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Abstract

The selection of optimum process target has become one of the focused research areas to increase
productivity and improve product quality. Although the quality engineering literature contains a vast
collection of work related to this issue, a couple of questions still remain unanswered. First, a quality
loss function approach using conventional quality loss functions, such as step-loss and Taguchi loss
functions, has been extensively used to determine the optimum process target mainly due to
mathematical convenience. When historical data concerning a customer loss associated with product
performance are available, a quality loss function using a well-established statistical method, such as
regression analysis, may be a more practical alternative procedure. Second, many researchers have
carried out their studies based on a single quality characteristic. From the customer’s viewpoint,
however, products are often judged based on more than one characteristic. To address these questions,
this paper first develops a multivariate empirical loss function based on historical data associated with
product performance and its associated customer loss and then proposes an optimization scheme for
the most economical process target.

Keywords: Process target, Regression analysis, Multiple quality characteristics, Empirical loss
function, Optimization.

1. Introduction [1] who considered the problem of determining
One of the most important decision-making the optimum process target with specified upper
problems encountered in a wide variety of  and lower specification limits under the
industrial processes is the determination of assumption of constant net income functions.
process target (mean). Selecting the optimum This problem is often referred to as the ‘filling
process target is critically important since it problem’ or ‘canning problem.” There are some
affects a process defective rate, material cost, situations in which the minimum content is often
scrap or rework cost, and the loss to the dictated by legislation. In such a case,
customer due to a deviation of a product underfilled cans whose product performance
performance from the customer-identified target falls below the legal minimum often need to be
value. Furthermore, the process target should be ~ reprocessed. Along this line, Bettes [2] modeled
reset frequently and promptly due to the process target setting with a fixed lower
unpredictable random variation in many specification  limit and arbitrary  upper
manufacturing processes. specification limit when underfilled and
overfilled cans are reprocessed at a fixed cost. In

2. Related Research some situations, however, the cans that do not
Techniques to determine the optimum meet the minimum content requirement may be
process target have been discussed and  sold at a reduced price. Hunter and Kartha [3]
developed for more than forty years. The initial presented a model to determine the optimum

work on this issue probably began with Springer process target with the assumption that the cans
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meeting the minimum content requirement are
sold in a regular market at a fixed price, while
the underfilled cans are sold at a reduced price
in a secondary market. Nelson [4-5] determined
approximate solutions to the Hunter and Kartha
model [3] and developed a nomograph for the
Springer model [1], The Hunter and Kartha
model [3] was later modified by Bisgaard et al.
[6] who assumed that underfilled cans are sold
at a price proportional to their content, and
Carlsson [7] who included a more general
income function. In addition, Arcelus and
Banerjee [8] extended the work of Bisgaard et
al. [6] under the situation where there is a linear
shift in process target.

Golhar [9] developed a model for the
optimum process target with the assumptions
that overfilled cans can be sold in the regular
market while underfilled ones can be
reprocessed. Golhar and Pollock [10] modified
this model by treating both the upper
specification limit and the process target as
control variables, and Golhar [11] developed a
computer program to solve the Golhar and
Pollock model [10]. Arcelus and Rahim [12]
presented a model for the most profitable
process target where both variable and attribute
quality characteristics of a product are
considered simultaneously, while Boucher and
Jafari [13] addressed the same problem by
extending the line of research under the context
of a sampling plan. Schmidt and Pfeifer [14]
extended the models of Golhar [9] and Golhar
and Pollock [10] by considering a limited
process capacity. Al-Sultan [15] developed an
algorithm to find the optimal machine setting
when two machines are connected in series, and
Das [16] presented a non-iterative numerical
method for solving the Hunter and Kartha model
[3]. Usher et al. [17] considered the process
target problem under the situation where a
demand for a product has not exactly met the
capacity of a filling operation. Liu and
Taghavachari [18] considered a general problem
of the determination of both the optimal process
target and the upper specification limit when a
filling amount follows an arbitrary continuous
distribution, and showed that the optimal upper
specification limit can be presented by a very
simple formula regardless of the shape of the
distribution. Pulak and Al-Sultan [19] developed
a set of FORTRAN-based computer codes, and
Pollock and Golhar [20] reconsidered the
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process target problem under the environment of
capacitated production and fixed demand.
Teeravaraprug and Cho [21] used Taguchi’s loss
function to determine the optimal process target
for multiple quality characteristics and
Teeravaraprug [22] showed an optimization
model for determining an optimal process mean
when considering two-market products. Further,
Hong and Elsayed [23] studied the effects of
measurement errors on process target, and
Pfeifer [24] showed the use of an electronic
spreadsheet program as a solution method.

3.0Observations and Research Motivations

The analysis in this paper differs from the
previous studies in two ways. First, most studies
in the literature deal with the problem of how to
determine the optimum process target using the
conventional quality loss functions such as step-
loss and Taguchi loss functions. Some
applications of these loss functions can be found
in Refs. [25-30]. Even though these loss
functions dominate the research as a quality
evaluation mechanism mainly due to
mathematical convenience, they may not be the
best representation of the quality loss for a
product. A close look at these loss functions
reveals a shortcoming from a practical point of
view. That is, these loss functions inherently
assume that there is little or no information
about the functional relationship between
product performance and its associated quality
loss. Second, most studies deal with a single
quality characteristic to determine the optimum
process target. From the customer's point of
view, however, products are often judged by
more than one quality characteristic. Hence, to
meet or surpass the customer needs and
satisfaction, the determination of the optimum
process target for key quality characteristics is
one of the most important tasks in early design
stage.

To incorporate these ideas, this paper gives
an attempt to exhibit a quality loss function,
called a multivariate empirical loss function,
using historical data associated with product
performance and its customer loss, to deal with
multiple quality characteristics. This paper then
develops an optimization scheme to determine
the optimum process target. This optimization
scheme is demonstrated by numerical examples.
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4. Multivariate Empirical Loss Function

Since the choice of path to quality
enhancement depends heavily upon the type of
quality loss function used, the selection of a
proper quality loss function to relate key quality
characteristics of a product to its product
performance is critically important. Although
there are several multivariate quality loss
functions (see Refs 31-34), the exact form of
quality loss is rarely known. If empirical data
concerning quality loss associated with product
performance are available, which is often the
case in many industries, the empirical loss
function may ensure a better estimate of quality
loss. To develop such a quality loss function, the
concept of regression analysis, which is one of
the most widely used tools in engineering and
many other fields for investigating cause and
effect relationships, can be employed.

Note that each quality characteristic ( ;)

has its own customer-identified target (7, ), and
quality losses incurred due to the deviation from
the target value in positive and negative
directions may not be equal. Hence, 2"
different sets (Q,,€,,...,Q,) form the

specification quality
characteristics are present. More detailed
descriptions on the sets forming the
specification region are discussed in Appendix
A.

Let i( YisVys---sY,) denote an empirical

region where n

estimate of quality loss associated with n quality
characteristics, where y, is the ith quality
characteristic for i=1,2,...,n. A first-order

estimated multivariate empirical loss function is
then given by Eq. (1).
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where [ ;s are empirical estimates of

unknown parameters that are determined by
using the least squares method associated with
the ith quality characteristic in the set of ;. A

1
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numerical example is shown in a later section to
show how to develop Eq. (1).

Similarly, a second-order estimated
multivariate empirical loss function is given by:

i(yl 2Vyane “yn)zdo +d1yl +d2y: +-- '+d’y,

+. ’ '+a’\nyn +d||y: +d‘1yl}'2

+dl3yl})3 +‘ ) .+dlrr~vl'vvx +a‘ZZ'V;‘
+d21yzy3 +-- '+d2rvy2yn +' o
ta, o ta,y,

)

where @, is an empirical estimate of loss

intercept, @,’s are empirical estimates of

unknown parameters of the first degree
associated with the ith quality characteristic, and

a,’s are empirical estimates of unknown

parameters of the second degree associated with
the kth and /th quality characteristics.

The first- and second-order models, with
the consideration of two quality characteristics
are presented in Appendix B. It should be
noticed that the shapes of the empirical loss
functions defined in Eqs. (1-2) are not required
to be symmetrical about the target, whereas the
step-loss and Taguchi loss functions are
symmetrical about the target. This means that
empirical losses due to the equal deviation from
the target value in either positive or negative
directions may not lead to equal quality losses,
which is the general case in many industrial
problems. Although this paper discusses two
types of the estimated empirical loss functions,
other higher-order estimated models may be
generated by regression analysis. Hence, the
empirical loss function is more flexible in terms
of a functional form and evaluates customer
perception of product quality in a more effective
manner. In practice, a functional form (usually,
a first- or second-order) is first assumed to
obtain an estimated multivariate empirical loss
function, and then it needs to be checked using a
lack-of-fit test, if the assumed estimated
function is appropriate.

5. Analysis of Costs

When designing an optimum process target,
three types of costs are generally considered in
the early design stage. First, a rejection cost is
incurred by a manufacturer when a product
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performance fails to fall within the specification
region of interest, and hence corrective actions
on the rejected products, such as repairing,
scrapping, or returning the products to the
manufacturer, need to be taken. Second, an
inspection cost is also incurred by the
manufacturer when inspections are performed
on products. Finally, a quality loss is incurred by
the customer when the performance deviates
from the customer-identified target within the
specification region. The term ‘specification
region’ refers to the jointly-intersected set by the
individual sets of specifications for each quality
characteristic. That is, when a product
performance falls within the specification
region, customers are willing to accept the
product.

Denoting the expected total rejection cost,
expected quality loss, and inspection cost

by E[TC, (¥, V- s ¥ )]s ELL(V,,Yareen )],

and C,, respectively, the expected total cost
becomes:

E[TC(y,.y, e sy W= EITC (3,000, )]

FTELY,, ¥, oy )FC,
3)

In many industrial settings, a rejection cost
may vary under different rejection regions (see
Ref. 35). For example, consider the case of two
quality characteristics as shown in Figure 1.
Note that region / represents the rejection region
where only one quality characteristic falls within
the specification region formed by two quality
characteristics, and region II represents the
rejection  region  where  both  quality
characteristics fail to fall within the specification
region. From a practical point of view, the
rejection cost when a product performance falls
within region / is lower than the one when a
product performance falls within region /1. It is
further noted that the number of different types
of rejection regions is equal to the number of
quality characteristics, and their rejection costs
are different. Extending this idea to the case of n

quality characteristics, let C; and P(R/) be
the unit rejection cost associated with region ¢
and the probability that a product performance
falls within region ¢, respectively, where
g=12,...,n. Appendix C analyzes the set of
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probabilities that a product performance falls in
each rejection region where n quality
characteristics are present. The expected total
rejection cost is then obtained by:

E[TCR()’.»yz’---,yn)]=ZCZP(R3) 4)

Considering the second part of the right-
hand-side of Eq. (3), the expected quality loss
can be expressed as:

) USL, USL,,  USL
ELLyse = [ o [ L0y
ISL, LSL,,  LSI,
FD0 sy, )dndy, ...dy,
(5)

Similarly, the expected quality loss with two
quality characteristics is obtained by:

USL, USL,

E[L(y,.y,)]1= I J‘L(yl,y2 ) fy,,p,)dvdy, (6)
LSL, LS,

6. The Optimization Models

The objective is to minimize expected total
cost with the constraint that a process target is
within the specification region of interest. Using
the mathematical results obtained in the
previous sections and applying a multivariate
normal distribution for the quality characteristics
of interest, Table 1 shows a general optimization
model. The objective function comprises
rejection costs, quality loss and inspection cost,
and the constraints are employed to ensure that
the process distribution follows a multivariate
normal distribution and the resulting process

» 4
14 / bii
USL,
I !
LSL,
1l I /i

LSL, USL, »i

Figure. 1 Rejection regions for a two-quality

characteristic case



Thammasat Int. J. Sc. Tech., Vol. 11, No. 3, July-September 2006

target is in the specification region of interest. target) are not met, a loss would be incurred by
Note that the matrix V is a variance-covariance the customer and the losses associated with the
matrix of the quality characteristics and |V| is product performance based on the deviations

he d . f th VA - from the target were collected as shown in Table
the determinant of the matrix V. As a specia 3 and Figure 2. Moreover, a manufacturer

;ase, }"ll"able 2 presents the optimizatioq }rlnodhe] provides the specifications of those quality
or the optimum process farget with the .0 cteristics which are (LSL=5, USL;=10)

consideration of two quality characteristics. and (LSL,=10, USL,=15). Note that the
. specification région is the jointly-intersected

7. Numerical Examples region formed by two sets of specifications. If
Two examples are presented to d-emonstrate only one quality characteristic falls within the
how the proposed models can be applied to real- specification region, the unit rejection cost of 20

world problems. We show how to determine the
optimum process target by showing the
procedures of developing the first-and second-
order estimated multivariate loss.

(ie., C}=20) would be incurred. Similarly, if
both quality characteristics fail to fall within the
specification region, the higher unit rejection
cost of 25 (i.e., C,'?] =25) would be incurred.
Z;lllp?rlzsillilclaotsi:?ufct?:nﬁrSt-order multivariate The inspection cost of 0.75 (i.e., C,=0.75) is

To construct a prototype of an infrared laser

imaging media, layers of material were coated in ’
a laboratory. These included heat absorbing dyes statistically independent and follow the bivariate

also incurred by the manufacturer. Furthermore,
two quality characteristics (i.e., ¥, and y,) are

(¥,) and thermally activated initiator ( y, ). The normal distribution with &' = 1 and o; =4.
objective was to find the optimum setting of Using regression analysis to examine the
those quality characteristics. The ideal data set shown in Table 3, the first-order
dimensions of absorbing dyes and thermally estimated empirical loss  functions are
activated initiator are 7.5 and 12.5, respectively. appropriate.

If the ideal dimensions (i.e., customer-identified

Table 1. Optimization model for an n-quality characteristic case.

Minimize
N USL, USL, USL,
EITC(y, 30y 1= 2 CEPRO+ [ [ o [Lya0es3) f 130000 0,)
q=1 LSL, LSL,_, LSL,
dydy,...dy, +C,
subject to
1 1, T
yVoseonn V) =—————€Xp| ——|\y— Vv -
S Y2000, PR p{ S=n) vy ﬂ):l

use Eq.(1), when the first - order empirical loss function is appropriate

L(.y]’yz’--'ayn): L. . . .
use Eq.(2), when the second - order empirical loss function is appropriate

P(R!) = Pr[product performance falls within region ¢]
LSL, < u, <USL,, i=12,....,n
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Table 2. Optimization model for a two-quality characteristic case.

Minimize
LSL, USL, USL, LSI, % USL,

E[TC] = Ci[ '[ If(yla)’z)dyldY2 + I If(ynyz)dyldyz + j. J-f(yl’yz)dyldyZ
—o LSL, LSL, - USL, LSL,

USL, o LSL, LSL, w LSI,
+ J _[f()ﬁ’yz)dyldyz:|+c£]{ j J‘f()’lvyz)dyldyz'F j If(ylayz)d%d)ﬁ

LSL, USL, —n -0 USL, —=

x LSL, =
+ I If(yl’yz)d)7ldy2+ j J‘f(yl,yz)dy,dyz}

USL, USL, —% USL,
USL, USL,
+ I IL(y. V) fLyy)dvdy, +C,
LSL, LSL,
subject to

2
1 1 - - -
f(ynyz):————‘—zexp— 3 (yl ’ulj _2’0())1 ;UIJ(Yz #2]
270,0,y1-p 2(1-p%) (o o, o,

=

Ly,y,) = {use Eq. (1), when the first-order empirical loss function is appropriate
use Eq. (2), when the second-order empirical loss function is appropriate

LSL, <y, <USL,

LSL, < u, <USL,
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Table 3. Empirical data of quality losses for the first numerical example.
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Table 4. ANOVA tables for the first-order empirical loss functions.

SOURCE DF SS MS F p
Model 2 966.5212 483.2606 576.84 0.0001
Error 33 27.6463 0.8378
Corrected Total 35 994.1675
R-Square C.V. Root MSE
0.9722 7.7953 0.9153
STANDARD T FOR Hy:
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB>[T|
Intercept 1 41.3964 2.5507 16.23 0.0001
Vi 1 3.2219 0.1786 18.03 0.0001
V2 1 -5.1419 0.1786 -28.78 0.0001
SOURCE DF SS MS F p
Model 2 525.6940 262.8470 1136.29 0.0001
Error 33 7.6335 0.2313
Corrected Total 35 533.3275
R-Square C.V. Root MSE
0.9857 5.0143 0.4810
STANDARD T FOR Hy:
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB>(T|
Intercept 1 67.1821 1.2108 55.49 0.0001
Vi 1 -2.2048 0.0939 -23.49 0.0001
V2 1 -3.8943 0.0939 -41.48 0.0001
SOURCE DF SS MS F p
Model 2 488.6155 2443077 898.59 0.0001
Error 33 8.9720 0.2719
Corrected
Total 35 497.5875
R-Square C.V. Root MSE
0.9820 5.6831 0.5214
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Table 4. ANOVA tables for the first-order empirical loss functions (continued).

STANDARD T FOR Hy:
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB>[T|
Intercept 1 -18.0274 1.5396 -11.71 0.0001
Vi 1 -2.8238 0.1018 -27.75 0.0001
» 1 3.2619 0.1018 32.05 0.0001
SOURCE DF SS MS F p
Model 2 720.0962 360.0481 388.11 0.0001
Error 33 30.6138 0.92769120
Corrected
Total 35 750.7100
R-Square C.V. Root MSE
0.9592 9.2761 0.9632
STANDARD T FOR Hy:
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB>[T|
Intercept 1 -73.2833 3.0681 -23.89 0.0001
Vi 1 3.6324 0.1880 19.32 0.0001
V2 1 3.7733 0.1880 20.07 0.0001

41.3964+3.2219y,—5.1419y,,
7.5<y,<10and 10<y, <12.5
67.1821-2.2048y, —3.8943y,,
5<y <75and10< y, <12.5
—-18.0274—-2.8238y, +3.2619y,,
5<y, <75and12.5<y, <15
—73.2833+3.6324y, +3.7733y,,
7.5<y,<10and 12.5<y, <15

(7

Ly, p)=

where the unknown parameters were estimated
using the least-squares method. The respective
Analysis of Variance (ANOVA) tables and tests
for individual parameters based on the above
models are given in Table 4. The results in the
ANOVA tables show sufficient evidence that
the first-order models are appropriate since the
R? value of each estimated model is 0.972,
0.986, 0.982, and 0.959, respectively. The
parameter estimates described in Table 4 show
that all parameters are statistically significant.
Although not shown here, the assumptions for
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linear regression are supported by residual and
normality plots.

Once the loss function is obtained, an
optimization model is developed using Table 2.
Solving the optimization model by using Excel
Solver®, the optimum process target is obtained
by

(=740, p= 1282),

E'[TC,(y,,y)] = 399, E'[L(y,,y))] =

4.57, and E'[TC(y,,y,)] = 9.31. Note that if

the process target is set at the customer-
identified target

(e, (4, 75, M, = 12.5)), then
E'[TCy(y,,3,)]= 401, E'[L(y,,¥,)]
4.66, and E'[TC(y,,y,)]= 9.43. This indicates
that the customer identified target (7, = 7.5 and

with

7, =12.5) is not the most economical process
target.
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7.2  Application of the second-order
multivariate empirical loss function

The second example considers machining
operations for precision-machined alloy foundry
products. The product considered here is a valve
scat insert, and the machining operations for this
product consist of removing metal chips to
produce a smooth surface and to assure proper
fit within the specified specification. The key
quality characteristics for the valve seat insert
are outside diameter (y;) and width (). The

specified specifications are given by ( LSL,=7,
USL,=10) and ( LSL, =18, USL,=21). Further,
r,=8, 7,= 20, Cy=30, C} =50, and C,=2.
The losses due to the deviations from the
customer-identified target are shown in Table 5
and the graphical presentation of the data set is

shown in Figure 3. The quality characteristics
(v1 and y,) follow a bivariate normal distribution

with ,°=0.49 and &,’= 0.25. The problem is
where the process target should be set in order to
minimize the expected total cost.

Using Figure 3, the following second-
order empirical loss function is appropriate.

i(y,,yz) =1150.3658 —67.9622y, —87.8513y,
+3.0034y7 +1.9973y2 +0.9953y,y,
)
where the unknown parameters were estimated
using the least-squares method. The ANOVA
table and tests for individual parameters for the
above model are given in Table 6, and the
second-order model is appropriate since the R’
value is 0.99.

Once this empirical loss function is
obtained, an optimization model is developed
using Table 2. Solving the optimization model
by using Excel Solver®, the optimum process

target is obtained by (4 = 8.33, u = 19.72),

with E'[TCy(3,.3,)] = 1.28, E'[L(3,.7,)]

=2.06,and E'[TC(y,,y,)] = 5.34. Note that if

the process target is set at the customer-
identified target (i.e., (4, = 8, 4, = 20)), then
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E'[TC,(y,,7)1=3.03, E'[L(y,.y,)]=142
and E"[TC(y,,y,)]= 19.60. For this particular

example, some magnitude of savings as high as
17.21% (=((6.45-5.34)/6.45)*100) would be
realized by implementing the optimum process
target. This example also indicates that the
customer identified target (7, =8 and 7, = 20)

is not the most economical process target. The
graphical presentation of this example
associated with the customer-identified target
and optimum process target is depicted in Figure
4.

8. Conclusion

Quality engineers are often faced with the
problem of how to determine the most
economical process target. Although this issue
has been extensively studied in the research
community, there is room for improvement.
This paper attempts to incorporate the
customer’s overall perception of product quality
using regression analysis when multiple quality
characteristics are considered. This paper first
develops a multivariate empirical loss function
and then presents optimization models for the
most economical process target by taking into
account a customer loss based on empirically
gathered data and the costs incurred by a
manufacturer such as rejection costs and
inspection cost. The particular numerical
examples reveal that a significant amount of
savings would be realized by implementing the
optimum process target, indicating that the
customer-identified target may not be the most
cost-effective setting to pursue. It should be
noted that the models shown in Tables 1 and 2
are based on multivariate and bivariate normal
distributions. In the case of quality
characteristics falling in other distributions,
these two models cannot be used directly but
they can be applied by changing the distribution

functions ( f(¥,,¥,,-..,»,) and f(y,,¥,)) to
an appropriate function.
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Table 6. ANOVA table for the second-order empirical loss function.

SOURCE DF SS MS F p
Model 5 2948.7441 589.7488 803.94 0.0001
Error 250 183.3929 0.7336

Corrected 255 3132.1370
Total

R-Square C.V. Root MSE
0.9414 13.7426 0.8565
STANDARD T FOR Hy:
VARIABLE DF  ESTIMATE ERROR PARAMETER 0 PROB>|T]

Intercept 1 880.7056 29.2948 30.06 0.0001

" 1 -54.9711 1.7208 -31.94 0.0001

» 1 -65.1682 2.8143 -23.16 0.0001

» 1 -2.2345 0.0708 31.55 0.0001

vt 1 -1.4101 0.0708 19.91 0.0001

iy 1 0.9823 0.0630 15.60 0.0001
Appendix A Q ={(y, 915 s3,) LSL Sy, <7,

When there are n quality characteristics, n
customer-identified target values exist and hence
2" different sets form the specification region.
For example, when n=I, two different sets

around the  target  value, such as
Q :{yl (LSL <y, < 71} and
Q, = {J’1 TSy SUSLl}, form the

specification region. When n=2, four different

sets, which are Q= {(y, Vo)
LSL, <y <7 andLSL, <y, < 12},
Q, = {(J’pyz) :

LSL, <y <randr, <y, <USL,}, Q,=
{(y],yz) i, <y, SUSL and LSL, < y, < 2'2}
Q, = {U’ld’z) 7, <y, SUSL and

7,<y, <USL, } , form the specification region.

and

Similarly, for »n quality characteristics, 2"
different sets are realized as follows:

40

LSL, <y, <7,...,LSL, <y, <t,}
Q, :{(yl,yz,...,yn):LAS”LI Sy <7,
LSL <y <t,.,LSL_ <y <t |,
7, <y, <USL,}
Q, ={(r, ... ,): LSL Sy, <1,
LSL <y <rt,..1r,,<¥y,,<USL, |,
LSL, <y, <t7,}

Q, ={(V.¥rseeny,) i, <y <USL ...,

7, <y SUSL,...,t,<y, <USL,}

Appendix B
If there are two quality characteristics of
interest and the first-order estimated empirical

loss function is appropriate, then i( Yi,Y,) is
given by:
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Bio + By + By,

LSL <y <7jandLSL, <y, <r,
Poo + Buri + Buyss

LSL <y, <rjandr, <y, SUSL,
Bso + By + Banyas

7, <y <USL and LSL, <y, <7,
'B40 + ﬂu)ﬁ + ﬂ42YZ,

7, <y, <USLandr, <y, <USL,

L(yl,)’z)=

Similarly, if the second-order estimated
empirical loss function is appropriate,

i(y, ,¥,) is defined as:

LSL, LSL, \USL,,  USL,
PR = | [ [ rGiysy dydy, . dy,
—o - LSL,_, LS

LSL, USL, | LSL,_, USL, y  USL,

+ f j .[ ‘[ If(ylayp---’y,,)dy,dyz...dyﬂ

—x

LSL, |
LSL, USL,

o LSL,y  LSL

USL, LSL,

T Yrseen ¥y ly,...dy,
+oe 4 I J J. J.f(y Vs y)dylde dy,

o ISL,,  LSL, —x

USL, LSL,_, LSL,_, USL, y  USL,

I

LSL, = —x LSL,,  LSL

USL, LSL, , USL, y LSL, ,USL, ,  USL,

T R A R R

LSL, - LSL,, -w LSL,, LSL

USL, ISL,_, USL,_,  USL, LS,

_[ J- .f(ylvyz’“-ay,,)dyldyz‘..dyn

L(.Vl’yz)z&o“'&lyl+d2y2+d11y12+d22y§ oot J _[ J. j.f(anZsmayn)d}’ldyz~--dyn
4 , : LSL, - LSL,, LSL, —»
hat th 1Y l}dz s should b fied USL, USL,,  USLy LSL, LSL,
Note that these models should be verified using et 1
VisVaseen ¥, )dv dy, .. .dy,.
lack-of-fit tests and supported by ANOVA LS‘[ le“ L S'[} vi ;.[ re r
tables. '
. Similarly, the probability that a product
o Appendix C performance falls within region N can be shown
Considering n quality characteristics, the as:
probability that a product performance falls
within region / can be shown as: LSt LS, LSL,
; LSL, USLy., sty P(R:v): I I Jf(y]’yZ""’yn)dyldy2"‘dyn
PR)= [ [ [ S0y )dydy,..dy, s
~oo LSL,,  LSL e T
USL, LS, USL,,  USL, +U§[ I 7‘[ S yrse o y)dvdy, .. dy,
+ j I I I f(yl’yz""’yn)dyldyz"'dyn 1_s1_: w LS, LSL
W, e oush, L [ ][ [ roere oy dndy, dy,
USL, USL, , USL, LSL, o USL,, -o —x
oo 4 f(yl,)ﬁw--,)’,,)dyldb-~-dyn LSL, LSL,,  LSL, =
LS'II; LSI.[*I Ls’[Z 7£ R : J. _[f(J’psz-w)’n)dJ’ndJ’z-~'dyn
w USL_, USL e 1; [’: vsLy
+ J‘ I J.f(yl,h»«--,yn)d.)’ld)ﬁ'“dyn + J. I f If(ylvyz’“"yn)dyldyz"'dyn
usL, 1SL,, LS, Ut Ust,, o -
USL, o USL, , USL o LSL,, o« LSL,y LS
+ J. J. jf(yl,yz,...,yn)dy,dyz...afvn + J J. J I j SiYyse- v dydy, . dy,
LSL, USL,., LSL, ,  LSI USL, e USL,, —¢ -
USL, USL,,  USL, o LSLy DShe LSL
et VisVaseeis ¥, dy, dy d,,
et J‘ J. I _“f(yl’yZ""’yn)dyldyz"'dyn' USJ; J; 7;[ ‘I M;[lf(m Y2 y)y] ag) y
LSL, LSL,,  LSL, USL, L. .
weet [ ] If(y.,yz,n-,y,,)dyldyz-~~dyn‘
Ust, USL, ., US,

The probability that a product performance falls

within region // can be obtained as:
Considering two quality characteristics as

shown in Figure 1, rejection regions / and //
represent the ones where a product performance
fails to meet one of the specification sets and
both specification sets, respectively. From a
practical point of view, the rejection cost when a

41
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product performance falls within region 7 is
lower than the one when a product performance
falls within region //. The expected rejection
cost associated with region [/, denoted by

E;[C,], can be shown as:
EJ[Cy1=Cy-P(R}).

where C,Ii, and P(R2[ ) represent the unit
rejection cost associated with region / and the
probability that a product performance falls
within region /, respectively. That is:

LSL, USL,

j _[ Sy, dvdy,

% LSL,

EZ'[CR]=C£'{

USL, LSL, w USI,

+ [ [ ronwdndn, + [ [ rondvay,

LSL, -0 USI, 181,

USL, o

o ffu.,yz)dy,dyz],

LSL, USL,

where f(y,,,) is the joint probability density

function of y; and y,. Similarly, the expected
rejection cost associated with region //, denoted

by E 2” [C,]1. can be obtained as:
Ez"[CR] =Cy 'P(Rz")

LSL, LSL,
= Cilel { I I f(ypyz)dy1dy2 +

o ISI, © w

[ [roedndy+ [ [ 1o dval?

USL, -~ USL, USL,
LSL,

+ I .[ f()ﬁ»yz)dyldyz}
% USL,

where C; and P(R)) represent the unit

rejection cost associated with region /I and the
probability that the product performance falls
within region /I, respectively. Hence, the
expected total rejection cost, denoted by

E[TC,], is:

42

LSL, USL,

-[ '[ S, p,)dydy, +
o LSI,

E[TC,]=C} {

USL, LSL,
[ [ oy dvdy,
LSL, —
» USL
+ I J.f()’wyz)d}ﬁdyz

USL, LSL,

+ _[ ] f(yl’yz)dyldyzil

LSL, USL

1.SLy LSL,
+C[131 |: j I Af(ylayz)dyldyz +

= LS

[ [ roey)dvdy,
USL, —o
+ j If(yl,yz)dy.dyz
USL, USL,

LSL, =

+ I J‘f(ylayz)dyrdy2:|'

—o0 USL,
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