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Abstract
In this paper the Dufour (diffusion-thermo) and Soret (thermal-diffusion) effects on combined

free-forced convective and mass transfer flow past a semi-infinite vertical flat plate, under the
influence of transversely applied magnetic field, have been studied numerically. The non-linear partial
differential equations, goveming the problem under consideration, have been transformed by a
similarity transformation into a system of ordinary differential equations which is solved numerically
by applying the Nachtsheim-Swigert shooting iteration technique together with sixth order Runge-
Kutta integration scheme. For hydrogen-air mixture as a non-chemical reacting fluid pair, profiles of
the dimensionless velocity, temperature and concentration distributions are shown graphically for
various values of the parameters entering into the problem. The present solutions are compared with
Kafoussias [20] and found to be in excellent agreement. Finally, the corresponding local skin-friction
coefhcient. local Nusselt number and local Sherwood number are also shown in tabular form.
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1. Introduction
The application of free convection flows,

which occur in nature and in engineering
practice, are very wide and have been
extensively, considered by Jaluria [1]. Flows
that are subjected to a combination of free and
forced convection are known as combined free-
forced convective flows. The simplest physical
model of such a flow is the two-dimensional
laminar flow along a vertical flat plate.
Extensive studies have been conducted on this

type of flow by several authors 12-51.
Application of this model can be found in the
area of reactor safety, combustion flames and
solar collectors, as well as building energy
conservation [6]. This model has also been used
by many investigators to analyze the combined
free-forced convective boundary layer flow, for
micropolar fluids, or for the flow through porous
media [7-9].

The previous studies, dealing with the
transport phenomena of momentum and heat



transfer, have dealt with one component phases
which possess a natural tendency to reach
equilibrium conditions. However, there are
activities, especially in industrial and chemical
engineering processes, where a system contains
two or more components whose concentrations
vary from point to point. In such a system there
is a natural tendency for mass to be transferred;
minimizing the concentration differences within
the system and the transport of one constituent,
from a region of higher concentration to that of a
lower concentration.This is called mass transfer.
For heat and mass transfer over plates by either
natural, forced or combined convection, many
studies involving theoretical or experimental
investigations have been published in the
literature and most of these studies are based
upon the laminar boundary-layer approach [0-
l4]. The combined free-forced convective and
mass transfer flow is a comparatively recent
development in the field of fluid mechanics and
the different mathematical models and
correlations which have been developed can be
applied to many industrial applications, such as
chemical or drying processes.

In the above studies. the diffusion-thermo
(Dufour) and thermal-diffusion (Soret) term
were neglected from the energy and
concentration equations respectively. But when
heat and mass transfer occur simultaneously in a
moving fluid, the relations between the fluxes
and the driving potentials are of a more intricate
nature. It has been found that an energy flux can
be generated not only by temperature gradients
but by composition gradients as well. The
energy flux caused by a composition gradient is
called the Dufour or diffusion-thermo effect. On
the other hand, mass fluxes can also be created
by temperature gradients and this is the Soret or
thermal-diffusion effect. In general, the thermal-
diffusion (Dufour) and the diffusion thermo
(Soret) effects are of a smaller order of'
magnitude than the effects described by
Fourier's or Fick's laws and are often neglected
in heat and mass-transfer processes. There are,
however, exceptions. The Soret effect, for
instance, has been utilized for isotope
separation, and in mixtures between gases with
very light molecular weight (H2, He). For
medium molecular weight (N2, air), the Dufour
effect was found to be of a considerable
magnitude such that it cannot be neglected
(Eckert and Drake!51). In view of the
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importance of these above effects, Kafoussias
and Williams [16] studied thermal-diffusion and
diffusion-thermo effects on mixed free-forced
convective and mass transfer boundary layer
flow with temperature dependent viscosity.
Recently, Anghel et al.[17] investigated the
Dufour and Soret effects on free convection
boundary layer over a vertical surface embedded
in a porous medium. Very recently,
Postelnicufl 8] used an implicit finite difference
method to study the influence of a magnetic
field on heat and mass transfer by natural
convection from vertical surfaces in a porous
media considering Soret and Dufour effects.
Therefore, the objective of this paper is to
investigate the Dufour and Soret effecls on
steady combined free-forced convective and
mass transfer flow past a semi-infinite vertical
flat plate in the presence ofa uniform transverse
magnetic field.

2. Mathematical formulation
A two-dimensional steady combined free-forced
convective and mass transfer flow of a viscous,
incompressible and electrically conducting fluid
over an isothermal semi-infinite vertical flat
plate under the influence of a transversely
applied magnetic field is considered. The flow
is assumed to be in the x-direction, which is
taken along the vertical plate in the upward
direction and the y-axis is taken to be normal to
the plate. The surface of the plate is maintained
at a uniform constant temperature Tn. and a
uniform constant concentration C", of a foreign
fluid, which are higher than the corresponding
values I- and Co respectively, sufficiently far
away from the flat surface. It is also assumed
that the free stream velocity [./* parallel to the
vertical plate, is constant. The magnetic
Reynolds number of the flow is taken to be
small enough so that the induced magnetic field
is assumed to be negligible in comparison with
the applied magnetic field so that B:(0, Bs,0)
where Be is the uniform magnetic field action
normal to the plate. The equation of
conservation of electric charge VJ:0 gives -/r:
constant, where J-(J., Jr, J,) Since the plate is
electrically non-conduction, this constant is zero
and hence jr:0 everywhere in the flow (for
detailed discussion see Nanda and Mohanty

[9], Sattar and Hossain [20]. Then the problem
is governed by the following boundary layer
equations under the usual Boussinesq's
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approxlmanons:
Au 6v
: : +  ^  : 0 .  ( l )
ox oy

a )au ou o-u
u-+v !  =  u -+  cBg - r " . )

Ax Av Av'
(2)

n  I ) t

+ g B " G - C , ) - o t r o u
p

ar  dT a 'T  D-  k ,  a2c. t . _ = a _ "  
-  T - _ . ,  ( J )

0x fu Ay'  L ' ,cr  A'
ac ac a 'c D. k r  a2T

u _ a  l _ =  u - , _  T - - - - - - - - - .  t a ,

0x 0y T- fu-
where zl, v are the velocity components in

the x and y directions respectively, v the
kinematic viscosity, g the acceleration due to
gravity, p the density, B the coefhcient of
volume expansion, / the volumetric coefficient
of expansion with concentration, T, 7", and T.
are the temperature of the fluid inside the
thermal boundary layer, the plate temperature
and the fluid temperafure in the free stream,
respectively, while C, C, and C- are the
corresponding concentrations. Also, o is the
electrical conductivity of the fluid, Bo the
magnetic induction, a the thermal diffusivity,
D- the coefficient of mass diffusivity, c7 the
specific heat at constant pressure, T^ the mean
fluid temperature, k7 the thermal diffusion ratio
and c. the concentration susceptibility.

The appropriate boundary conditions for the
above problem are as follows:

u  = 0 , v : 0 , 7  : 7 , , C : C , " a t y  = 0 ,  ( 5 a )

u  = U . , 7  = T - , C  = C " ,  a s  /  - + c o .  ( 5 b )

The last term on the right-hand side of the
energy equation (3) and concentration equation
(4) signifies the Dufour or diffusion-thermo
effect and the Soret or thermal-diffusion effect.
respectively.
Now we introduce the following dimensionless
similarity transformation :

tr:
n :  v  l : -'  ' 1 r *

u =U -f 
' \q),

g (n \=  T  -T '

T" -T-

6h) :  c  - c '
C ^  - C ,

similar:

f '  * ) . f f '  + g "o + s"Q -  Mf '  = o,

e' + !p, /'o' + Pr DfQ" = g ,

6 '+ !s r1p '+  s rsco '  :0 .

From the continuity equation (1), we have

Av Au

A o x
Integrating both sides of (7)
we get

with respect to y,

I  E i , - , ,, = -; lt: lr7r)- rr f 'Grl (8)

Then substituting the relations (6) and (8)
into equations (2)-(4), we get the following
dimensionless equations which are locally

(6)

(7)

The relevant boundarv conditions in
dimensionless form are:

- f  = 0 , - f ' = 0 , 0  = \ , Q : 1  a t  r y = 0 ,  ( l 2 a )

- f  
'  :1,0 :0,0 = 0 as ry -)  cn ,  (12b)

where primes denote differentiation with
respect to the variable t7 and the dimensionless

parameters introduced in the above equations
are defined as follows:

Pr :9 is the Prandtl number, Sc =
a

t I  -

Schmidt  number,  Re.  :  Y:- '  1 .
U

(e)

(10)

( 1 1 )

u 
i, the

D,

the local

R e y n o l d s  n u m b e r .  t t = o B , i , *  i s  t h e
p U -

Magnetic field parameter,



G,,
Grashof  number,g.  :- - - - - -  - - - o  \  

R " . i

buoyancy parameter and g,

buoyancy parameter.

3. Numerical solution:

The system of non-linear ordinary
differential equation (9)-(11) together with the
boundary conditions (12) are solved numerically
using the Nuchtsheim-Swigert shooting iteration
technique together with sixth order Runge-Kutta
integration scheme. In a shooting method, the
missing (unspecified) initial condition at the
initial point of the interval is assumed, and the
differential equation is then integrated
numerically as an initial value problem to the
terminal point. The accuracy of the assumed
missing initial condition is then checked by
comparing the calculated value of the dependent
variable at the terminal point with its given
value there. If a difference exists, another value
of the missing initial condition must be assumed
and the process is repeated. This process is
continued until the agreement between the
calculated and the given condition at the
terminal point is within the specified degree of
accuracy. For this type ofiterative approach, one
naturally inquires whether or not there is a
systematic way of finding each succeeding
(assumed) value of the missing initial condition.

The Nachtsheim-Swigert iteration technique
thus needs to be discussed elaborately. The
boundary condition (12) associated with the
non-linear ordinary differential equations (9)-
(11) are the two-point asymptotic class. Two-
point boundary conditions have values of the
dependent variable specified at two different
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values of independent variable. Specification of
an asymptotic boundary condition implies that
the hrst derivative (and higher derivatives ofthe
boundary layer equations, if they exist) of the
dependent variable approaches zero as the outer
specihed value of the independent variable is
approached.

The method of numerically integrating a
two-point asymptotic boundary-value problem
of the boundary-layer type, the initial-value
method is similar to an initial-value problem.
Thus it is necessary to estimate as many
boundary conditions at the surface as were
(previously) given at infinity. The governing
differential equations are then integrated with
these assumed surface boundary conditions. If
the required outer boundary condition is
satisfied, a solution has been achieved.
However, this is not generally the case. Hence, a
method must be devised to estimate logically the
new surface boundary conditions for the next
trial integration. Asymptotic boundary value
problems such as those goveming the boundary-
layer equations are further complicated by the
fact that the outer boundary condition is
specified at infrnity. In the trial
integration,infinity is numerically approximated
by some large value of the independent variable.
There is no a priori general method of
estimating these values. Selecting too small a
maximum value for the independent variable
may not allow the solution to asymptotically
converge to the required accuracy. Selecting too
large a value may result in divergence of the
trial integration or in slow convergence of
surface boundary conditions. Selecting too large
a value ofthe independent variable is expensive
in terms of computer time.
Nachtsheim-Swigert [l9] developed an iteration
method to overcome these difficulties.
Extension of the Nachtsheim-Swigert iteration
scheme to the system of equation (9)-(11) and
the boundary conditions (12) is straightforward.
In equation (12) there are three asymptotic
boundary conditions and hence three unknown
surface conditions 1'@), e'(O) ana{'(O).

Within the context of the initial-value method
and Nachtsheim-Swigert iteration technique, the
outer boundary conditions may be functionally
represented as:

.f '(rt^ 
*)= .f '(f '(o),0'(o),p'(o))= a,, (13)

g(ry^ *): e(y'@),e'(o),4'(o))= a,, (14)

is the temperature

=%is the mass
Rei



Thammasat Int. J. Sc. Tech., Vol. I l, No. 2, April-June 2006

E =61 +61 +61 +61 +6!  +5 i  Qs)
Differentiating d with respect to g,gzand g,

respectively, we obtain:

d(,7^ *) = O("f'(o),e'(o)4'(o)) : a,, (rs)
with the asymptotic convergence criteria given
by

.f 
' (rt ̂ *) = .f 

' (.f ' (o), e' (o), 6' (o)) : d o, ( I 6)
l '(rt^^^): e'(.f '(o),e'(o),6'(o))= 5., (17)

Q'(ry^ ^): O'(f 
'(o),0'(o),6'(o))= su. (r8)

Choosing / ' ' (0) :  g ,  ,e ' (0) :  grand

d'(0): g, and expanding in a first-order

Taylor's series after using equations (13)-(18)
yields:

- f ' ( r l  ^ " , )  :  f [ t r ;  ̂ ^ , I  +  {  ng,  *  {  ns,
o9t o9t

l lor ,  = u,.  (re)
oBt

0(rJ ^u,\ : 0, (4,nu l + 
ff 

ns, * 
# 

or,

a0
: -Ag, = dr.  (20\
08t

d(rl^^^| = 0, (u^u^| * y ng, * a^A- tg,
o9t o9z

ad
^ Ag,  = d,  .  (21)
oEt

.f 
'  (,1 ^,,1 : .f i  (rl  ̂",1 * { M, * { M,

o4t o4z
A { t

1-Lg,  =  5o-  Q2\
oEt

0' ( rl  ̂u*) = 0i (rl  ̂̂ , I + ! ry, * Y ng,
o9r o9z

AP '
*Ag ,  =  d , .  Q3 \
oBt

d ' ( r l - " , \  =  Q ' r ( r l ^ " ,1+  {  M ,  *  {  ns ,
o9t o4z

ad'
-  Agr  = dn.  (24)
OBt

where subscript 'C' indicates the value of the
function at ry.u* determined from the trial

integration. Solution of these equations in a
least-squares sense requires determining the
minimum value of :

[[r)'
f  .  , 2  . )  . : l
l ( a f ' \  ( a 0 ' \  ( d d ' \  l .- l l . - l  + l  _  |  + l : - l  l a g  +
L \ o g r  /  \ o 8 r  i  \ o 8 r  i  l

f  a[ '  df '  ao ao ad ad)
| " .' + __ + ____' ' la.e. +
lAg, Ag, 09, dg, 0g, dg, ) 

" '

f  af '  df '  do' de' dd' a6'f
|  "  '  + _ _ + _  ,  l a s , +
LOg, 6g, 69, Ag. Ag, Ag, ) 

" '

I  ar ar ae do d6 ddf
|  '  - -"  r  --  !  -----L-----L lA ^ r
I  r  1  .  .  l - o j

logt og, 08t ogt o8t 08t )

I af' ar ao' ao' ad' a6'1
|  

-  + - - + 1 - 1  l ^ g ,
Ldg,  dg ,  dg ,0g ,  dg ,  dg . l  

"

^, af' ^ de ad -" af'= - (  1 ,  "  + 4 ,  - + A -  +  l ;  "
" '  

d g ,  A g ,  
' '  

d g ,  
" '  

0 9 ,

/  , 2  . : l( d 0 \  ( d d \  |+ l  .  |  + l : - l  l n g
\ o g r  /  t o g r  i  l

^ ,  a0  , ,  dd '
a - + 0; ----L ).

L  A  I L  1

o4r o9t

t .  . 2  ,  . 2
t (  a f ' \  , (  d e  \
l l - l  T l - l

f  \as, /  \os, )

(26)

,  ' : l( d 6 \  |+ l ; ' -  |  lA8,
\ o 8 :  /  l

f  ,  . 2

, l (  d f '  \
T l  l - l

l \oEz )

I  af '  af '  ae ae dd a6f
|  "  +__+ la .s ,  +
lAg, 0g, Ag, 09, 0g, 0g, I 

" '

f  af" df '  de' de' ad' a6'1
l '  "  + _ _ + _ _ _ '  '  l A e , +
lAg, dg, 09, Ag, Ag, Ag, ) 

" '

I ar ar do ae dd ad)
|  '  "  +  r  _ l a . e , +
lAg, Ag, 09, 09, 0g, dg, ) 

""

f af' af' ao' ao' ad' a6'f
|  "  . '  + _ _ +  l A e ,
lAg, 0g, Ag, 09, Ag, Ag. ) 

""

=- ( f )o f '  +0 .  ao  *d ,  a0  +  f , :d f'  
dg, Ag, "  Ag, 

' '  
09,

,  . 2  ,  , : l(  a e ' \  (  d d ' \  |+ l  .  |  + l : - - l  l ^ 9 , +
\ o 9 z )  \ o 8 z l  l



Thammasat Int. J. Sc. Tech., Vol. 1 I, No. 2, April-June 2006

e'.Y*d'.Y). e7)'  og, ' '  og,

f  .  . . 2  ,  . 2  . u l
l ( a f ' \  ( d 0 \  ( d 6 \  l ^
l l ; - l  + l  .  |  + l : - l  l ^ 8 ,
L \ o c r l  \ o 8 , )  \ o 8 r l l

f  .  . 2  . 2  . . l l
l ( d t ' \  ( a e ' \  ( a 6 ' \  |+ l l : 1 - 1  + l  .  |  + l : - l  l ^ g , +
[ \  

08:  i  \o9t  )  \o4t  )  )

I ar ar ae ao a6 adf
|  

"  " +----!-----L lA.e,+
Ldg dg, fg,  dg, dg, dg,_l  

" '

f df' af' ao' ao' a6' ad'I
| " " +__+___L____L lA.e, +
Ldg, dg, dg, 69., dg, 6g,l 

"'

I  ar ar de do a6 d6)
|  "  "  + _ _ +  ' _ _ _ _ ,  l A e , +
lAg, 6g, 09, dg, 09, Ag, )  

" '

f af' df' do' ao' dd' a6'1
l '  "  + _ _ +  l A e .
16g, 0g. Ag, Ag, dg, dg, I 

"-

- , a f '  ^  a 0  d d  , , a t ": - I i .  - t U ,  - - O ,  - -  i .  -'  
dg,  

'  
dg,  

"  
dg,  

'  
dg,

o: y*d: y). (28)'  dg,, 
' ' 

dg,'

We can write equations (26)-(28)
system of linear equations as follows:

a,rLg,  + arrA,g,  + a, .Lg, �  :  b , ,

arrLg, + arrAg, + a..A,g. = br,

arrLgr- t  arrA,g,  + arrL,gr :  br .

where
f  .  . )  , )  ,  . : l
l ( a f ' \  ( a 0 \  ( d d \  |q , , = l l : l *  + l - l  I"  
l [ a s ,  , /  l a g l  l a g ,  ] I

l (  ar ' \ '  (  ae'\ '  (  ao'\ ' )
+ l l - "  l + l - l + l  I  l .

l \ a s l  \ a g l  l a g ,  J ]

I  af '  af '  ao ae dd adl
a , ,  = l  _ : + _ _  + - ,  I'" 

lAg, dg, Ag, Ag, dg, dg, ]

I df' af' de' ae' dd' dd'\
T r - -  t : q t , .

l 0S,  Ag,  Ag,  Ag,  dg , )g r j  
'

I  af '  df '  ao ae a6 adl
u , ,  : t - -  T - -  t' 

Ldg dg, Ag, 09. 0g, 0g, l

I af' af' ao' ao' ad' ad'\
+ l : : + _ _  +  l =  a _ ,  -

L dg, dg, 0g, 0g, dg, 69, l 
'

f  .  . 2  ,  . r  . : l
t ( d f ' \  ( a e \  ( d d \  |

a . . = l l  '  l + l - l + l - , l  I-- 
l[as, / \as, ) \ag, i .]

l( ar'\ '  ( do'\ '  ( aa'\ ')
+ l l  "  l + l _ l + l _ _ _ _ _ l  L

[ \ a s , /  \ d g , /  l a g , ] j

I  ar af '  ao do a6 adl
o _ . = l  -  - + - - +  I

Ldg, dg, dg, dg, 0g, Ag. )

I af' af' ao' ao' ad' d6'1
T l - -  -  

t = - r r ,

Ldg, dg, Ag, Ag, Ag. Ag,_l "

f  .  . 2  ,  , 2  . . t l
l ( d f ' \  ( a 0 \  ( d d \  |

u . . : l l  "  l + l - l + l - l  I
f - | | 1 | I . I I a | |

L \ o g r i  \ o 8 : i  \ o 8 r l _ l
f  ,  \ 2  ,  . )  , : l

l ( a 0 t ' 1  , ( a o '  )  r a l ' l  I
I  r l -  I  - r l -  |  L

[ a s , /  l d g , /  t a g , / ]

b, = -( t'; aJ- * e.9 * a, 4 * f1df" '  
dg, Ag, 

"  
dg, 

'  
Ag,

^.  d0 . ,  d6 '
a . - + a : . - - - - L ) .'  

dg ,  
' '  

dg ,

,  " , d [ '  ^  a 0b , : _ U ; _  + u , ^  + Q ,
!  - L  t  L  to9z o9z

^ ,  d0  , ,  dd '  .
+ o , .  L l ,

o4t d9z

.  ^ , a f '  ^  d 0  a 6  , , d f "
b . : - (  l -  !  + a -  - + a  - +  1 .  '

ogt ogt ogt og:

^,  d0 , ,  dd '
a  _ + o - L l  .

o9t o9t

l n a

(2e)

(30)

( 3 1 )

aO , ', a.f'
^  T  J c  ^o9z o4z



det A, det A"
A . g ,  =  j . A , g ' :  ' a n d

de tA  de tA
det A.

aP'1 :-------r
det A

where

Now solving the equations (29)-(31)
using Cramer's rule, we have:
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Fig. 1: Comparison of velocity profiles with
Kafoussias ( 1 990).

f '

Pr  -  0 .71 ,  Sc  -  0 .22 ,  Sr  -  2 .0 ,
Df  :0 .03  and M :0 .02

o : O O 5

g.  -  0 .10
o  : 0  ) 0

/ , <
' ,.r"' =0. I

1 . 5

n
Fig. 2: Velocity profiles for different values of
g" and g".

Fig. 3: Temperature fiofiles for different values
ofg, and g".

det A,

det A,

Then we obtain the missing (unspecified) values

St ,  Ez and g. ,  as:

f  r : g r + L g t ,
g z = g z + L 9 r ,

g z :  g t  + A B r '

Thus adopting the numerical technique
aforementioned. the solution of the nonlinear
ordinary differential equations (9)-( I I ) with
boundary conditions (12) are obtained together
with the sixth-order implicit Runge-Kutta initial
value solver. A step size of Ary : 0.01 was
selected to be satisfactory for a convergence
criterion of 10 6 in all cases. The value of rt-
was found for each iteration loop by the
statement e.,: r7-+Lr7. The maximum value of

e- , for each group of parameters M, Df, Sr, Pr,
Sc, g" and g" is determined when the value of the
unknown boundary conditions at r7: 0 does not
change (successful loop with emor less than
l0-" . )

lb'  
a,, q,, 

|  1",, 
b, a,, l

= l b ,  a ,  a , , 1 .  d e t  A ,  = \ a , ,  b ,  a , , 1  ,

lr,, "., ".. I l"; i' o,,l

1",, ",, b, I la,, a,, q,,l
= 1 a , ,  a , .  b ,  l ,  d e t  A : 1 a , ,  e , ,  e , . l

1o,,, o,',.' ,t,'l lo',,, o'.', o',,1
2.5

o l- o

Pr :  0.71, Sc :  0.22, g.  :  0.05
and Sr: Df : M:0.0

Present paper

. . o Kafoussias(l990)

Pr  :  0 .71 ,  Sc  -  0 .22 ,Sr  -  2 .0 ,
Df  :0 .03  and M :0 .02

g " : 0 ' 0 5

g ' : 0 '  l 0
o  =0  |  g .  : 0 .20



Pr  :  0 .71 ,  Sc  :  0 .22 ,Sr  :  2 .0 ,
Df -  0.03 and M :0.02
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To assess the accuracy of our code, the
present result has been compared with
Kafoussias [20], when M: DJ : Sr : 0 (see Fig.
I and Table-l). From this figure we see an
excellent agreement between them.

4. Skin-friction coefficient, rate of heat and
mass transfer

The physical quantities of most interest in
such problems are the skin-friction coefficient
(C), the Nusselt number (Nu,) and the
Sherwood number (Sft.y which are defined by the
followins relations:

Sh, r (32)
D_\C, - C, )

respectively, where ft is the thermal
conductivity of the fluid, and the skin-friction on
the flat plate

t,.., rate of heat transfer q,, and rate of mass

transfer M,,. are given by:

q , ,  -

Using (6) and (33) we can write the
quantities of (32) in the following form:

]c,1*.,  ) i  = r ' (o).  N,,  (Re, ) 
' ,  :  -d'(o)

2 "

and Sft, (Re. ) % = -O'@). (34)

From the process of numerical
computation, the above coefficients sorted out in
Table-l and Table-2.

t  ^ t
I  o u l

L' dv.l ,:o
f  . ^ l
t o l  I= - D - l = l
L o v  )

-rlq] and
Ldvl "=o

n 1 )Mu,

Table-1 : Comparison of skin-friction
Coefficient (C) and local Nusselt number (lftl-,) for M: Df : Sr - 0

Kafoussias"
(cr)

Present Kafoussia
(c) s"

Present
(Nr')

(NrJ
0 .  l 0
0 . 1 0
0 .  r 0
1 . 0 0
1 . 0 0
1.00
10.0
1 0 . 0
10.0

0.05
0 . 1 0
0.20
0.05
0 .  r 0
0.20
0.05
0 .  l 0
0.20

0.5538 0.5s38 0.3296 0.3296
0.631 7 0.63 15 0.3404 0.3404
0.7776 0.7772 0.3589 0.3589
1.4452 |.44s1 0.4129 0.4129
1.5007 l . s00 l  0 .4n9 0 .4178
1.6096 1.6081 0.4274 0.4272
6.8389 6.8385 0.6449 0.6450
6.8715 6.8712 0.6461 0.6463
6.9366 6.9356 0.6487 0.6488
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Table-2: Numerical values of skin-friction coefficient (C), Nusselt number (Na.) and
Sherwood number (S/2.) for Pr - 0.1 l, Sc : 0.22, & : 1.0 and g. - 0.05.

Df Cr Nu, Sh,SrM

0.02 2.00
0.06 2.00
0.10 2.00
0.02 2.00
0.02 0.40
0.02 0.10

0.03
0.03
0.03
0.03
0 . 1 5
0.60

1  A a l a
t  - + z z L

1.3671
1.3069
1.4222
1.4260
r.4650

0.4086 0.146s
0.3978 0.1440
0.3869 0.1388
0.4086 0.1465
0.4012 0.2538
0.3830 0.2545

5. Results and discussion

Numerical computations have been carried
out for different values of magnetic field
parameter M and for fixed values of Prandtl
number Pr, Schmidt number Sc. The value of
Prandtl number Pr is taken equal to 0.71 which
corresponds physically to air. The value of
Schmidt number Sc - 0.22 has been chosen to
represent hydrogen at approx. T^: 25"C and I
atm. The values of Soret number Sr and Dufour
number D/ are chosen in such a way that their
product is constant according to their definition
provided that the mean temperature T. is kept
constant as well. The dimensionless parameter

Gr.
C, =:-+ is used to represenl the lree. forced

Re'

and combined (free-forced) convection regimes.
The case g,<<l corresponds to pure forced
convection, g, : I corresponds to combined
free-forced convection and g,>>l corresponds to
pure free convection. As the local mass Grashof
number Gr- is a measure of the buoyancy forces
(due not to temperature but to concentration
differences) to the viscous forces, the
dimensionless parameter gc has the same
meaning as the parameter g.. The dimensionless
parameter g, takes the values 0.1, I and l0
which correspond to three different flow
regimes as already mentioned above. The
corresponding parameter g" takes the values
0.05.  0.10 and 0.20.

With the above-mentioned flow parameters,
the results are displayed in Figs. 2-10, for the
velocity, temperature and concentration profiles.
In Fig.2, velocity profiles are shown for
different values of g, and &. We observe that
velocity increases with the increase of g,. This
increment is greater for higher values of g" and

in the case of pure forced convection (g,<<l).
The velocity reaches maximum inside the
boundary layer for pure free convection (g.:10,

9-0.20). The variations of temperature and
concentration fields for different values of g,
and g,. are displayed in Figs. 3 and 4,
respectively. As would be expected, both fields
exhibit the same behavior. The influence of g"
on the temperafure and concentration field is not
so much evident for higher values ofg,.

In Fig.5, the effects of magnetic field
parameter M for different values of gs are
shown. From this figure we see that the increase
of magnetic field leads to the decrease the
velocity field indicating that the magnetic field
retards the flow field. On the other hand, in
Figs.6 and 7 we see that an increase in the
magnetic field leads to rises in both the
temperature and concentration distributions.

The influence of Soret number Sr and
Dufour number Df on the velocity, temperature
and concentration profiles are shown in Figs. 8,
9 and and l0 respectively. From Fig. 8, we see
that quantitatively, when r7: 2 and Sr decreases
from 2 to 0.4 (or D/increases from 0.03 to 0. l5)
there is a 0.33%o increase in the velocity field,
whereas the corresponding increase is 3.64oL
when Sr decreases from 0.4 to 0.1. From Fig. 9,
when ry : 3 and ,Sr decreases from 2 to 0.4 (or
D/ increases from 0.03 to 0.15) there is a
10.53% increase in the temperature field,
whereas the corresponding increase is 32.l9Vo
when Sr decreases from 0.4 to 0.1. From Fig.
10, when ry - 3 and Sr decreases from 2 to 0.4
(or Qf increases from 0.03 to 0.15) there is a
38.22% decrease in the concentration field.
whereas the corresponding decrease is 10.14%
when Sr decreases from 0.4 to 0.l.

1 0



Finally, Table-2 represents the numerical
values of local skin-friction coefficient, local
Nusselt number and Sherwood number for some
values of the parameters M, Sr and Df when g
: 1. From this table it is evident that for fixed g,,
Sr and D/ : skin-friction coefficient, Nusselt
number and Sherwood number decrease as M
increases. Finally we see that the local Nusselt
number increases, while the local Sherwood
number decreases as Df' decreases and Sz
increases.

6. Conclusions
In this paper, the Dufour and Soret effects

on steady combined free-forced convective and
mass transfer flow past a semi-infinite vertical
flat plate under the influence of a transversely
applied magnetic field has been studied
theoretically for a hydrogen-air mixture as a
non-chemical reacting fluid pair. Using usual
similarity transformations, the governing
equations have been transformed into non-linear
ordinary differential equations. The similarity
solutions are obtained numerically by applying
Nachtsheim-Swigert shooting iteration
technique together with sixth order Runge-Kutta
method. Since no experimental results of the
corresponding studies are available, comparison
between the obtained results with existing
results is numerically simulated.

From the present study we see that the
momentum boundary layer thickness decreases
with an increase of magnetic field parameter
(11'[), whereas both the thermal and species
concentration boundary layer thickness
increases with an increase of magnetic field
parameter. The presented analysis has also
shown that the flow field is appreciably
influenced by the Dufour and Soret effects
Therefore, we can conclude that for fluids of
hydrogen-air mixtures, the Dufour and Soret
effects should not be neglected.

Nomenclature:
,Ba - applied magnetic field
C: concentration
co: specific heat at constant pressure
c. : concentration susceptibility
C 1 

-- local skin-friction coeffi cient
D/: Dufour number
D.: mass diffusivity

/ : dimensionless stream function
g - acceleration due to gravity
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g, : temperature buoyancy parameter

&: mass buoyancy parameter
Gr,: local temperature Grashof number
Gr. - local mass Grashof number
ft7 - thermal diffusion ratio
M: magnetic field parameter
M,": mass flux
Nu,: local Nusselt number
Pr: Prandtl number

4,,, - heat flux
Sc: Schmidt number
Sft..: local Sherwood number
Sr: Soret number
I: temperature
T^ : mean fluid temperature
U-- free stream velocity
zr, v : velocity components in the x- and y-
direction respectively
x, y: Cartesian coordinates along the plate and
normal to it

Greek Symbols:

ry: similarity variable
a: thermal diffusivity

B- coefficient of thermal expansion

f 
- coefficient ofconcentration expansion

o: electrical conductivitv
p: density of the fluid
u: kinematic viscosity
d: dimensionless temperature

/: dimensionless concentration
a. - wall shear stress

Subscripts:
w: condition at wall
co - condition at infinity

Superscript:
' differentiation with respect to 7
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