale problems (Barnhart, et al.
[2D. In this paper, we devise an effective
heuristic for solving large-scale integer program
with column generation. Figure | depicts our
algorithm. The algorithm calls for column
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generation outside of the branch-and-bound tree,
thus, simplifying the implementation efforts and
computational requirements.

We first construct the full master problem
(MP), in which all columns are explicitly
included. (Column elimination measures may
be employed to reduce the MP’s size.) Next, we
solve the MP’s linear program relaxation (LP
relaxation), in which all integer requirements are
relaxed to obtain an LP lower bound of the
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problem. We next construct the restricted
master problem (RMP) by including (i)
elementary c-move trips and (ii) all non-zero
columns from the MP’s LP relaxation. This
proves to be an effective starting point for the
CMP model. We now attempt to solve the RMP
for the first time in branch-and-bound to get an
[P optimal solution. The optimal solution
obtained is optimal with respect to the RMP, but
may not be optimal for the original MP because
a great majority of the columns have not been
considered.

Next the algorithm checks whether an
optimality ~ condition—an  acceptable  gap
between the IP solution obtained and the MP’s
LP relaxation lower bound—is achieved. If this
pre-specified gap is achieved, the algorithm
stops and the optimal solution is obtained. The
economic justification for using this gap as an
optimality condition is, that even though there
may exist columns that can further improve the
solution, we do not need to consider them
because the current solution is sufficiently close
to the lowest possible bound on the objective
function value. The technical justification for
using this gap as an optimality condition is, that
from our computational experience the lower
bound obtained from the CMP master problem’s
LP relaxation is a tight bound, ie. it is
reasonably close to the optimal integer solution
of the CMP master problem. Padberg [10] notes
that the LP relaxation to a special class of set
partitioning problem that has a perfect 0-1
matrix produces a tight bound. Although our
constraint matrix is not a perfect 0-1, our
computational testing has shown a similar
characteristic, that is, the CMP master problem’s
LP relaxation bound is tight.

If, however, this optimality condition is not
satisfied, we enter the column generation
process. The next step is to fix variables in the
optimal solution of the RMP and resolve it as an
LP to obtain dual information. In particular, we
need dual prices or shadow prices to compute or
“price” the reduced costs of the excluded
columns. (Readers are referred to standard
operations research textbooks (e.g., Bertsimas
and Tsitsiklis [3]) for more information on
computing reduced costs from shadow prices.)
If negative reduced cost columns exist, it
implies that the current solution might be
improved by adding these negative reduced cost
columns to the RMP. In our implementation, at
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each iteration of the column generation process,
we explicitly price excluded columns and add
altogether a pre-specified number (e.g., 5,000)
of negative reduced costs columns when we find
them.

If, in an iteration, negative reduced cost
columns are found, they are generated, i.e.
added to the RMP. Then the algorithm repeats
by solving the expanded RMP (i.e., the RMP
from the previous iteration with added columns)
in branch-and-bound to obtain an optimal
integer solution (with respect to this particular
expanded RMP). The MP’s LP-bound gap is
then checked; if it is not satisfied, more columns
are priced and added if necessary. The process
continues by adding more columns at each
iteration to the expanded RMP—without ever
removing any columns from the expanded RMP.
The column generation process ends when no
negative reduced cost columns are found, at
which point the algorithm terminates and the
optimal integer solution to the original MP is
found.

The algorithm will terminate in a finite
number of iterations because (i) the MP’s LP-
bound gap is achieved, (ii) no negative reduced
cost columns are found, or (iii) all columns are
generated and the expanded RMP reverts back
to the original MP, which can be solved using a
simple branch-and-bound algorithm.

4. Computational Results

In this section, we present our
computational testing. The implementation is
done in Visual C++ on a PC with Pentium IV,
3.06 GHz, and 2 GB memory. We use the
SYMPHONY framework and CLP linear
programming solver (COIN-OR Projects [4]) as
our callable library.

4.1. Data and Model Characteristics

Table 1 shows the different characteristics
of our test data. Data Set | is obtained from an
actual transportation service provider. It
represents a small portion of their full operation.
Data Sets 2-7 are derived from Data Set 1 using
actual locations of origins and destinations in the
provider’s network. The number and locations
of truckload trips are manually generated for
testing purposes. Maximum allowable distance
for c-move trips for Data Set 1 is 600 km, for
Data Sets 2-3 is 800 km, and for Data Sets 4-7 is
1,000 km per day.
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Due to confidentiality reasons, the cost
function employed in the objective function for
this exercise is not an actual cost function of the
transportation provider, but a general cost
function comprising of variable costs (e.g., fuel,
wear and tear) and fixed costs (e.g., depreciation,
per trip charge). It should be noted that the
actual figures used in this cost function does not
affect the validity of the test or results shown in
this paper because all comparisons are done on
the same cost basis. If this cost basis is changed,
all results will change accordingly in a similar
direction.

From Table 1, notice that as the size of the
problem increases, the number of rows increases
at a relatively linear rate, but the number of
columns grows much more quickly at an
exponential rate. Table 1 also shows the

Table 1: Data and Model Ch

performance of the column elimination
measures, which are relatively effective for
small size problems, but for large size problems
these measures are only able to reduce about 1%
of the number of columns. By contrast, the
RMPs constructed for use with our column
generation based solution algorithm are much
smaller than the original MPs. Note that for the
same problem instance, there are the same
numbers of rows in MP and RMP.

In the next two subsections we present
results from solving the CMP model without
and with column generation to demonstrate (i)

the benefit of using the CMP model in
constructing ¢-move plans, and (ii) the
performance of our solution algorithm,

respectively.

1 4 14 14 46 10 210 165 18 70
-2 I 9 47 51 222 25 2,652 2,495 60 242

3 9 51 76 326 30 5,852 5,469 85 365
EEE.AE

4 9 129 225 303 80 50,850 50,360, 234 1,025

5 9 77 315 1,278 80 99,540 99,345 324 1,490
6 9 166 900 3,368 250 810,900] 803,249 909 4.114
7 9 166 1,494 6,756 400 2,233,530F 2,215,091] 1,529 6,903

4.2. Solving CMP Model’s Master Problem
Table 2 shows the results from solving the
master problem  without using column
generation and compares them to the results
from manual planning. It is difficult to construct
reasonable manual plan for the purpose of
comparison in this exercise as the quality of the
manual plan depends very much on the
planner’s experience and we do not have the
transportation provider’s actual c-move plan for
these data sets. The manual plans used,
therefore, are simple O-D truckload trips, which
give overestimates of the empty haul distances.
From Table 2, the operating cost saving
range from 10% to over 25% and the reduction
in empty haul distances ranges from 20% to
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almost 60%. The reason for variations in these
savings derives from the differences in the
underlying network structure and in the demand
instance. Despite using overestimates of the
empty haul distances in the manual plans, the
results strongly indicate that significant savings
can be gained from using an optimization model
in the continuous move planning process,
especially in large size problems where manual
planning is certain to be far from optimal.
Although the cost function used in this test
is not the actual cost function from the
transportation provider, we take care in
formulating our own cost function.  The
approximate average truck operating costs come
out to be between 8 and 9.5 baht’km, a
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reasonable range for total operating costs per km.

Notice now the scale of the operating cost
savings from using the CMP model. The
savings are on the order of hundreds of
thousands of baht for small to medium size
problems (Data Sets 1-3).  For large size
problems (Data Sets 4-5), the savings exceed |

million baht per day, translating to over 250
million baht savings per year. The saving
estimates are compared to the case where no c-
move trips are manually planned, but even when
taking that into account, one can clearly get the
sense of the benefits of the CMP model.

Table 2: Results from solving the CMP’s master problem compared to manual plans.

84,090 73,115

Empty Haul (km)

4,644

1 3,225 0.1
2 485,210 384,900 21 28,238 15,998 43 0.2
3 714,450 586,520 18 41,964 26,474 37 0.3
4 1,693,190, 1,247,950 26 99,499 35,969 64 20.0
R |
5 2,018,000 1,811,665 10 105,305 84,712 20 313
6 6,865,380 5,203,310 24 399,825 166,823 58 101.0
7 13,512,880 * * 784,136 * *| > 64 hrs

* No integer solution obtained after 64 hours.

In terms of runtime, the model solves
relatively quickly—Iless than one minute, for
small and medium size problems. For large size
problems, the solver takes anywhere from 20
minutes to a few hours. For very large size
problem (Data Set 7), however, the solver fails
to reach an integer solution after 64 hours. Note
that in all instances, the optimality gap of less
than 0.5% is achieved.

4.3. Solving CMP Model

Generation

Results from column generation are shown
in Table 3. The values in the “diff.” column are
differences measured against the results from
the CMP model without column generation
(Table 2). In all instances, the operating costs
and empty haul distances from the CMP model
with column generation are within less than 1%
of those of the original CMP’s master problems.
That is, the quality of the solutions is
comparable to that from solving the CMP’s full
size master problems without column generation.

The benefits of our column generation
based solution algorithm as displayed in Table 3

using Column
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are the significant runtime reduction (Data Sets
4-7) and the ability to attack very large,
previously intractable problems (Data Set 7). In
small problems, the saving in the runtimes is
negligible because the column generation
process is more complex, but for large problems,
however, the runtime reductions become very
significant (up to 98% reduction). Observe as
well that we are now able to solve the largest
problem a (Data Set 7) with over 2.2 million
columns, which was previously unsolvable after
64+ hours, in approximately 80 minutes.

The benefits of using column generations
derive from the ability to reach optimal or near
optimal solutions by considering correctly only
fractions of the total number of columns. Table
4 shows different statistics of the test. All
instances were terminated after at most four
iterations by achieving the optimality condition
set by the master problem’s LP relaxation lower
bound (Table 4). Observe that as the problem
grows, our solution algorithm considers
proportionally smaller sets of columns (from
25% for Data Set 1 to only about 1% for Data
Set 7).
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Table 3: Results from solving

0.00%

the CMP model using column generation.

Run Times (Min)

0.00%

73,115

3,225

1

2 385,030 -0.03% 16,016 -0.11%) 0.2 0.0 0%
3 586,650 -0.02% 26,470 0.02% 0.3 0.0 0%
4 1,248,860 -0.07% 36,056 -0.24% 0.4 19.6) 98%
5 1,812,195 -0.03% 84,750[ -0.04% 2.5 28.8 92%
6 5,204,655 -0.03% 166,486  0.20%) 20.5 80.5 80%
7 10,401,490 * 349,350 * 80.5 * *

* No integer solution obtained after 64 hours.

Table 4: Clumn Generation Satisics

1 165 41 25% 0 0.00%
2 2,495 477 19%) 4 0.05%
3 5,469 857 16% 4 0.04%
4 50,360 3,976 8% 4 0.12%
5 99,345 4,405 4% 2 0.00%
6 803,249 21,933 3% 4 0.03%
7 2,215,091 28,770 1% 3 0.03%

5. Further Discussion

We now revisit the model’s assumptions
detailed in Section 2 to discuss means to relax
them. The daily operation assumption is easy to
relax. The potential pitfall of considering more
than one day of operation is in losing the
tractability of the problem quickly as the c-move
trips are extended. The deterministic truckload
trip demand assumption makes sense for
planning purposes, but if we were to use this
model in operational settings, where demands
are stochastic and dynamic, additional research
would be needed to develop a stochastic and/or
dynamic model. The assumptions on delivery
time requirements and fully combinable trips
can be relaxed readily. If there are delivery time
requirements, we can easily capture those
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requirements in the way we construct our c-
move trips (columns). In fact, with those
requirements, our choices will potentially be
more limited and hence the number of columns
will be reduced, making the problem even
smaller. Similarly, introducing restrictions on
which trips cannot be combined with other trips,
will limit our choices, and hence reduce the
number of columns, and ultimately the model’s
size.

Another element that is worth mentioning is
the objective function. In our test, we assume a
cost minimization model, but if the goal of the
transportation provider is different, the objective
function can easily be modified to capture
complicated revenue/cost/profit functions.
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6. Conclusion

Even though empty haul moves arise
naturally from the imbalance of trade or freight
movements within the transportation network,
they are a serious problem for Thailand, as the
economic figures in Section 1 show. In this
paper, we focus on a transportation management
solution to the problem.  Specifically, by
intelligently combining two or more truckload
trips into a sequential continuous move trip, we
can reduce the empty haul distances. Applying
this seemingly simple concept to the entire
network can lead to significant overall savings,
but as the network size grows, the problem
quickly become intractable as the sheer size of
all possible combinations of trips become
prohibitively large. Due to the size and
complexity issues, a special solution algorithm
is needed. We develop and test the CMP model
using our column generation based solution
algorithm in this paper. We demonstrate that
our approach can be applied to very large scale
problems without losing tractability.

The actual monetary benefits of our
approach clearly depends on the scale of the
operation of the transportation provider and the
demands, but our test have shown that an
operating cost saving between 10% and 25% is
achievable with our CMP model. Our ballpark
calculation translates this to over 250 million
baht per year for a large size operator with 1,000
to 3,000 truckload shipments per day. Apart
from the monetary benefits, the reduced empty
haul distances translate to less fuel wasted
(positively impacting the overall economy of the
country) and consequently less pollution
released to the environment.
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