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Abstract
This paper presents a numerical method for minimum-weight shape design of a mechanical part

with a stress constraint. The design method aims to produce a fully-stressed design by distributing
material according to the local von Mises stress. Material distribution is represented as element
thickness instead of density or elastic modulus in a two-dimensional finite element model, which
makes the optimum design practical. During the iterative design process, a trimming process may be
conducted, where thin elements are removed to reveal the new boundary shape. Thickness adjustment
and trimming lead to the optimum result of a three-dimensional shape. The method is demonstrated
with a short cantilever beam design problem. The result is found to be encouraging.
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1. Introduction
Shape optimization of mechanical parts

under external load can be performed by several
approaches. Among them, free form boundary
shape adjustment presented by [1], which
utilizes control points on the boundary as design
parameters and topology optimization pioneered
by l2l, which takes local material properties as
design parameters. The later is more flexible,
hence, tends to provide superior designs.

To date, several methods for topology
optimization has been proposed. First is a
homogenization method by l2l. The method
takes elastic modulus and orientation of micro
structure of each element in a finite element
model as design parameters. The optimum
designs from this method have variable material
properties, which are considered impractical.
Moreover, the relationship between the elastic
modulus and the density of most materials,
which plays a significant role in the optimization
process, is obscure, although there has been a
proof by [3] that the relationship exists for
certain materials.

Another method called "evolutionary

structural optimization", made well known by

[4], is considered an intuitive method where a
design evolves mainly through the removal of

elements of a finite element model. The
elements are removed (or added) according to
their stresses or compliance sensitivities. This
method is simpler to implement but the optimum
designs are discrete and dependent on the
scheme used to determine the removal step.

Objectives of shape optimization, studied in
the previously mentioned research, are usually
one of the following; (i) minimization of
material usage subjected to a stress constraint,
(ii) maximization of stiffness for a given amount
of material. Although [5] proved that the two
objectives are equivalent, the first objective is
more related to structural applications, where
stress is a major design criterion. Hence, this
research focused on the first objective.

The shape optimization method presented
in this paper utilizes an intuitive scheme to
distribute material in the form of element
thickness. Thickness of each element is adjusted
inversely proportional to its von Mises stress.
When certain elements become practically too
thin, they can be removed. This leads to creation
of new boundary shapes. The scheme is
extended from a simple stress-thickness
relationship in the beam theory, with a
supporting assumption of biological growth [6].
The next section provides a brief discussion of
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the scheme and its numerical implementation.
The design example, presented in section 3,
shows the evolution of a rectangular beam into
an optimum I-beam shape which is fully-
stressed and has significant weight reduction.

2. Material Distribution Method
The topology optimization program, based

on the method presented in this paper, runs
iteratively in the steps described in Fig. l. First,
a hnite element model is fotmed for the initial
shape. The finite element solver then solves for
strain and stress distribution. The local von
Mises stress distribution is used as information
to adjust the elements' thickness. After the
adjustment, a new finite element model is
created and the process repeated. The optional
trimming process (where elements thinner than
tn11n dre removed) may be performed at specified
iterations. The optimum design is obtained when
a fully-stressed condition is achieved. The
thickness adiustment scheme is described next.

Input an rritial shape

Create a finite element model

Solve lor Stress Distributiorr

Adjust element thickness

Trim (optional)

<*
Output an optimum shape

Figure. I Topology Optimization Procedure.

From beam theory, major contribution to
the element's von Mises stress comes from
bending stress, although transverse shear stress
exists. The bending stress at any element i,
shown in Fig. 2, is a function of bending
moment, M, the transverse location, y, and the
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beam's sectional moment of inertia. 1 as shown
in equation ( la):

Substitute an expression of1 into equation (1a)
to obtain equation ( lb).
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Above. t is the beam's thickness and /z is the
beam's height.

The bending moment at the position x of
element i can be computed for a given load
distribution and is considered constant in space.
Position _y of element i is constant. If i is kept
constant, then the thickness of element I can be
written in terms of bendinp. stress as:

wheref t isaconstant .
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Figure. 2 A simply supported beam under
distributed load.

If the load is applied in the x direction, the
relationship in equation (2) is still valid. In order
to form a fully-stressed beam, one can vary the
thickness of the beam's rectangular cross-
section along the:r-axis inversely proportion to
the local maximum stress at a corresponding "r-
position.

Although there is no proof of validity of
equation (2), when the thickness is also varied
along the y-axis, the natural trend of biological
growth supports the equation. More material
should be distributed to the elements with high
stress, which is inagreement with the trend of
the equation. Hence, the relationship in equation
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(2) is assumed as a rough approximation to the
sensitivity information of local thickness to local
stress. As any numerical approximation, the
solution process requires some form of

relaxation. Thus, replace o, in equation (2) with

local von Mises stress, apply relaxation factor
and the scheme takes the followins form.
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where // is the original thickness of element i,
//*' is the adjusted thickness of element i for the
next iteration, /.u" is the maximum allowable
thickness, o, is the von Mises stress of element
i, o"", is the maximum allowable stress and r is
a relaxation factor, 0 <r <1. The relaxation
factor, r, controls the pace of the design
iteration. If r is set to one, the scheme fully
follows equation (2), which may result in an
overshoot (i.e. element stresses exceed o,", .)

3. Design Example
A short cantilever beam in Fig. 3 is used to

show the design method. The computation is
conducted in dimensionless manner with the
init ial shape being / - 2, h: I and t - 0.1. A
generic finite element program using iso-
parametric quadrilateral elements is utilized as a
solver. The finite element model of this beam
consists of 40x20 elements. Other parameters
are: point load, F: 1; Youngs modulus, E: 1;
Poisson ratio v: 0.3 and relaxation factor. r -

0.5. ; The maximum allowable von Mises stress,
o.", is set to the maximum value of the initial
beam.

urrcharged

Figure. 3 Short cantilever beam.

The shaded portion at the point load in Fig.
3 represents the unchanged area. The elements
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containing the supported edge are also left
unchanged. With this treatment, the effect of
stress concentration is avoided.

To ensure a smooth convergence, there is
no thickness constraint during the iterations, and
the trimming process is conducted after the fully
stressed beam is achieved. 1,,;, is set to 5 percent
of the initial thickness. Since the density is a
constant, the program tracks the volume
reduction of the beam instead of weight.
Numerically, the fully-stressed condition is
satisfied when the maximum and the minimum
elements' von Mises stresses lie within one

percent of o.,,, .

Observe from the design history in Fig. 4,
the beam evolves rapidly at the beginning
causing volume reduction at a fast rate, down to
about 25 percents of the original volume.
However, element stresses diverge. Then, after
the twentieth iterations, there is almost no
volume reduction but the shapes keep evolving.
The maximum and minimum von Mises stresses
gradual ly  converge to o, . t  .  At  the 199'h
iteration, a fully-stressed condition is achieved.
Tr imming is  conducted at  the 200'h design.
where 75 elements are removed simultaneously,
which causes the maximum stress to rise beyond
d,"1 . Fifty more iterations are performed to
bring the beam back to the fully-stressed
condition. Only minor thickness changes occur
to some elements after trimming. This
demonstrates the robustness of the optimum
design. The volume of the optimum beam is 24
percent of the original volume.
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Figure. 4 Design history.



Figures 5 show physical shapes of the
design from iteration 10, the fully-stressed
design from iteration 199 and the optimum
design obtained after trimming from iteration
250. Note that the thickness (z-axis) is scaled up
three times for visibility. Also, for a presentation
purpose, the elements' thickness is interpolated
to nodal thickness and thickness of the
unchanged elements is shown to be equal to the
thickness of the nearby elements.

l "w_,
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l , *w.
(b) Fully-stressed design. (the 199'n iteration)

(c) Optimum design after trimming.
(the 250'" iteration)

Figure. 5 Shapes of the short cantilever beams.
(z-scale is magnified three time)
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Figure 6 shows cross-sections of the fully-
stressed beam, which resemble an I-shape,
which is  known to be an opt imum engineer ing
solution. This demonstrates the effectiveness of
the method.

Figure. 6 Cross-sections ofthe final design.
(z-scale is magnified three time)

The proposed method is also implemented
for other design problems involving different
types of mechanical elements such as design of
a simply-supported beam subjected to a
horizontally-translated vertical load and design
of a center-supported wheel subjected to a
torque on the rim. The final designs for both
design problems are shown in Fig. 7 and 8
respectively. Both designs shown are found to
be fully-stressed and have significant weight
reduction. Details of both cases can be found in

l7 l .

Figure. T Optimum design of a simply-
supported beam subjected to a horizontally-
translated vertical load.

(a) The lOth iteration.
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Figure. 8 Optimum design of a center-supported
wheel subjected to a torque on the rim.

4. Conclusion
The presented method relies on an intuitive

scheme that adjusts the thickness of each
element inversely proportional to its von Mises
stress. Although there is no theoretical proof of
the thickness-stress relationship that forms the
basis of the presented design method, the short
cantilever beam example does validate the
method.

The advantages of this design method over
other mathematical based topology design
methods are its simplicity and manufacturability
of the optimum design. The method can be
applied to any finite element source codes that
are available. The method can also be extended
to multiple load cases by employing virtual
stress distributions (union product of von Mises
stress distribution from all load cases).

The limitation of the method is that it is
currently applicable only to in-plane load cases.
Stresses in the optimum design are based on the
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plane stress assumption, so, fine tuning is
required upon constructing a three-dimensional
model of the optimum design. Further study is
required to extend the method to cover fully
three-dimensional load cases.
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