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Abstract
High frequency noise from a vehicle is always a concern for any automotive industry looking for

passenger comfort. This also holds for the different types of brake noise, which is a source of
discomfort both to passengers and passers-by. Intensive research on high frequency noise (between 1-
5 kHz) has been carried out. A simplified model of the floating caliper disk brake has been proposed
by the author with the aim to predict the onset of high frequency noise. Many possible grounds have
been put for the reasons behind this high frequency noise, for example, stick-slip phenomenon,
geometry instability, and flutter type instability. Flutter type instability resulting from non-
conservative restoring forces is assumed to be the reason behind this panicular noise in this model.
The stability of the model is studied in term of the friction coefficient between the brake disk and the
brake pad. Some parameters, such as braking pressure, damping coefficient of the brake lining, and
rotational speed of the brake disk, are also examined and compared with the stability of the system.
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l. Introduction
Automotive brakes have experienced

substantial changes during the last decades and
today disk brakes are standard in passenger cars.
In most cars the front brakes are of the disk type.
A floating caliper disk brake is the most
common type of disk brake and is a highly
developed mechanical engineering device.

It is commonly accepted by engineers and
scientists working in this field of brake noise,
that the high frequency noise in a disk brake is
initiated by instability due to the friction forces
leading to self-excited vibrations []. The reason
for the onset of instability has been put forward
on different reasons, for example, the change of
the friction characteristic with the speed of the
contact points [2], the change of the relative
orientation of the disk and the brake pads
leading to a modification of the friction force
[3], and a flutter instability which is found even
with a constant friction coefficient [4-6]. It is of
course well known, that a negative slope in the
friction characteristic leads to instability and self
-excitation. But it is also known from laboratory

experiments that there may be instability and
self-excitation leading to high frequency noise
even in the absence of a negative slope of the
friction characteristic. The author believes that
the flutter instability which may even occur with
a constant friction coefficient in most cases is a
more realistic cause of high frequency noise.

In this paper, the brake disk has been
modeled as a rotating flexible thin plate with a
constant rotational speed. The caliper is assumed
to remain stationary and the yoke motion is
disregarded by considering only the transverse
vibrations of the system. The braking forces are
directly applied on the brake pads. Both stiffness
and damping coefficients of the brake lining and
the caliper are to be taken into account and the
mass of the brake pad is neglected for all
practical purposes. A complex eigenvalue
analysis is used to study the stability of the
simplified model in terms of the friction
coefficients and the effects of various
parameters, such as braking pressure, damping
coefficient ofthe brake pad, and rotational speed
ofthe brake disk.
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2. A mathematical-mechanical model
2.1 Simplified model analysis

A floating caliper disk brake, shown in
Figure l, consists of a brake disk, brake pads,
backing plates, a piston, a caliper, and a yoke.
When the brake is actuated, the hydraulic
pressure applied to the cylinder of the caliper
drives the piston to secure contact between the
inner brake pad and the rotating brake disk.
Since the hydraulic pressure in the cylinder acts
not only on the piston, but also on the base of
the cylinder (equal size), as well, the caliper
simultaneously slides in the opposite direction to
draw the outer brake pad against the rotating
brake disk. The braking force is balanced by the
yoke.

Figure l. A floating caliper disk brake

In a disk brake model, only the transverse
vibration is taken into the account since this
motion is important in the frequency range 1-5
kHz confirmed by Dunlap et al.lll. The brake
disk is modeled as an annular flexible thin plate
(Kirchhoff s plate). It is assumed to be clamped
at the inner radius a and free at the outer radius
b to rotate about its axis with a constant angular
velocity O. The system is shown schematically
in Figure 2. The brake lining is modeled as a
linear elastic spring with stiffness fto and linear

damper with damping coefficient dn distributed

over the sector shown in Figure 2
. f  

- l  
r

t l  r, - ro,r,, + ,,, lr l-,pr.e,, ] ) *h.t. (r.q) are

the polar coordinates in the inertial frame, r, is

the radius of the center of the brake pad, 2rn is
the width of the brake pad in the radial direction,
and 2rp,1 is the angle of the brake pad. The
caliper is assumed to remain stationary and to
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connect with the backing plates of the brake
pads via linear springs (stiffnesses k,r, k"r1 and

linear dampers (damping coefficients d^, d"r)

while the braking forces P are directly applied
on both brake pads. In this model, the yoke has
been neglected due to its motion, which is in the
in-plane direction and usually occurs at higher
frequency (> 5 kHz).

rffia,
r",f a,

D

Figure 2. A floating caliper disk brake model

2.2 Equations of motion
The equation of motion for transverse

vibrations of the brake disk (Iwan [4]) with the
applied force per unit area Q(r,O,t) is given

by:
, 1 2 , ; ,  l l t  , + ; , \

ph-+  DYa i ,=QQ^o" r )n  - : l  ,  N ,?  I
d t '  r o r \  o r  )

I  a  f  ^ ,  d r i , )-7 
ao\'" ae )

I  A (  ̂ ,  A'n')* ; e e l ' ' , t  
a r , J  

( r '

l e r . ,  a t )* ; t l  ' ' , t  ae) '
where lu(r,0,1) is the transverse displacement

of the brake disk as a function of the body's
fixed polar coordinates (material coordinates)
r , 0 , and of time r , rV, is the radial force per

unit length, N, is the circumferential force per

unit length, and N,t is the shear force per unit

length. The biharmonic differential operator
written in the cylindrical coordinates is:

- 4  ( a '  r a  r a 2 ) -
v  = l  . + -  *  .  .  |  \ t )

I t " '  r  dr  r '  60 '  )
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and the flexural rigidity of a homogeneous disk
is:

- ,  I
L h -

D :  ^ .  ( 3 )
12l t  -v '  I

The parametersp, h, E, and v are the

density, thickness, Young's modulus, and
Poisson's ratio of the disk material, respectively.

Due to the rotation of the brake disk and
because the radial and tangential displacements
induced by this rotation are negligible, it is
common to use another set of inertial
coordinates r and rp to describe the equations

of motion of the brake disk. Based on the
aforementioned assumptions, the inertial anc
material coordinates are related by:

e = 0 + t)t vr e [0,.o) and g efo,znl. {+)
Any function of r, 0, and / can then be

written as a different function of r , g,and t:

i,(r,0,t) = fi(r,rp - o.t,t) = w(r,rp,t) (5)

Then, the equation of motion in (r,tp) inertial

coordinates can be written as:
( . 2  . 2  ^ 2  \

pnl I!  * 2s9-Y + s2 9-! |  r Dva w = o\r.p.t )
\ dl- oWI dA- )

I  d  (  - .  a l r )
+ _ - l  r N . . _ l

r 0 r \  0 r  )

*  1  a  I r  9 g l'  
)  a  l ' ( O  ^  |

r '  o Q \  o Q  )
( b )
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f  - - t  l y  - . ^ -  |
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In this present case the in-plane stresses
within the brake disk and centrifugal effect are
neglected. These stresses depend on the square
of the rotational speed and are small during
'soft' braking. The equation of motion (6) can
then be reduced to:

I  a ) -w rJ -w I
p h l = - 2 { 2  * Y l +  D Y a w = q ( r . q . t ) .  0 l

I d/- o(Nr l

The transverse displacement of the brake
disk in the new coordinate system can be
expressed using Galerkin's method:

6 @

w( r.p.t t= I I R,.; r tlcos( mel A m.nt t I
m=O n- l  (6 )
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f
I  q ( r , (p , t )cos(mA)dA

U
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+ D8,., R,.,( r ) = 
; J 

q(r.tp.t )sin(mq1 f,gt
, ' 0

f o r  m :0 .  1 .2 .  . . . .  m  and  R . . , , t r )  i s  de f i ned  as :

/  ^ t  z \ 2
R, .n t , t= l+ .1+ -  l r l  n , . , t r t  ( l o )

\ d r -  r o r  r -  )
The radial mode shapes R.,r(r) are

obtained from the equation of motion for free
vibrations of a non-rotating brake disk:

p h + +  D Y a w = 0 .  ( l  l )
dt'

The radial moden shapes, which satisfy
equation (l l) and the following boundary
conditions:

w (a , rp , t )=0 ,
(c lamped ins ide)  ory.  ( l2 l

* l a . t l , t  
l = t l .

M  " ( b , t P , r l = 0 '
( f r eeou ts ide )  (13 )

V , (b ' tP ' t  )  =0 .

can be represented in terms of the Bessel
functions:

R^'?) = C t*,nJ. (F ̂ ,,r1 + c 2n,nYn (F ̂ ,,r1

+ c3n,n l  - (F* , , r )
(  l 4 )

+ c4*,nK.( f  ^ , , r )

where

where R-.n(r) are the radial mode shapes of a

stationary brake disk in terms of the number of
the nodal diameter (m) and the number of the
nodal circle (n). The generalized coordinates
A^.,(t) and B-.,(t) are used to characterize the

vibrations of the discretized brake disk.
Substituting equation (8) into equation (7) and
representing s?,e,t) in terms of Fourier series,

then, comparing the coefficients of cos(mrp)

and sin(mrp), leads to:

, ( ,t2 d ,lB- -)
I  pn l "  

n : 'n  
+2me>"" ! 'n  ln-"v l-ut 

I d,' dt 
)

(e)

2,,(+-z*odT''\.,u,
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, . 2 DB:,,,
(  l 5 )

ph

is the corresponding natural frequency of mode

(* ,n) .The J. ,  Y,  are the m'h -order  Bessel

functions of first and second kind, respectively,

the I*, K^ are the mth -order modified Bessel

functions. The constants Cr-,r, Cz-,r, C3.,r,

and Co*,n are found by applying the boundary

conditions. These conditions are (12) and (13)
while:

[ ^ r  / ,  ^  r - l

M.=-Dlq+. ;19 , * iq+ l  l ,  (16)
16r '  \  r  dr r '  de'  ))

t .  ,  .  / ,  . 2
v,  : -Dl{  (o ' ' )+(r  - r ,11 s 

I  1:+
l  or r oq\ r oro(p

(  l 7 )
1 a") l-  
r  ^  l l '

r -  o(p) l

are the bending moment, and the equivalent
shear force (per unit length), respectively.

The following orthogonal condition holds
b

!R , , . ,R . ,1 rdr=0 i f  n+  i ,  (18)

on. ol,uin, equation (19) as:

( t 2 ,  ) D  \
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,//- at 

)

o,  ( to,  )
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* t ;  t d  )
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Figure 3. Free body diagram ofthe brake disk
(side view ofthe brake disk)

and can be described in terms of the force 1y' .
including forces from braking, linear springs,
and linear dampers, and the friction forces / at

the contact between the brake pads and the
brake disk with the assumption that the brake
pads always remain in contact with the brake
disk. The inclination of the brake disk, shown in
Figure 3, during vibrations can be approximated
AS:

l 6 w  /
d  = - :  ( o . . 1 ) .  ( 2 0 )

r o(D

The force N on each side ofthe brake disk
can be written in the form of:

Ar
N t = P + k , u + c t , ! .  ( 2 1 )' d r

N z = P - k , * - d r Y .  ( 2 2 1

where fr1 , k2 and dt, dz are the equivalent

linear stiffnesses and damping coefficients,
respectively, which are modeled by the brake
lining and caliper. The friction forces with
conslanl friction coefficient 4 is:

fr + .fz = pl2P +(kt - kr)*

.r.,,- l ( 23)
* ( d , - d , ) ?  l .- ' d r  

l
when sina = a and cosd :1 due to a
smallness of inclination. Thus the total applied
forces per unit area can be written in form of :

. , /  \H  l r . Q )  r ,  ,  ^ " '
q ( r . t p . r l  ( k ,  +  k r lw+ ld ,  *  d r ) ;

(
+  p l  2P + \k ,

t o w l- ^ t .
r o e )

- k2 )w+(d ,  -d r ) * l
c r )

h
, ' t "

)nl''r dr

,rln' l:' - z,ain:, + a) ,,8,,,
| ,tt' dt

' 
y -,('j r r, rp, t ) sin (m e') ^ r)

b

lRfi.,r dr

(  1e)

where  z  :  0 ,  1 ,  2 ,  . . .m  and j ,  n  :  1 ,  2 , . . .  co  so
thatT from orlhogonal conditions can be simply
replaced by n.

The total forces actins on the brake disk are
shown in Fisure 3 :

Substituting equation (8) into equation (24)
and ignoring all nonlinear terms, yields:

(24)
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DL is the set representing the contact area

between the brake pad and brake disk, and A1 is

the net area of Dr. Substituting equation (25)

into equation (19), one gets:

, , , 1  d ' , 1 * .  -  - d B * ,  ,  lph)r, ' l  -r= + 2mQ# + utfi.,A,., I
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(26)

(2e-b)

(29-c)

(2e-d)

(29-e)

(2e-f)

(2e-e)

Fo, e*lmple, if two vibrating modes (ra,n)
and (m+l,n) are considered as the approximate
solution (8), the equations of motion (27) and
(28) can be written in matrix form as

M i l + ( G + D ) d + C q = 0 ,  ( 3 0 )

. T ^ t T
where  q  - lA r . r .B r . r ,A^ r . r .B r * t . ,  

)  and  C

is asymmetric due to the friction forces.

3. Numerical results and discussion
The following dimensions and isotropic

material properties are used for the brake disk:

a  :  90 .3  mm.  b  -  152 .5  mm.  p :  7 .050kg /m3 .

v  :  0 .21  .  E  =1 .14x l010N/m2  .  The  to ta l

(29-a)
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thickness ofthe actual brake disk including the
ribs is 26.3 mm, whereas the thickness of the
soliddisk in the present analysis is adjusted to
4.56 mm so that the first two natural frequencies
of the brake disk match with the equivalent solid
disk for the corresponding mode shapes [7].

In the experiment shown in [7], the
vibrating modes (7,1) and (8,1) of the equivalent
solid disk in the transverse direction were found
to be in the frequency range 2,500-2,600 Hz,
where high frequency noise usually occurs. The
high frequency noise was at 2,554 Hz and
measured by a microphone. Subsequently, those
two vibrating modes are considered and used to
predict the onset of the instability, which is the
reason for high frequency noise.

Then the approximate solution (8) can be
written as:

^  f  . t
w ( r , ( p , t )  =  f < 7 . 1  

f c o s (  
/ q l A j . t  ( / ) + s l n (  / Q ) + . t ( t ) ]

+ R ,, [cos(8p)Aa,rQ)

+ sin(Sp)8r,, (r)].
( 3 1 )

Substituting this approximate solution into
equation (19) or using equations (27) and (28)
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for these particular vibrating modes, one obtains
matrices M, D, G, and C as shown in

equation ( 30 ) where q =Lo, ., . B, .t . At.t ,, , ] '
The stability investigation of the trivial solution
will be analyzed with:

At .t : )t 'te'' '

Bt , r  = i t , r " ' '  ,

As,r =2&re'u' ,

Bt't = Bs'tet' '

To study the influence of the friction
coefficient p with the stability of the system,

the equivalent stiffnesses h and kz are
assumed to be equal and the equivalent damping
coefficients d1 and d2 are assumed to be zero

due to simplicity. The behavior of the natural
frequencies in considered vibrating modes is
studied as a function of the friction coefficient.
It is found in each mode that with gradual
increment of the friction coefficient the

(32)

N

N

3

^ x  1 0 "

-1-z

- l

-)
0 0.001 0.002 0.003 0.004

Friction coeffrcient

Figure 4. Stability analysis of the vibrating mode (7, 1) with the variation of the friction coefficient

Mode  {7 .1 )  w i t h  k ,  5x l 0 '  N ' r n  P  =  l 5  ba r .  and  Q  l 5  r pm' |

Friction coefficient
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asymmetry of stiffness matrix C becomes
stronger and the natural frequencies become
complex at the critical value of the friction
coefficient /t,, . This critical value of the

friction coefficient defines the onset of the
flutter type instability. Subsequently, the
gyroscopic term is considered with low
rotational speed and the natural frequencies
intend to merge as shown in Figure 4 where the
onset of the flutter type instability takes place
just before the mergence. This plot shows the
influence of the friction coefficient on the
stability of the system based on eigenvalues. It
shows the effects on both real and imaginary
parts ofthe eigenvalues. The critical value ofthe
friction coefficient is about 0.0024 where the
real part ofthe eigenvalues starts splitting, or the
imaginary part of the eigenvalues starts merging.

The influence of the braking force P on
the stability of the system is shown in Figure 5
in term of the critical value of the friction
coefficient while all the other parameters are
maintained constant. It shows that the critical
value ofthe friction coefficient tends to decrease
with an increment of the braking pressure. The
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reason is an asymmetry of the stiffness matrix
since some off-diagonal elements in this matrix
are proportional to the friction force, so that the
asymmetry becomes stronger when the braking
force increases.

The influences of the linear damping
coefficient ( dlor d2) and the rotational speed of

the brake disk Q on the stability of the system
is also shown in Figure 6 in term of the critical
value of the friction coefficient, while all the
others parameters are maintained constant as
well. The result shows that a linear damping
coefficient tends to stabilize the system, where
the critical value of the friction coefficient
increases, with an increment of the damping
coefficient. This is due to the fact that in linear
systems a damper is used to improve the

stability of the system (higher p", ). But the

higher rotational speed of the brake disk,
affecting a gyroscopic term, tends to destabilize
the system. The reason behind this is due to the
asymmetry in the damping matrix.

E

;
E o
d

a

Figure 5. Influence ofbraking force based on the critical value ofthe friction coefficient

k ,  k ,  5 r l 0  N m a n d Q  1 5 r p m

Braking pressure Ibar]
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4. Conclusions
A floating caliper disk brake has been

modeled and only transverse vibrations of the
brake disk are considered. The brake disk is
modeled as a Kirchhoffs plate, whereas the
brake pads and caliper are assumed to be
massless and stationary, respectively. The brake
lining is modeled as linear springs and dampers.
The friction coefficient between brake disk and
brake pads is assumed to be constant.

The stability of the model is analyzed using
complex eigenvalue analysis. The undamped
model shows flutter type instability or unstable
vibrating mode, resulting from the friction force.
The braking force and rotational speed of the
brake disk tend to destabilize the system, while a
damping coefficient of the brake lining always
tries to stabilize the system. The author believes
that this model can verifu the effectiveness of
any strategy taken towards controlling the high
frequency noise.
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