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Abstract
The shape of Taylor bubbles in slug flow relates to the flow in a narrow falling film, which is

highly affected on the pipe-wall boundary layer. In this work, the boundary layer thickness is taken
into account for deriving a model predicting the shape of a Taylor bubble. The result of the present
model will be compared to the result of previous models, which do not take into accunt the effect of
boundary layer thickness. This comparison will reveal more insight about the effect ofboundary layer
thickness on Taylor bubble shape in vertical pipelines. Finally, it shows that the present model can
comparatively predict the shape of Taylor bubbles for bubble heads, but much better for bubble tails.
The improper shape of bubble heads results from the assumption that boundary layer thickness starls
to develop at bubble noses. However, this is still acceptable and the present model is conclusively
good for predicting the shape ofTaylor bubbles.
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2. Nomenclatures
2.1 Characters
D Pioe diameter

2.2 Symbols
a Kinematic energy coefficient

x [(n1z)- n]1a
6 Boundarylayerthickness
p Density

2.3 Superscripts and Subscripts
0 Location at bubble nose
D&T Dumrtresku & Taylor model
d Drift
oo Infinity
/ Liquid

Gravity acceleration
Mass flow rate
Static pressure
Distance ofinterface referred to r-axis
Distance referred to r-axis
Velocity component on z-axis
Total velocity
Velocity component on r-axis
Distance from pipe wall
Distance referred lo z-axis

m Mixture
tr Translation

3. Introduction
Taylor bubbles are known as elongation

bubbles drifting in slug flow. In vertical pipes,
Taylor bubbles tend to have axis-symmetric
shape along centerlines of the pipes. The shape
ofa Taylor bubble affects the pressure offlow in
the falling film region around the bubble by the
change of a dynamic pressure. Generally, static
pressure in falling film is assumed to be constant
and equal to the gas pressure inside the Taylor
bubble in the case that tension effects are
neglected. The assumption of constant pressure
is widely used in many works. Barnea !] who
demonstrated that this assumption for flat nosed
Taylor bubble leads to wrong pressure drop
across a slug unit, explained that gas in the
Taylor bubble is at a constant pressure since the
gas density and viscosity are much lower than
the liquid density and viscosity. This results in
negligible interfacial shear and the liquid hlm is
assumed to flow around the Taylor bubble as a
free falling fim. Bugg et al. [2] composed a
computational algorithm for investigating the
shape of a Taylor bubble by using a void
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fraction specification to track the movement of
the gas-liquid interface. In this work, the
pressure difference within a gas-filled contro.
volume is set to be zero, indicating constant
pressure in any bubbles present in the flow field.
Clarke and Issa [5] numerically predict Taylor
bubble shape by employing k -  e model  and
moving grid technique. They claimed that
experiment showed that the pressure drop over
the Taylor bubble is zero. This is the reason why
they set a cerlain physical condition of constant
pressure inside the Taylor bubble in order to
determine the shape of the bubble. Also, Mao
and Dukler [10] tried to determine Taylor
bubble shape by using Navier-Strokes equation
and staggered grid system, which is designed to
intersect at the gas-liquid interface. The
staggered grid system moves along the change
of interface curvature to maintain pressure
inside Taylor bubble to be constant. The writers
stated that experimental data confirmed this.
Hence, the shape of a Taylor bubble is very
important for goveming the flow field around it
to maintain constant static pressure. This is the
reason why the shape of Taylor bubbles has
been studied so much.

Nigmatulin and Bonetto tl2l gave
background about the shape of Taylor bubbles
having a length more than 5D of pipe. They
stated that such long bubbles could be divided
into 3 regions, whose shape can be respectively
predicted by
Dumitresku model:
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results and the results calculated by Dumitresku
model. They have found that the Dumitresku
model gave the largest bubble size, whereas
experiment gave the smallest bubble size. Their
numerical simulation gave results in between
both former results. This is quite unclear under
low Re conditions but much more obvious at
high Re of fluid flow. Clarke and Issa [5] had
compared their computational results of bubble
shape to experimental results of Mao and Dukler

tl l l  and the results calculated by the
Dumetresku model. The comparison showed
that, in stagnant fluid, the shape of bubble
predicted by their computational simulation
agrees well with that predicted by the
Dumetresku model but is larger than the results
from experiment.

Some important factors are possibly not
considered in the former models. The gas-liquid
interface is believed to be free-shear. whereas
the pipe wall is practically assumed to be
governed by no-slip conditions, leading to the
presence of boundary layers. In large pipes, the
boundary layer is likely not to disturb the flow
field in the pipe seriously. Contrary to small
pipes, flow in the pipes is violently disturbed by
the boundary layer when the boundary layer
thickness ( d ) has the same order of magnitude
of the pipe diameter. This is similar to the flow
field in the falling film region, when the
hydraulic pipe diameter is close to the boundary
layer thickness. In this work, the boundary layer
thickness is taken into account for deriving a
model predicting the shape of Taylor bubbles.
The result of the present model will be
compared to the results of previous models to
gain insight about the effect of boundary layer
thickness on Taylor bubble shape in vertical
pipelines.

4. Modeling
The energy equation of fluid flow is

exploited as the fundamental equation for
predicting the shape of Taylor bubbles in
vertical pipe.

t - .
P,  +;aoP,Vu'  -  P,g ' ,

L

|  _ -
= p + t a p , V ' - p ^ g t  ( 4 )

The negative sign in front of variable z implies
the depth measured along the z-axis as shown in

Taylor model: R =

r r l _

;  
- ; . l ' ( ta -  4 ' )  t t t

?1, -+  \2 )2 ! ,lzs,

R =

Nusselt model: R : const (3)

They also have done experiments on single
Taylor bubbles in 15.6 mm-dia. pipe. The shape
of Taylor bubbles predicted by the series oI'
models was compared with experimental
results. It .is found that the models
overestimated the size of Taylor bubbles in
comparison to the experimental results. The
discrepancy between models' result and
experimental result is also confirmed by Mao
and Dukler ! ll. They used their own numerical
simulation for predicting Taylor bubble shape to
compare the simulated results with experimental
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Fig. I . The second term on both sides of eq.(4) is
the dynamic pressure calculated by average total
velocity at arry considered point. Since the
direction of flow velocity in the falling film
region is almost parallel to the pipe centerline, it
is, thus, reasonable to substitute the z-
component of velocity into total velocity. This
yields:.

L  - )

Po t ;AoP, ,U,  -  
P^{zo

z

I  _ ,
=  p + - a p , , i ' -  p n , g z  ( 5 )

L

The influence of pipe-wall boundary layer
is involved through the kinetic energy
coefficient a, which is generally defined as
follows:

f  r  ,  l t t  . \
a  = l l  p . u ' d A l l V h n ' )

L J 1 .  " '  q

=lz f'' (,',b4llff- o' )o' ] tur

Figure 1: The schematic diagram of the
computation domain, confined in the
shaded area.

According to Eq.(6) the profile of fluid
velocity is necessary for defining the value of
a, at any cross-section. To achieve this, the
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flow condition in the falling film is to be
specified whether it is laminar or turbulent.
From their experiments of Taylor bubbles rising
in stagnant liquid, Mao and Dukler [l l] had
concluded that the falling film had experienced
laminar-to-turbulence transition when the pipe-
wall boundary layer had developed near a
ceftain Re, leading to a wavy interface at the
bottom of the bubble. This is confirmed by
Clarke and Issa [5]. After they had compared
their computational result of wall shear stress to
the experimental results of Mao and Dukler

tl I I, they found that their computational
outcome agreed well with the experimental
reference just within 300 mm behind the bubble
nose in a 0.05 m-dia. pipe. Although they
explained that the discrepancy is caused by
laminar-to-turbulence transition owning to the
nature of wavy interface, their computation was
carried out on the assumption that the flow
remains laminar throughout the thin film and the
their computational results came out reasonable.
Consequently, in this work, the velocity profile
is assumed to be laminar-like parabolic and
written as below:

t  ^ fu,  -u, .)  ( , .  - , , . )  ,  ,
l u  + 2 ' - - - : - - - - - - - - . r  l - \ ' '  -  / r ' l ' -  

I t ' < d
u = l  

"  6
l " -  : y > - 5
t

Since the relation between

known as:
D

' 2

eq.(7)  wi l l  be rewr i t ten
explicitly shown as follow:

(1)

y a n d r i s

(8 )

so that r is

u  + 2 V , D ( D - " )"  6  \ 2  , )  . "
( u ,  - u , , ) (  D  . . ) " " '  ( n ,-  

, ,  t , t - ' )
; 1 , > d

By substituting eq.(9) into eq.(6) and assuming
tha t  d  >>  D .  we  ob ta in :

u"
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,r_ film by employing continuity
a: - steady state condition as:

r ,  . ,  I  ( o ' )  _ o ( 4 _ n
-l"tr" -u,,y\19u2"+llu.u,, +5u:,X6D\ P'ou' ' lT 

)= 
p'- l  

4
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equation under

Mixture density is a function of dispersec
bubble distribution, which has many patterns,
e.g. core-peak distribution and wall-peak
distribution, depending on several factors.
Nevertheless some researchers still use uniform
bubble distribution in their works. For instance,
Mao and Dukler [9] who have explained the
different terminal velocity between a train of
Taylor bubbles and a single Taylor bubble,
exploited cross-sectional average velocity of the
dispersed bubble in liquid slug in their
calculation, inferring a uniform distribution of
the dispersed phase. This is also found in the
work of Clarke and Issa [5]. Although realizing
that the dispersed phase in a slug is distributed
unevenly across the pipe sectional area, they
assumed a homogeneous gas-liquid mixture in
the liquid slug as a first-order approximation in
their numerical model for studying Taylor
bubble shape. Moreover, it is naturally found
that the dispersed bubbles merge to the nose of
Taylor bubbles and re-entrain from the tail of
bubbles. Consequently, when flow in falling
film is considered, the density of mixture in slug
flow is assumed to distribute uniformly with
value close to liquid density, resulting in:

- (  o '  - , )  / (o ' )
u , - : u l  - t < ' l / l  |  ( 1 4 )

f  4  ) l  \ 4 )

Substituting eq.(14) into eq.(13) and
assuming that d >> D ,we obtain:

u  ( o '  ^ )  6 D ' / t ^ '  
\

- = l  - / ( - - - l l l ' -  _ � R '  I  . ' s ,
u ,  [ 4  3 ) l  \ 4  )

, )

ll( P:- *, lo, l
l l \ 4  )  )

Focusing on the second term of eq.(10),
there are 2 interesting points. First, this term will
be smal f  around bubble noses s ince u,  i  u , , .

Second, Ltt can be neglected in the region close

to the bubble bottom where u-, )) u,. .

Therefore the second term on the right-hand-
side of eq.(10) can be reduced and eq.(10)
becomes:

l . t
. t l

" : L l  r -  r e  ( d D )  |  , , , ,
n ' l  3 5 ( D ,  \ l

I  r _ _ R ,  |  |
L  1 , 4  ) )

Eq.(I1) sti l l  has 2 unknown variables, i.e.

velocity ratio (u- f i ) and boundary layer

thickness (5 ), which are respectively
determined.

The velocity ratio between free-stream
velocity and average velocity at any cross-
sectional area is defined as:

n  l .  ' 1  ,-  :  l ludAl l7u " )
u -  1

=1" !*v']lle - R')' -l, ",
ldentical to the case of deriving Kinematic

energy coefficients, the velocity profile is
assumed to be parabolic as already shown in
eq.(9). Substituting eq.(9) into eq.(12) and
assuming that d >> D yields;

The translational velocity on the right-hand-
side of eq.(13) can be related to the average
velocity at any cross-sectional area in the falling

(10)

II

(4
( 4

is valuable to note that the term
^^ \

- R2 - "  
I  .unno, be reduced since i t  is:

3 )

n  : r - t  ( , - ' ' ' ) u ,  l (  4  -  * ' )  ( 1 3 )
u ,  3 [  u . )  l \ 4  )

a) close to Taylor bubble nose ( R ! 0), the
order of magnitude of :

D 2 - ) D 2 ^ D 2-  - R t  = : - - Q = . -  > > 5 D  ( 1 6 )
4 4 4
b) close to Taylor bubble bottom

( R x D l2 ), the order of magnitude of :
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4- n' =(l+-^)[?*n) = ao ('�.)

Therefore, dD cannot be neglected from
these parentheses in the falling hlm region.
Finally eq.(15) is rewritten in more applicable

d ( r 6  \  d f r "  ,  \r , : u "  , I  I  p , u d y  l - ; l  l p , u ' a y 1
d z \ q  /  a z \ *  /

(2r)

The last term on the right-hand-side of
eq.(21) will relate to free stream as:

(  d p \ u c .  (  d u . ) t r .
I  p , g -  ;  l l d y  = l  p , u " ,  l l d y
\  d z  ) ;  \  a z  J ;

(22)

In accordance with eq.(16) and eq.(17), the
last term in the denominator of the quotient on
the right-hand-side of eq.(18) is always much
less than the third term. It will be neslected and

format as:
z  t 3
I  u -  I
t t -

\ n  )

we get :
z  t 3
l u - ,  1
l - l  -
\ n  )

p . , v - "dy 
) eo)

( o ' - * , ) '  l ( D ' - R , - € ) '
[ 4  ) l \ 4  3 )

( z' - o,\ '  l l(?' -  ̂ ,) '( 4  ) l l \ 4  )

( o'  -n' l  (ao)* !(4- n' l(ao)'
( 4  )  3 ( 4  )

l{rry'.] ,,r,
2 7 ' �  l

, 2  l f ,  .  , 2

l  P' - o' l  l l [  2- - o' l
f  4  ) l l \ 4  )

(  2-  -n '  l (ao)* l ruoi l , ,n,
l . 4  )  3 '  ]

which is going to be employed in eq.(11)

The next unknown variable left in eq.(11) is
the boundary layer thickness ( d ). To derive d ,
the momentum integral equation under steady
state condition is needed. Fig.2 shows the
differential control volume occupying the
boundary layer, adjacent to the pipe wall. Due to
the continuity equation, the mass flux across the
upper boundary of the element shown in Fig.2
i s :

Figure 2: Differential volume element of flow
adjacent to pipe wall.

T6

o Y

Adding eq.(21) with eq.(22), we get :

r u : u, 4fl r.,rr] - + t 
nlr.u' 

or)
dr \ i  )  , t z \ i  )

* (  p ,u .  L ) ' [ 0 ,  (231
\  dz t i

= LJ: ,^

-l

Due to the momentum equation, the
relation among shear force, momentum flux,
pressure and gravity can be written as
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As previous, the density of mixture in slug
flow is assumed to be uniform, eq.(23) becomes
eq.(24) with simple manipulation:

r , ,  , t l '1 ,  , ,  t  '  r ;  l-= ; t  t u tu ,  - ,Fy l *+ l  f t , ,  -uMy t
Pu, azl i  ,  az Li  l

,  , f , i  l �  f a  
, l, !=11 1, t , ,  -uqyl .+ l  l fu ,  -u)oy t

d y  a z l i  I  a z l i  l
(24)

Exploiting velocity profile stated in eq.(9),
after integrati ng, eq.(24) becomes :

3orlu' ,u,,) = l lQr: + u ,u,. -tr i ,b]
5  d z "

+25(u,  - r , ,V4?
az

3ov(u, - u,, ) = d +l|r: + u,Lt,, - 3r:,bl
d z "

+25(u ,  - r , )6 '+  (2s l
u a

Let us consider the product (r" -u,,0 .

This term can be approximately reduced to be
z-d because:

Close to Taylor bubble nose, d = 0 , so
(u- -r , , )d * (q- -u, ,b or

fu-b:o-(a-)d e6)
Close to Taylor bubble bottom, u.,. >> uo. , so

(u- -u , , )6  - (u-D e7)

Similar to the product

Q"t -*u-un.-Z" l ,F,  i t  can be approximated

as 2u'-6 tor the same reason. As a result,

eq.(25) wil l tum out to be:
) r  .  . 1 , ,

3ovh -  u.  |  = a Llzul  a l+ 25u..d '  
""  '

dz'  dz

3ov(u, - u,,l = 2r', a 4! + 295' u, 
dut'

ctz o'e8)

Reviewing eq.(22), the equation relates
pressure gradient to gravity and free stream
velocity. In the case that this equation is applied
to flow in a falling film, the pressure gradient
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term will be zero due to the constraint that
pressure on the bubble interface is constant as
already demonstrated in the introduction section.
By forcing pressure to be constant in the falling
film region, eq.(22), thus, becomes:

du-.
( )  = t l  -
6  - ' t

az
2 l ru , - - u D + z g z

Substituting eq.(29) and
eq.(28), we obtain:

z|i, *zs'bP
az

+ 29962 ( 3 1 )

The term ("i, * Zgrp can be reduced to

be 2gz5. This is because ul, <<2gz when z

is larger. And this term approaches zero due to
the value of d when z is small. Applying this
approximation to eq.(3 l) results in:

t  |  -  r  ' "
zovl1l ui, + 2gz - u,,)= 4gzd 

uu 
+ 29g5'

(32)

- ^  
) -The term "lui, + -"-

approximated by

JQ+ tr)= 7Q)+ nf'(r) However, the
problem is that there are 2 choices, i.e.

a) we choose x = ul, and Ar = 2gz .

b) We choose x = 2gz and Lr = ul, .

The accuracy of Taylor series depends on
the size of Ar , or comparatively the ratio of
Lx I x . Here we have found that choice (b) is
better when z is large but gives comparatively

more effor when Ar / x = ul, l2gt >> I . In the

case that a Taylor bubble drifts freely in the

pipeline, we have ul, = uj = (O :+S)'gD. This

means that the choice (b) gives more error when

ul, I Zgz = 0.06D I z >> | or z << 0.06D ,
which is very narrow region close to bubble
nose. Hence, choice (b) is better for
approximating that :

(2e)

(30)

eq.(30) into

in eq.(32) can be

Taylor series,
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= Jk; +"i r.lag, / 1 1 ' l

Substituting eq.(33) into eq.(32), we get :

zovl"! z gz - (t - r,, t J BAI,,, )
= +srd I + 29952 (34)

az

which can be approximated as eq.(35) with
acceptable error in the region close to bubble
nose (approximately z <<0.06D as stated
previously).

/13
30v"l2gz = 4g267+29g6'�

uz

1 d62 15v 2962
2 dz ,125, 4z

To solve eq.(35), we let :
-  - )
6 : o -

F , : '

then eq.(35) becomes:
dt 60v ^^ t
_ j =  - - 2 9 - :  ( 3 8 )

dB 'l2s P

It is obvious that eq.(38) is a homogeneous
equation, which can be solved by assign that:

€  = Y f (3e)

(35)
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The constant c is set to be zero to make
eq.(43) finite at z = 0. Hence, we eventually
obtain the equation for predicting boundary
layer thickness as:

_  _ 1

|  5 ; t 1
5 =l  y. l : '  I  lqq)

|  t r g  I

which explicitly shows that the boundary
layer thickness in the falling film region

develops with zo2s

For a l l  necessary equat ions tu" f i  and

d;, for substituting in eq.(I1), Kinetic energy
coefficients are obtained. The next step, eq.(5) is
recalled and re-arranged to get dynamic pressure
explicitly exhibited.
I  _ "  I  _ ,

laoP^ui  
- iop.u-

= P - P o * P . g z o - p . g z  ( 4 5 )

By assuming that static pressure in the
falling film region is constant and mixture
density is uniform, which are respectively
consistent with eq.(29) and eq.(14), eq.(45)
reduces to be:

m t 2  - a o i i  = 2 g ( z - z o )

Since, at bubble noses ( 2,, :0), the

boundary layer thickness is zero as shown in
eq.(44), the velocity profile is uniformly equal to
Lt,, and the Kinematic energy coefhcient is

unity (ao = 0). Therefore, we get:

at t2 -u l ,  =2g2 (46)

(36)

(37)

-E =v * p+ (40)
dp dp

Substituting eq.(39) and eq.(40) into
eq.(38), we obtain:

B+=9- :ov (4r )' dB ,lzs

which after being integrated yields:

1 6  
. l

V  = l r ^ 1 1 - r B  t o  
I  t + z t

L  V g  l

in which c is any constant. Next, by
applying eq.(39), eq.(37) and eq.(36), we obtain:

Applying eq.(11) and eq.(14), we get :

[[+)'[' +d%](*)'-')",
= ) o z- 6 -

( , ,  ) ' [ ,  re  (qao)  
- l f  

D2 ) '
[7, L'- 3s.r5' -in1lD' 4R' )

) o z
_  I  

- O -

- 2 (47)
I

| 5; -:q li
b = l V  l - - c z  t  I

l 1 l  o  I
L  t o  I

u...

Substituting eq.(19) into eq.(47), we get :

(43)
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t, +( -q!\.1, .lv(q 
' 
-...1,^ -[-* D) -lTla1 -' 

1"
. ! r ( ! )=o (48)

3s ' �  (D i

In the case that boundary layer thickness is
not considered, eq.(48) will yield the model
proposed by Barnea [1] which neglects shear
stress. However, when the boundary layer
thickness is involved, eq.(48) becomes a cubic
equation, which can be solved by re-writing in
simpler form as:

. 1 3  + a 1 2  + b ) , + c = 0

Next, let:
a l  ^  t ^

A  = A _ O / J
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The s ign of  C'  -  Wt in  eq.(56)  is

important for determining )" and it can be
considered as follows. First, the magnitude of 7
is approximated by using eq.(48) and assuming
that d << D . Hence, we get:

.2 .3 -y) . -0
-  - )

^ )  |  D ' � - 4 R ' �  I/ = , t - = l  n ,  I

It is clear that (2 - V' in eq.(56) is always

negative, leading to the root of eq.(53) being
equal to:

A'=2Jrlr co"(6tz)
c o s Q = ( l V t ' ; 0 ' < 0 < 1 8 0 '

Exploiting eq.(52), eq.(51) and eq.(48), we
g e t :

,  , ,  4 6
, 1 , = ' L  + - -  ( 6 l )

3 D

Eventually, by applying eq.(49), we get the
model to predict the shape of Taylor bubble as:

Note that there are, in fact, 2 other roots of
eq.(53). But both of them give impractical
solutions for R because:

Herein, new variables are defined as
follows:

). =\D' -+n')f o' gs)
u  r - l

y  = [ t *?+1  (50 )'  l .  u : " )

(s l )

(s2)

Since R:0 at a location close to the

bubble nose and n-(ntZ)-6 at a location

close to the bubble bottom, we get the
magnitude of y as follows:

I  t  i R r o
I

y - {  / c \ 2  ( 5 7 )'  
l r o f 9 l  : R - ! - a
[  \ D /  2

This means that:

|  - +  ; R = o
- ) . 1 2 7
6 ' - W ' = 4  / ^ \ 6  D  

( 5 8 )

l - s o . z z f  9 t , *  = L - 5
l . \ D ' 2we obtain:

) " , ,  = ( !o ,  - t ) t , * (4 -Lo ,  - " )  , r r ,
[ 3  /  \ 3  2 7  )

which can be solved by assigning that :

,y = \(!o, - al = 1z (54)'  3 \ 3  )  3 ' �

-  l ( a b  2  ^  )
L = - l - - - q ' - c l'  2 \ 3  2 7  )

r  ( a \ [ o+ (a ) '  88  
- l  

- -= - - l  -  |  + - y l  ( ) ) )
2 \ D ) 1 2 7 \ D )  1 0 5 ' � . 1

- ,  .  l ( 6 4 ) ' f d \ u
C - - U / -  = - l  - l l - l

4 \ 2 7  )  \ D  )

t ( 6 4 \ (  8 8 )  f d ) '
2 \ 2 7  ) \ t 0 s  /  \ D  )
t / s s ) '  , ( 5 \ '  I  .

+ _ t  _ t  y " t _  |  _ _ y .  ( 5 6 \
4 \ l o s i ' \ D . )  2 7 '

(se)
(60)

(62)
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Table 1: Statistical Parameters of Gas-Liquid
Slug Flow along Vertical Pipes

1i = 2Ji "ot(6 tz *120"), always gives a
negative result, and

1l=2Ji"ot(6tz*240"),gives R +o at
the bubble nose (z = 0).

5. Model Verification
The present model in the previous section is

used to predict the shape of Taylor bubbles for
studying the effect of boundary layer thickness
by comparing with the shape of Taylor bubbles
predicted by eq.(l) and eq.(2). The eq.(3) is
omitted since Nigmatulin and Bonetto [2] did
not give adequate information to merge this
constant flm thickness to the second part of the
bubble although they recommended that eq.(3)
should be used when the bubble is long enough
that gravity in the film balances with wall shear.
Another model for calculating the constant film
thickness belongs to Wallis, which is referred to
Barnea [1]. It is not employed in this paper
because it considers the effect of shear force,
which may lead us to compare two different
parameters, i.e. boundary layer thickness and
shear force.

Flow around Taylor bubbles predicted by
all models is computed by k - a model for
compressible flow, which is discretized by
pressure correction scheme on finite volume
framework. A cylindrical collocated grid system
is used. The problem of checkerboard
distribution is resolved by the technique called
"Treatment of pressure". The No-slip condition
along pipe wall is treated with a wall function,
which relies on a logarithmic velocity profile
and the equilibrium between production and
dissipation of turbulent kinetic energy. The
detail of numerical algorithm can be found in
Ferziger and Peric [7].

By assuming that the Taylor bubble rises
along the centerline of the pipe, axis-symmetric
cylindrical coordinates are exploited as shown in
Fig. l. The computational domain has 2 regions,
i.e. liquid slug and falling film surrounding a
Taylor bubble. The length of liquid slug and
Taylor bubble are selected to be consistent to the
dimension of slug flows found in previous
works. For example, Clarke and Issa t5]
composed a computational algorithm for
predicting the shape of bubbles, whose length
ranges from 5D to 23D, with slug length
ranging from lOD to 46D. Mao and Dukler

References Pipe
Dia.

Slug
length

Bubble
length

Clarke and
Issa [51

50 mm I0-
46D

5-23D

Mao and 50.8 mm
Dukler I ll

6.2D

Shemer [l4] 24 mm 16.3D
-r7D 4-18.9D
in 24 in 54 mm
mm pipe
pipe

Van Hout e/ 24 mm
al. llSl

I6.3D 6.3-28.6D

[l] studied interfacial shear stress on bubble
surface with modified fr - e model with 6.2D -

long bubble. Van Hout et al. [16] statically
investigated the length of liquid slugs anc
Taylor bubbles in pipes. The average length of
Taylor bubble is between 4D and 18.9D in a
54 mm pipe, depending on flowrate and the
distance from the base of the testing section.
They also found that slug length is about 17D
in a 24 mm pipe. Table I summarizes the data
obtained from previous literature. Most
experiments revealed that there was a likely
equilibrium size for slug length but not for
Taylor bubble length, which is elongating along
the altitude of the pipe. According to the
information summarized in Table 1, in this
work, slug length and Taylor bubble length are
selected to be l5D and l0D, respectively.

The diameter of pipe is an important
parameter, which needs analysis for
determining. According to eq.(62), it is found
that the shape ofa Taylor bubble is a function of

)"' and 6f D . The 2' is defined by eq.(59) and

eq.(60). This implies that ).' is a function of 7

and 6f D, owning to eq.(54) and eq.(55).

Employing eq.(50), we can find that:
:
/  ^  \ - r  ,  

2 n D  r \ - t
r = l t + ! 8 1  = l r + - = -  _  |

\ .  u ; )  \  u i ,  D)

Van Hout et 24mm
al.l16l 54 mm

/ '  ,  \ 2  \ - l

= l r * -? - l  u l  a l
I  F l u , , )  D )

55

(63)



Where, for ideal fluid
( Eo > 70) as discussed
Beardmore [9]:

/  _ \ 1

t,r =lu, I .l so)' = 0.3452
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occurs in pipes with diameter ranging from 1l
mm to 112.5 mm. In this work, the pipe
diameter is, thus, selected to be 25, 50 and 100
mm to cover most of the possible pipe sizes.

The simulations consider Taylor bubbles as
an unmovable object obstructing liquid flowing
toward its nose. The velocity of flow at the
bubble nose is drift velocity calculated by
eq.(64). The boundary condition along the pipe
wall is considered as a no-slip condition and
governed by the wall function as stated
previously. A Free-shear boundary condition is
posed along the gas-liquid interface since the
gas density and viscosity are much lower than
the liquid density and viscosity as explained in
Bamea [l]. Along the centerline of pipes, a
symmetry boundary condition is posed. A
periodic boundary condition is exploited
between inlet and outlet plane with constant
forcing mass flowrate. The constant flowrate is
calculated by density, flow sectional area and
flow velocity, which is corresponding to bubble
drift velocity at the bubble nose. The fluid in the
l iquid s lug is  water  wi th a densi ty  of  l0r  kg,rnr
and absolute viscosity of l0-'Ns/m'.

6. Results and Discussion
The comparison between Taylor bubble

shapes, computed by 2 different models is
shown in Table 2 to 4 for the cases that pipe
diameters are 25,50 and 100 mm, respectively.
The boundary layer thickness ( d ) on the pipe
wall obviously affects the shape of the Taylor
bubble to be bigger at the head of the bubble
(from 0D to lD ) but slender afterward. The
ratio between Taylor bubble shapes
( Rp,".",, f Rou, ) for all cases approaches a

minimum. The smaller the pipe is, the smaller
the minimum is. This is previously expected
since the boundary layer thickness disturbs the
flow more seriously within the narrower falling
film occurring in the case that the pipe diameter
is small. It can be also explained by a
mathematical method. As shown in eq.(62), the
Taylor bubble shape is affected by 2 important
parameters. One of the 2 parameters is d/D. If

we divide eq.(44) with the pipe diameter, we
wi l l  set :

with 1ow tension
in White and

(64)

Next, employing eq.(44), we can find that :

t ,
t _
l , ,o

- t
o  l v

- l

D  I D '

l "- l ___ t r r

l u , o ^ '

5;1j
t "  I
l -  |

1 t  I

v s l

[ ,  I t
l z u l  z  I

\ r" ,)

(65)

Therefore, due to eq.(63) and eq.(65), the
shape of a Taylor bubble is dominated by 2
dimensionless groups, namely u,, lu u and

uuDf v. If i t is the case that a Taylor bubble

rises with drift velocity, the former
dimensionless group will be always unity. Only
the latter dimensionless group ( Re ) is to be
varied to evaluate the present model. However,
Re cannot be varied unboundedly. Das and
Pattanayak [6] have examined air-water flow in
vertical I I mm diameter pipes and found that
the transition from bubbly to slug flow occurred
at 34oh void fraction, independent of liquid and
gas flux velocity. Cheng et aL fal have studied
the bubble-to-slug transition of air-water flow
with 2 different pipe sizes (150 and 28.9 mm
diameter), and found that traditional slug flow
did not exist in larger pipes, whereas it suddenly
occurred in smaller pipes by increasing the gas
flow rate at a constant liquid flow rate. Kytomaa
and Brennen [8] confirmed that air-water flow in
vertical 102 mm diameter columns developed
from bubbly flow to chum turbulent flow rather
than slug flow at approximate 44.3o/o void
fraction, under the conditions of atmospheric
pressure and low liquid flux (<0.2mls). In
contrast, Sun et al. [15] have found that slug
flow still can occur in pipes with diameter larger
than 100 mm if the volumetric flowrate in the
pipe is low enough (0.01lm/s). In their work, an
air-water mixture is circulated in a vertical pipe,
which is I 12.5 mm in diameter and 12 m high to
assure fully-developed conditions. Also, the
information from Table I show that slug flow
happens in pipes with diameter of 25-50 mm.
So, it is conclusive that slug flow probably

- to l- = l  V
D I

L
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Table 2: The comparison of Taylor bubble
shape and pressure drop along the bubble
surfaces, computed by 2 different models for 25
mm p1pe.

( R r * * * \

l. "r- ,

0 . 1 1.214 -0.002 0.005

0.5 1 .008 -0 .013 -0.007

0.998 -0.035 -0.038

0.995 -0.140 - 0 . 1 9 1

0.993 -0.690 -  1 . 0 1 3

0.993 - 1 .843 -2.8t7

0.993 -3.682 -5 .833

t 0 0.993 -6.212 -10.204

Table 3: The comparison of Taylor bubble
shape and pressure drop along the bubbles
surfaces, computed by 2 different models for 50
mm plpe.
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Table 4: The comparison of Taylor bubble
shape and pressure drop along the bubbles
surfaces, computed by 2 different models for
100 mm pipe.

loo)r'oo (tp)-to'
\  Po )  p,r , " , ,  \  P" )  1,g7

I z )
tt,l a l

\ D )

(or)r ,uo ( tp) . t0, ,
\ Po ) ,,,.,"n, \ P,t ) nar

(R0,",", ,)

l. ̂ '- ,
(ry)r,ou (te),,u,
\  Po )  , , , . , ,n,  \  Po )  ps7

1 . 2 t 7 0.000 0.009
-0.021 -0.007

-0.046 -0.041

0.997 -0 .1  83 -0.224

0.996 -0.880 -  I  . 1 6 5

0.995 -2.357 -3.204

0.995 -4.697 -6 .550

l 0 0.995 -1.910 -t1.293

Eq.(66) states that 6f D varies with D'rlt.

Therelore,  a l  lhe same z l  D.  6 lD wi l l  be less

if the pipe diameter is larger. This agrees very
well with the simulated results shown in Table 2
Io 4.

0 . 1 |  .219 -0.01 8 0 . 0 1 8

1.0 t2 -0.030 -0.002

1.002 -0.057 -0.038

0.999 -0.219 -0.245

0.998 -1.042 - L285

0.997 -2.749 -3.453

0.991 -5.4r1 -6.902

1 0 0.997 -8.977 -t t .625

The next investigated result is the static
pressure along the gas-liquid interface on the
liquid side. Table 2 to 4 shows pressure drop
ratios, resulted from different Taylor bubble

shapes. The symbol Ap refers to p- pn. As

previously stated, static pressure should be
constant along the interface, implying that
pressure drop should be zero along the interface.
Both the present model and the combination of
Dumitresku & Taylor models still give pressure
drops. The presence of pressure drop may be
caused by wall shear, which is neglected in both
models. However, we will not prove this
hypothesis since it is out of the scope of this
work. When concluding all 3 cases of different
pipe sizes, it is found that the present model
gives comparatively little pressure drop within
the region of the bubble head (from 0D to
2D), but comparatively larger pressure drop
within the region of the bubble tail (beyond
2D ). This is consistent with the ratio between
Taylor bubble shapes, because the bubble head,
predicted by the present model, is larger. It
induces higher increasing rates of dynamic
pressure, leading to higher decreasing rates of
static pressure. However, the present model
seems to give better shapes of Taylor bubbles
when the pressure drop is seriously considered.

Kinematic energy coefficients (a) for 3
cases of different pipe size are shown in Fig.3 to

0.5

2

l i -  |
\D i

( Rn,",",,\

tR"- J
0 . 1

1 . 0 1  I0 .5

1 . 0 0 1
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Fig.5 as a function of position 1zlD\. me

simulated results show that a is not unity at the
bubble nose. It is because, in fact, the boundary
layer starts to develop approximatel y 0.5D
before the bubble nose. This can be confirmed
by previous works. For example, Bugg et al. 13)
found that beyond D I 3 , in front of the bubble
noses velocity is almost undisturbed, while
Polonsky et al. l13l and Van Hout et al, U7l
found that the flow field is undisturbed beyond
0.66D and 0.5D in front of the bubble nose,
respectively. As a the result, the boundary layer
thickness at zf D =0 is not zero, leading to

a > | in all simulated results. In contrast, d
calculated by eq.(44) which is forced to be zero
at position zf D = 0 to eliminate the singularity

term (cz 2el2) iL eq.(43). This is the reason why

deq't&te, which uses d calculated by eq.(44),

shows a result equal to unity at zf D = 0 .

1 . 4

I . - l

t . z
AO

l . l

1 . 0

0.9

z/D

Figure 3: The comparison between a
computed by the simulation with Rr,","n, zr'd d.

calculated by eq.(11) & eq.(19) in 25 mm pipe.

z/D

Figure 4: The comparison between q,

computed by the simulation with R p,","n, drrd d.

calculated by eq.(11) & eq.(19) in 50 mm pipe.

z/D

Figure 5: The comparison between a
computed by the simulation with Ro,""",, and

a calculated by eq.(11) & eq.(19) in a 100 mm
pipe.

Another interesting point about the curves
of a is that all the curves approach a maximum
value. By comparing among the results from
different pipe sizes, it is found that larger pipe
diameters give smaller maximum values. This
can be explained by considering eq.(11) and
eq.(19). In the region of the bubble tail, it is
found that naturally R = (Dl2) and

a -+[(O1Z)- Rl Z, in which 7 is the ratio

between 5 and gap width 7(OlZ)- n1

Applying these assumptions into eq.(11) and
eq.(I9), the l imit of a wil l be:

u 2  /  r q )
l i m ,  r - o  a = - - - - .  ,  l l - : l  I  t O Z l

x ' - x - / l \  r r x )

Eq. (67 )g i ves  a=1 .37  when  7  = l .Th i s

is the maximum value of a since naturally d
cannot be bigger than the gap width

l,\Dl2)- R l, resulting in X^in = l. When D is

bigger, the gap width increases, leading to
higher 7, which decreases a in eq.(67).

The last interesting point about the
curves of d is that, at the same pipe size,
d p,",",, reaches a higher maximum with slower

rate than d eq.tt&te does. The reason is that

aeq.ll&te is predicted under the assumption that

the static pressure is constant, resulting in

6 n zo" as shown in eq.(44). Generally, a

t . 4

l - J

1 .2
R

1 . t

1 . 0

0.9

L 4

l . J

1 . 2

l . t

1 . 0

0.9
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^ D
2

where

increases when d is higher. But for the case of

a r,","n,, it is obtained from simulation where the

pressure gradient in a falling film is favorable.
The favorable pressure gradient increases the
momentum of flow and retards the increasing
rate of d as well as a. However, the order of

magnitude of ap,",",, aad a"s.rr&ts are very

close in the region ofthe bubble tail for all pipe
sizes. This is the reason why the present model
predicts quite good bubble shapes especially in
the region of the bubble tail.

7. Conclusion
1. A new model for predicting the shape of

Taylor bubbles by considering the effect of
Kinematic energy coefhcients is obtained and
summarized as shown below :

cos{ = (  lV"
I

u /  = - y
J

; 0 '  < 0  <  1 8 0 '

2. The assumptions for deriving the new
model are

2.1 The pressure along a Taylor bubble
interface is constant.

2.2 The density of the mixture around a
Taylor bubble is uniformly distributed.

2.3 The boundary layer thickness is much less
than the pipe diameter.

2.4 The boundary layer thickness is less than
the falling film gap ( f > l).

2.5 The wall shear is neglected.
3. The features of this model are

3.1 When pressure drops along a Taylor
bubble interface, the new model predicts
worse bubble noses but much better

1' = 2Jrlt cos(6 tl)
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bubble tails in comparison to previous
models.

3.2 The new model can predict the shape of
whole bubbles. This is different from the
previous models, which need to employ 2
(or 3) equations for predicting the shape
of a whole bubble.

4. The new model can be applied in many
works, for example:

4. 1 Since the one-equation model gives a
smoother curve of bubble shape than the
two-equation model does, the shape of
Taylor bubbles and the boundary layer
thickness predicted by this new model
will be more convenient to use for
studying the flow field in thr falling film
region. On the other hand, there is no
need for considering the region where 2
different curves of shape merge.

4.2 The shape of Taylor bubbles predicted by
the new model can be used as a reference
for other experimental and computational
results since it gives better bubble shapes
than those predicted by previous models.
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