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Abstract
In this paper a class of hybrid dynamical systems with non-uniform continuous state space is

discussed as a framework for modeling the modularity of system structure. A hybrid model is

formulated to represent structure modifications in the form of state jumps among state spaces with

different dimensions. A basic problem in the field of system theory is addressed: well-posedness

analysis (existence and uniqueness of solutions). The necessary and sufficient condition for well-

por.dn.., is derived for a class of bimodal systems. The condition can be verified in the form of

.onu.* feasibility problems, hence tractable. Examples are provided for better insight with our

concept.
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be modeled as hybrid dynamics by relaxing the
common assumption about the dimension of

continuous state space. Provided that the re-

initialization of continuous states is properly

defined, the relaxation is quite natural because
each continuous dynamics can be defined
separately from others. This idea motivates us to

consider a class of HDSs whose continuous
portion is composed of multiple subsystems of
which some may be added or removed during
the time span of interest. We refer to such
systems as modular dynamical systems in the

sense that system dynamics change according to

each alteration of structure (state space) in the
form of component/module attachment or

detachment. The notion of modularity enables us
to model several interesting phenomena, e.g.
component breakdown and hot-swap of modules,
which are forbidden in the conventional
framework of system theory.

In this paper, we investigate the dynamics
of module attachment/detachment on the aspect
of well-posedness. Well-posedness of a

dynamical system denotes the existence and
uniqueness of its solutions from any given initial
conditions. Contrary to continuous systems
which require only Lipschitz continuity, one has
to simultaneously verifo the existence and
uniqueness of both continuous and logical
solutions in the case of HDSs. Existing results

1. Introduction
Hybrid dynamical systems (or HDSs for

shortl are dynamical systems comprising
mixtures of continuous dynamics and logical

decis ions.  Such systems ar ise in  many

applications with respect to the embedment of
logical devices or heuristic rules. Examples are

behavior-based robots t1l, intelligent
transportation systems [2], biological systems

[3], to name a few. Recognizing the demand of.
analysis/design tools, the theory of HDSs have
become an active area of research in recent
years, see [4, 5] and references therein. The
study of HDSs in the freld of system theory
tends to focus on three system classes, namely
switched HDSs t6l, impulsive dynamical
systems [71. and linear complementarity systems

[8]. These system classes are distinguished from
each other due to different definitions of

discontinuous dynamics. lt is of particularly

interest that these system classes assume the

uniformity of continuous state space, I'e.
continuous state space is unique and limited to
n-dimensional real-valued space.

As one of the pioneer works in the field of
HDSs, Branicky proposed the model of general
HDSs [9] as a unified framework which captures
various aspects within hybrid dynamics' It was
mentioned in his work that failure situations can



on well-posedness analysis of HDSs are mainly
contributed by Imura [6] for switched systems
and van der Schaft 18] for linear
complementarity systems. Their results proved
conditions for the existence and uniqueness of
hybrid solutions by predicting the infinitesimal
future of hybrid states at the instant of logical
transition.

The paper is organized as follows. Section
2 introduces a hybrid model for a class of
modular HDSs of which each component is
added or removed according to region-based
rules. After the solution concept is given, the
well-posedness property is defined as the
existence and uniqueness of hybrid solutions in
Section 3. Then the necessary and sufficient
condition of well-posedness is derived in
Section 4 for a class of bimodal HDSs based on
geometric requirements in the form of
lexicographic inequalities. To fulfill the issue of
tractability, we provide a tool which transforms
the well-posedness condition to a family of
convex feasibility problems. An example is
provided in Section 5 for better understanding of
our results.

Throughout R' and Z' denote Lhe n-
dimensional real-valued space and the set of n-
dimensional integer vectors, respectively. We
use the following notation for lexicographic
inequal i ty :  for  xe lR. ' ,  i f  for  some i ,  x ,=0;

j = 1 , 2 , . . . , 1 - 1 ,  w h i l e  r , > ( < ) 0 ,  w e  d e n o t e  i t
b y  x > ( < ) 0 .  M o r e o v e r  i f  x = 0  o r  x > ( < ) 0 ,
we denote it by x > (:) 0 . We use the font style
4,8,...,2 to refer to variables representing sets,
spaces, or subspaces. Accordingly, we use set
operations including \ as set minus, c as subset,
and Q as empty set.

2. Modular Dynamical Systems
In this section, we describe a hybrid model

which represents a class of modular dynamical
systems derived from the definition of general
HDSs  [10 ] .

2.1. Dynamical Systems with Non-uniform
State Space
Based on notations in the general hybrid

model, an HDS with non-uniform state space
can be classified as a continuous-time-unifbrm.
c-Euclidean. d<'ountable HDS, which is
denoted by a 4-tuple:
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H n [o,r ,J,c]  r t l

where E cZ is a set of logical states.
I=lf, l.._ is a collection of constituent

dynamical systems. Each f.. e[X-.t, f.] is a

dynamical system with X, c R"' its continuous

state space, 'lf c IR* its time set, and ./, its

vector f ield. J - 1J,,1r." is a collection of jump

( )
sets "l l_ q,\_, L =ic l_ _ ls a set ol Jump

transition maps g;:-ll. r+ [-'),,.- X, " E .

The behavior of such dynamical systems
can be described as follows. The system is
assumed to staft in some hybrid state
(r (O), f r )eXrn "E,  then evolves a long le 1 l

with respect to the vector field .f,,,. Whenever

its continuous state violates a prescribed region
J;,, - XEo at the event time r , the logical state

or mode is transitioned from €u to €, regarding

gr" (x(r)) such that f. becomes active.

Accordingly, the system state ("r(r),f. ) is

pro jected to the new state ( i (  ,  1 .1, )e X- ,  r3.

Then the system continues evolving in X. with

respect to the vector field ./, . Since each X, is

not assumed to be equivalent for all ( e E, the
addition/deduction of components/modules can
be formulated in the form of state jumps among
state spaces with different dimensions.

2.2. A Hybrid Model of Modular HDSS
Given a collection of M LTI subsvstems

l n  I
l ' - t  1 , , . 1  1 1 ' '

i , , = n,,2,, lb ,, (2)

where a, €R''r 'x/"/ '  , zp €lR'"' , and b,, eR"', '

are its parameter, state, and bias term,
respectively. Let {a,r,. 

' .,a tr ', , } U. u family of

coupled parameters among LTI subsystems.
Suppose that the set E has N members or

modes. And let each f,, ; € eE be a

composition of distinct modules from



modules is given by :

f u ,  u " l [ * , ]  [ r . lu ' - ' : l  : ' . , 1 1  , l . l  , l  ( 3 )
Luo' u,, _lL*, _l Lb,, _l

tAr lr=i , . ,1 That is,  f ,  consist ing of q

( r  .  r )
w n e r e  ( a , , . D ; ) € 1 ( a / . D /  l l r : r  . r r  

i  t = t . . . . q

and a,,,i + .j are corresponding parameters from

{u , , , " ' ,u -  " ,  , }  Hence x1 i )  €  Rn:  where

n :=2 , ^ ,  ;  r e [ t , . . . ,M1  a re  t he  i ndex  o f

subsystems which exist in f,.

Let JI.u,; €,V e E be a halfspace :

, l  )
J . , : 1 * e  R ' '  l J , x + i  " < 0 J  G )

where J,, elR"' and ./.*r.R. Let JI.u, =O for

any mode 14 which can not be transitioned from

f in one-step, i.e. no edge from € to W
Consequently, we can define for each mode { :

the jump set JI. = LJ'..J,, and the space

X. = lR"' \ JI. .

We use subscript k; 0 < k ( cc to denote the
sequence of logical state within hybrid dynamics.
To map €o; €r-, , we suppose that logical

dynamics be governed by rules associated with
halfspace JL,:

€ t  . r = V  ; i f  x ( r ) e J " ^ r ,  ( 5 )

where l**, = r is the event time at which the

logical transition occurs. For each transition

from { to ty , the projection from space IR"i to

lR"" is represented by the re-initialization of

continuous states from x(i) € R'/" to x(') e IR'" .

* t u )1 r * )  =  g - ,  ( x ' i ' 12 ) )  t u f

where gi,jy :lR" D lR.x' The following

assumption is imposed on the dynamics of state
jumps to maintain the physical meaning.
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Assumption 2.1; For each logical transition,
we assume that the continuiQ of retained
conlinuous state is pre.served.

Assumption 2.1 can be interpreted as
follows. Let x,. be continuous states which

present in {* and f**, fo. some k > 0 . Then

x,(r) is continuous for all t e(1r,t*,.f where /*

and tr*, are event times of mode {* and (o*r,

respectively. In the following, an example is
given to illustrate how to model modular
dynamical systems with the proposed hybrid
model.

Example 2.1 Consider a large scale power
system consisting of q generators of which
system dynamics under decentralized control

|2l are given by

* . :  Ax+  BW(x )  (7 )

,  a  r  t ] t T
where x = 

[x; xo ] are slates oI Ll

I  t  r -17
generators.  W (x l  -  

|  r ,  tx  t '  wo (x )  l  are

generator  contro ls ,  and A:d iag(A, , . . - ,Ao) ,

B = diag(9r,"' , Bq) are their corresponding

parameters. Each generator which is given by
* . ' =A ,x ,  +4w, (x ) ;  i : 1 , . . ' q  s tands  fo r  t he  i "

node within the power system in which some
may be operated or shut down according to
prescribed conditions.

Suppose that A=2 and let the second

generator be operated if w,(x)>7, and shut

down  i f  w r ( x ) )7 ,  whe re  / t>Tz>0  Th i s

power system configuration can be modeled as

an HDS consisting of two modes F :),a,Fl

The dynamics of mode a and B are given by :

i =1 , x ,  + .B ,w ,  ( x , )  ( 8 )

[ o - l = [ ,  o l [ - - l _ [  B , u , ( x , ]  . l  
( e )

L i ,  l  L  0  r , lL* , .1  [B .u ; tx  .x ,  )_J



Figure. I A linite "",";;;; symbolizing the
activation and shutdown ofa backup generator

Figure 1 depicts a hybrid automaton which
symbolizes the startup/shutdown conditions as
two edges between modes a and B . Suppose

that the requirement for a second generator
before synchronization with the power system is
proport ional  to  x '  e .g.  x .=Goox, .  S ince the

state xr is apparently continuous, the dynamics

of state x, after de B is given by :

x r ( r ' )  =  G*ox , ( t )  +  6 r ( x )  ( 10 )

where dr(x) represents the influence of the

vector field of mode / .

2.3. Bimodal Modular HDSs
ln this paper, we consider a class of

b imodal  modular  HDSs,  i .e .  e=\a,p l  .  Let

two LTI constituent systems be f,, and f, :

where x, e ]R"' and x, e IR" . Let convex sets

J,, and J o:

J "  = { * ,  * 0  J x ,  > 0 } ,  ( 1 3 )

[t* 
.1 

I
" n ,  - l l  l + 0 l J x ,  < 0 f  ( 1 4 )

l lx '  - l  j

be jump sets associated with f" and I o

respectively, where -/ € R."n' . That is,

X "  = { " ,  * 0 1 - / x ,  < 0 } n { x ,  = O } ,  ( 1 5 )
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The origin of lR'' and IR''*" are excluded
from jump sets to withhold the concept ot
equil ibrium.

Suppose that the logical transition between
a and p is govemed by the violation of x into

i ts  corresponding jump set .  i .e .

The dynamics of x after each re-
initialization can be rewritten to comply with
Assumption 2.1 and strict causality as follows.

x l " i1 r . ,1  =  [ l

w h e r e  G € l R n , ' n , ,  L T = r ,  _ r , a n d

^ c lx l  l .  d ' * l  Lr '
o . ( x ( r ) ) =  - l  -  +  - l  - + " '

d t 1 , , , , . .  l l  d 1 ' 1 , , , , . .  2 l

is the incremental term of Taylor series
expansion corresponding to the vector field of
mode  { .

3. Well-posedness Analysis
Conventionally, the solution of a

continuous system is obtained by integrating its
vector field /(x) over the time of interest, i.e.

t

x(/) = r(0) + Jf 6G))dr , which is called the

Carathtodory equation. The Carath6odory
equation can be generalized for dynamical
systems with non-uniform state space by

determining their corresponding vector field f,

ofeach mode { ; I :0,...,ft , consecutively.

3.1. Solution Concept
Let x(r*,lo-,] denotes an interval traiectory

of continuous states between two successive
event times tk and tk,t with respect to a vector

field f, given by the right-hand side of(3):

o ,  - ] [ -  
. l *o l - , x ,  

' o ] . { [ -  l - o ]  r ro r
l L x ,  - l  J  [ [ x '  I  J

"  f a  : i f ( , = p . x ( r l e J ,  , 1 a \
t ^  : \ O  

: i f  { , = a . x ( r t e J "  
t t ' l

(  l 8 )

(  l e )

.r[:;l,l:il + 6., (x, ( r))

Il]"'"',', 
+ d,(x(r))[*1''(r- )-l

[ ' f '1' . ;-]=

( l l )

(  l2 )

x,  :  ,4 , ,x ,

[ * ] = [ ,  , , 1 [ - ] = , , f - l
[ i ,  ]  lA , ,  A"  ) l * , .1  L* ,1

l 0



wnere 6r  €5.

Definition 3.1 (Hybrid Solution) Given an
HDS with non-uniform state space and its initial
state (x(0),6r) e X,, x E Suppose that the

solution (x,{) of the initial value problem over

an arbitrarlt time period (0,71 can be expressed
as a sequence of interval trajectories

({x{r . , r ,J ,6, , ) , . . . , (x( r^ , r* . ,1 , {* ) )  where ro =0

und  r ^  t :T  .Then  the  sequence  ( t x t l , . l , , , ] . {  l )  . '

i =0,...,k , is said to be the hybrid solution with

respect to (x(0),60) over (0,T1.

For HDSs, the integration between
continuous and logical dynamics may lead to
several undesirable phenomena along the
evolution of time and the occuffence of events.
In the following, we give the formal definition
of the well-posedness properly discussed
throughout.

Definition 3.1 (Well-posedness) An HDS with
non-uniform state space is said to be well-posed,
if its hybrid solutions can be uniquely
determined with respect to an arbitrary initial
s tate (x(O), (u) .Xi ,  "E over  (0,a) .

To be well-posed in the sense of Definition
3.2, every hybrid solution of initial value
problem must satisfy two primal requirements:

l. The uniqueness of (x(1,,t,-,1,{) for all

i ;  i : 0 , . . . , k ; 0 < k < a .
2. The existence over infinite horizon.

Characterizing undesirable phenomena as
deadlock, nondeterminism, livelock and Zeno,
the following lemma gives the necessary and
sufficient conditions of well-posedness for a
class of modular HDSs described by our hybrid
model.

Lemma 3.1 (Undesirable Phenomena) Given cr
modular HDS o.f (2)-(6) whose hybrid solution is
erpressed as DeJinition 3.1. The HDS is well-
posed if and only if none of the following
statements holds.
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(20)

I. Deadlock: lt>O , next mode (r,, can not

be determined .from (x(tr),€r) i t**t1@

such that x(tr*r,tr*.1 does not exist.

2. Nondeterminism: 1k>0, there exist more

than one possible modes

6 r - , e { V , , . . . , v / , \ s E \ { f - }  ;  r > t  a t  t h e

eyent time tr*, such that (x(to*r,tr*r.f,€r*r)

is not unique.
J. Livelock: lk>0, one canJind an inJinitelv

possible j, j>k satis/ving €r=6i
l l , - ' r ' . . , 1 1s u p , , l l x ' ' ' - * " ' l l : 0  a n d

s u p * . , ( 1 ,  - / r ) : 0 .

4. Zeno: there exists ct real number p ;

o < p < a  s a r i s f y i n g  l i l | , i  o ( t ,  , - t , t = p .

Proof: Recall the notation ofjump set in (4), the

trajectory of x for a given €, is right-

continuous with constant vector field for all
te(t,,t,*rl . Hence the continuous portion of

each x( / , ,1 ,* , ]  ;  i=0, . . . , f t  is  wel l -posed due to

its Lipschitz continuity. Consequently, the
uniqueness of hybrid solution implies the

u n i q u e n e s s  o f  {  f o r  a l l  i  = 0 , . . . , k ; 0 < k < a .

It follows from the definition of deadlock and
nondeterminism that the number of possible

€ru are zero and r;r>l , respectively.

Mathematically, the existence , of a right-
accumulation point of event time' prohibits the
evolution of time such that no solution can be
obtained after the right-accumulation point.
Both livelock and Zeno phenomena lead to the
presence of right-accumulation points due to the
boundedness of infinite summation. Thus the
solution can not be extended to infinite horizon.
These conclude the proof of sufficiency. The
proof of necessity is straightforward by
assuming that no undesirable phenomenon exists.
And some of hybrid solutions are found which
are not unique or exist over infinite horizon.

The severeness of livelock phenomenon
comes as two aspects. For the mathematical

aspect, the problem Zi=,Qr.,u 
- to*,) is i11-

I A point r eT c_�lR is a right-accumulation

point of T , if there exists z, eT,ieZ- with

r ,< r  such tha t  r= l imr : .

l l

x(/*,r**,r = I o. o"" It 
=.""'.i'; t-t"'"']

I  l /  €  ( r ^ , l ^ . r j  )



posed because tk+ j-tk is infinitesimal for any

7 > 0 . For the practical aspect, a livelock
phenomenon consumes infinite computational
efforl for an endless mode transitions and
repetitive continuous states.

The Zeno phenomenon differs from
livelock phenomenon in the respect of how to
mathematically prove the existence of righr
accumulation points. It was investigated in [|3]
that dynamical systems which exhibit Zeno
phenomena are still well-behaved in physical
aspects. Since the Zeno phenomenon is very
hard to verify algebraically, this paper makes a
supposition that the Zeno phenomenon is treated
as a well-defined behavior in system dynamics.

Assumption 3.1:, A modular HDS is v,ell-posed
even it exhibits Zeno ohenomena in system
dynamics.

4. Well-posedness Condition of Bimodal
Systems
In this paper, we consider a class of

modular HDSs consisting of two modes as
described in Subsection 2.3. The following
lemma shows the deduction of Lemma 3.1 with
respect to limited system class.

Lemma 4.1 Consider a modular HDS expressed

fu, (11)-(18) The system is well-posed iJ'and
only if no livelock phenomenon exists in the
hvbrid solution regarding an arbitrary initial
state (x(O),(n) over l},a) .

Proof: Since the system class has only two
modes E =1",f |, every logical transition is

unique with respect to one possible jump set for
each mode. Then fi and Jr, are deterministic

for any k; 0 < fr < oo This guarantees the
absence of deadlock and nondeterminism
phenomena. According to Assumption 3.1,
undesirable phenomena in Lemma 3.1 can be
reduced to only livelock phenomena.

Consider the image of JI" in IR''*" and JI, in

R'' given by :
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The following statement shows the
necessary condition for contiguous loop
transitions from mode d, i.e.

(€r = a,€r-, = F,€0, = a) and

s u p * ( / r * 2  - / * * , ) = 0 .

*O (23)

Similarly, a contiguous loop transition from
mode p is possible if the following statement

holds.

{ z e R "  l z =

Let J, and JI, be the closure of "n" and

J r, , respectively. Since jump sets are

characterized by -/x, > (<) 0 , we conclude that
; - ;
J ,  oJ o +O and J o r - rJ , ,  +O hold regarding

to .11, and JI, . Accordingly, the verification of

(23) and (24) depends on the Taylor series

expansion term I  (x)  where xe"n,  {or  "Jr ,  ) .  In

the following, we briefly introduce the
application of lexicographic inequality for the
prediction of 6.(x).

Define a matrix W(J, A) as :

(2s)

where AelR.""' , .-IelR.r" , m<n is the
observabil ity index of pair (J,A) , i.e. W(J,A)

is of rank ru. Consider the trajectory of system
i = Ax within an area defined by

{;r e R'l"rr > O} . It follows from the definition

of lexicographic inequality and Ax:i that for
any .r satisfying W(J,A)x>O , one of the

following statements holds.
c  J x > O
o Jx =0 and - / i>0
o :

.  J x \ t t  = 0 ; i : 0 , . . . , m - 2 ,  J x \ ' " ) > 0 .

{, . m." '"' 
lr 

: " * d, (x), x . 3" } . .il',

x + d " ( x ) , x .  J r ) .  J ^  * O  ( 2 4 )

w(J ,A )=ll

t "  = { [ l ]€ rRn 'n ' ,1x ,  +o , rx ,  )0 ,x ,  =c" , ] t z r l

i, = {", e IR'' lx, + 0,Jx, < 0} Q2)

t2
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where x(') is the l"'-derivative of x. Hence

i f  x( r )  e \ r lJx>0f  sat is f ies l l r (J ,A)x(r )>0 ,

then there exists e > 0 such that

x ( r )e { ; l - l x>0 f  ;  V r  e l r , r+  e )  .  Tha t  i s ,  t he

infinitesimal future of r within an area defined
by component-wise inequality can be predicted
by the corresponding area defined by
lexicographic inequality.

Def ine lwo ut .ur  " i ' , ,  c . l .  and J,  c-  J  , , :

(27)

Suppose that  {o=d and x( l r , r )€JI" .  Af ter

4r e €*_, - B , it follows from the concept of

lexicographic inequality that if
.  ,  , 1 7

I  x , ( / ,  , l '  G x t ( ! r , ) '  ]  . J r .  t h e n  a  c o n t i g u o u s

l,oop transition u. .*p..rred by (23) occurs.

Simi f  ar ly  for  €,  -  n  wi th x ,  ( r*  ,  )  e  J , ,

Concerning mode transitions within "n" and "1I, .

we derive the necessary and sufficient condition
for the existence of livelock phenomenon as
follows.

Theorem 4.1 (Existence of livelock
phenomena) Given a modular HDS of (11)-(18).
the existence of livelock phenomena is possible

d' and only tf at least one of the .following
statements holds.

(2e)

Proof: Suppose that 4o = d and lx, (r)

sa t i s f i es  Jx , ( r )=0  andW(J ,A , , ) x ,  ( e )>0  such

that (o e €**t = B at time tr,,t = r. If (28) holds,

then

w ( [ J  o ] , , t ,  ) [ x , t r ,  , ) i  C x r ( r ,  r l ' ] '  :  o

such that a contiguous loop transition occurs.

S i n c e  x ,  i s  c o n t i n u o u s .  W ( 1  . 1 ,  , ) x , ( l ^ . r ) > 0

holds after the transition to 4r*, = a As a

consequence, an infinite sequence of contiguous
loop transitions occurs without any delay
between each loop transition. The proof for (29)
is similar, hence proves the sufficiency. The
proof of necessity is trivial by assuming some x
in which both (28) and (29) do not hold. Then
each loop transition is delayed by some finite
d > 0 due to x(/) e X" (or X, ) where

t  e l r , r  +  6 )  .

Note that the underlying concept of
Theorem 4.1 is general and does not depend on
the definition and number of jump sets. Thus,
one can easily extend Theorem 4.1 to more
complicated jump sets.

The following lemma shows the relation
between Theorem 4.1 and two necessary
conditions of contiguous loop transitions in (23)
and (24\.

Lemma 4.2 The following statements are true.
o lx€R''*" satisfiiing (28), then x satisfies

noth (23) and (24).
r lxeR'' saliqlving (29), then x satis/ies

both (23) and (24).
o Statements (28) and (29) are equivalent.

Proof: It is trivial that (23) holds for all

*. J , e.I , . Similarly, (24) holds for all

x . "I,, n J., . According to the continuity of

*, . JI,, (and JI, ), (28) and (29) state that x,

f  ,  , 1 r
and I  x i  C* i  I  must  l ie  wi th in "n, ,  and JIp .

respectively. These prove the first tyo

statements. Since -/x, = 0 characterizes both "ll"

and JIr,, the left-handed side of(28) and (29) are

equivalent to

JL- l  cx i  I  l x  e -n , ,  Io .n , ,  nJ , , .  and
l t - \

I  l t r  r  ^  r 1 1  ;  I

J*, lL*i Gxi _l e "n, f  n. l"  ̂  l f  " .  respectivelv.

Kegrouprng lwo sets 1x I  x  € .1, ,  ^  J"  i  and

{x lx e l, oJ r}, the third statement is proved.

Since each jump set is dehned as a

halfspace wirh respect to *, . .no and JI, are

hyperplanes which are characterized by

(26)" l  -  {* ,  lwtL , , t ,  )x -  o l" ( ' | ' ' ' - )

_ [  *  . ] t  , r [ -  l .o ]o": i [_,- ] l ' ( t ,  o l .A 
Lx . l  )

(28)
l [ x - ]  I

1Lo- l l -  
e'r" nlr ' '  

J^.r" 
+a

I  l t * , . ]  -  -  I

i -  l l o -  ) e I ' a l o l a r  
' + a

I J



xt :  Af(J)z,zelR' - r  where,A/( - r )  is  the nul l

space of -/ . Applying such characterization
with Theorem 4. l, we obtain the necessary and
sufficient condition of well-posedness in the
following theorem.

Theorem 4.2 (Well-posedness condition) For
a modular HDS desuibed by (ll)-(18), the
s))stem is well-posed if and onl1, if'there does not

exist any y €R'' satis/ying

where N-n:Jl(I).

Proof: It follows from Lemma 4.2 that both (28)
and (29) are equivalent and refer to the set of x,

sat is ly ing , . /x ,  :9  x ,  €.1"  and

|  * i  Gxi  I  e  J I , .  S ince (30)  and (31)  denote

respect ive ly  .1, ,  nJ, ,  and . i l ,  n .nr .  the absence

of y satisfying (30) and (31) implies that

livelock phenomenon does not exist. Then we
conclude from Lemma 4. I that the system is
well-posed.

To verify well-posedness property by
Theorem 4.2, one has to check if two sets
defined by lexicographic inequalities are empty.
We provide the following lemma as a tool for
proving that (30) and (31) can not be fulfilled by

r m ,  I

A N V  V € I K

Lemma 4.3 Given U eR^"' and Z e IRr"'
with an assumption that none of the row vectors
of U and V is zero. The set de/ined bv

lx e R'lux 20,Vx 201 is not empy) if the

following convex .feasibility problems are
feasible.

lz ,  e  IR ' ;  Urzr)  0, l r r2r> g

! 2 ,  e R ' :  U r 0 r z r 2 0 , V r l r z r 2 0  . 1 a \
. .  l ) z t

l z ,  e l R ' t ' ' :  L /  ^ 0 ^ z ^ > O . V ^ l ^ z ^ 2 0
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Proof: The proof is straightforward from the
definition of lexicographic inequality.

If any of the convex feasibility problems is
infeasible, then one can conclude that no x
satisfies the corresponding convex constraints

[14]. Therefore Lemma 4.3 provides a tractable
method for checking the emptiness of areas
defined by lexicographic inequalities. In
addition, the procedure can be efficiently solved
by optimization tools. Hence it is applicable
with (30) and (31) in Theorem 4.2.

5. Example
This section provides an example to show

the application of our results in well-posedness
analysis. Note that the given example belongs to
a system class which is more general than those
described by (l 1)-(18) in two aspects. First, the
system exhibits autonomous switching
phenomena corresponding to a different vector
field for each mode. Second. the definition of
jump sets includes a bias term in the form of
Jx2y . These illustrate the generality of our

results.
Consider a system with continuous-time

dynamics of modes a and B defined as

follows.
.  Mode  a :

i r  - 1

o  Mode  6 :

[ ; ,  I  [ -o. t  to 
- l [x, I

l l = l l l

L i , I  L  I  -0 . l J fx ,_ j
Each mode transition between a and 0 is

governed by the following rule:

"  - [ f  ' € r : a a n d x ' ) Y
: i * t - l a  

; f l : B a n d x , < y

The re-initialization of states rr and .r, for

each mode transition is defined by :

[x 
- l  

t r l  [ .  I
l ^  l = l ' l r  a n d  x  = f l  o l l  

'  
I

L*, I Ll_l 
'L*, 

_l

w h e r e  z , + 0  ;  i : 0 , . . . , k ,  k : m i n ( m , p ) ,

C, : null(U,') , f, = nu11(V,) ,

[ , ' l  l ' ' )
L r = l :  |  , a n d  , = l t  l

lu^) lv, )

W(J ,A , , )Ny  >0  (30 )

f  r 1
w (lL ol. .a, ) l  ̂  lx/y :  o (3 |  )

L u l

1 4



In the following, we consider the influence of

7, in three cases.

l. y > 0 '. we obtain from the definition of

jump set and dynamics of mode a and B
that :

- r  ):  =  t r
J r , . J , ,  t n e  p o i n t s  

{ [ z  r ] ' ]  a n d  \ y 7 .

respectively. Therefore J,, ni , is empty

such that (28) does not hold. Then we
conclude that the system is well-posed.
The simulation of the system with f :5

is shown in Figure 2.

Thammasat Int. J. Sc. Tech., Vol. I 1, No. 3, July-September 2006

6. Conclusion
In this paper, we have Presented the

necessary and sufficient conditions of well-
posedness for a class of bimodal modular HDSs.
Our conditions guarantee that every hybrid
solution of the system class of interest can be
uniquely determined over infinite time horizon.
An advantage of our results is that the well-
posedness condition can be reformulated into a
family of convex feasibility problems, hence
tractable and efficiently solvable. The illustrated
example indicates that our results can be easily
extended to cover broader classes of systems.

References

t1l Rotenstein, A.L., Rothenstein, A.M., and
Tsotsos. J.K.. Directed Behaviour-Based
Robots For Planetary Exploration, Proc. of
i -SAIRAS'03.2003.
Antoniotti, M., Deshpande, A., and Girault,
A., Microsimulation Analysis of a Hybrid
System Model of Multiple Merge Junction
Highways and Semi-Automated Vehicles,
Proc. of the IEEE Conf. on Systems, Man
and Cybemetics, 1997.
Belta, C., Habets, L.C.G.J.M., and Kumar,
V., Control of Multi-Affine Systems on
Rectangles with Applications to Hybrid
Biomolecular Networks Proc. of the 4lst
IEEE Conference on Decision and Control,
pp.534-539 , 2002.
Grossman, R.L., et.al. (Eds.), Hybrid
Systems I-V, Lecture Notes in Computer
Science Vo1.736, 999, 1066, 1273, 1567,
Springer Verlag, 1993, 1995, 1996, 1997,
1999.
Henzinger, T.A., et.al. (Eds.), Hybrid
Systems: Computation and Control, Lecture
Notes in Computer Science Vol.l386, 1569,
t790, 2034, 2289, 2623, 2993, 3414,
Springer Verlag, 1998, 1999, 2000, 2001,
2002,2003,2004,2005.
lmura J., and van der Schaft, A.J., Charac-
terization of Well-posedness of Piecewise-
Linear Systems, IEEE Trans. on Automatic
Contro l ,  Vol .45,  no.9,  pp. l600-1619,  2000.
Chellaboina, V., Bhat, S.P., and Haddad,
W.M., An Invariance Principle for Non-
linear Hybrid and Impulsive Dynamical
Systems, Nonlinear Analysis, Vol.53,
pp.527 -550,2003.

Van der Schaft, A.J., and Schumacher, J.M.,
Complementarity Modeling of Hybrid

J I "  = { " ,1* , .Y \

l ,  =i[ ] .11' ' r ' ' ,  'o]'  
l-*, -l '  I

It follows from G = I that i,, r:i ,,, und

l2l

l o f -

-.1)

2 .

x2 s nol delned lor xl < 5

Figure 2: Simulation with y:5 and

(",(0),6., ) = (o,o)

7 < o :  s ince i *  . 'J , ,  i r  { [z  z ] ' |  .  rhen

(28) holds. This indicates the presence of
livelock phenomenon corresponding to an

infinite transition between (y,") and

f i ,  , l '  .n \ .  Therelore we conclude that
\ r ,  

, t  , l

those systems with y<0 are not well-

posed.
y :0 : the points xr :0 and

[r, ",] '=[0 0]' are the equil ibrium

points of mode a and B . Thenthe points

lv \  and l lv  , l t l  .un be excluded f rom
! ,  ,  

[ L '  
' J  

)

our consideration. Therefore we conclude
that the system with y:0 is well-posed.

t i l

I4l

L " l

t6l

ttl

3 .

l 5

t8l



Systems, IEEE Trans. on Automatic
Control, Vol.43, No.4, pp.483-490, 1998.

t9l Branicky, M.S. , Borkar, V.S., and Mitter,
S.K., A Unified Framework for Hybrid
Control. Proc. of 33rd IEEE Conference on
Decision and Control, pp.4228-4234, 1994.

[10]Branicky, M.S., Studies in Hybrid Systems:
Modeling, Analysis, and Control, Sc.D.
Thesis,  EECS Dept . ,  M. l .T. ,  1995.

[l 1] Bemporad, A., and Morari, M., Control of
systems integrating logic, dynamics, and
constraints, Automatica, Vol.35, No.3,
pp.407-427,1999.

Thammasat Int.  J. Sc. Tech., Vol. 11, No. 3, July-September 2006

[12]J iang,  H. ,  Cai ,  H. ,  Dorsey,  J .F. ,  and Qu,Z. ,
Toward a Globally Robust Decen-tralized
Control for Large-scale Power Systems,
IEEE Trans. on Control Systems
Technology,  Vol .5,  No.3,  pp.309-319,  1997

[13] Johansson, K.H., Egerstedt, M., Lygeros, J.,
and Sastry, S., On the Regularization of
Zeno Hybrid Automata, System & Control
Let ters,  Vol .38,  No.3,  pp.141-150,  1999.

[14] Boyd, S., and Vandenberghe L., Convex
Optimization, Cambridge University Press,
2004.

t 6


