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Abstract
This paper extends the fourth order time-split finite-difference methods, namely the locally
one-dimensional (LOD) method and the alternating direction implicit (ADI) method for solving
the three-dimensional time-dependent heat equation. The numerical solutions are compared with

the analytic ones.
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1. Introduction

Finite difference methods (FDMs) have
been widely used for a few decades in
teaching and modeling [1,2]. In this
research, we will study the new splitting
FDM in [3] by B.J. Noye and K.J. Hayman and
use it to apply to three-dimensional time-
dependent heat equations subject to a
constant coefficient o, and «, which s

expressed in the general form as:
Uy = Oy Uy HO U,

0<x<L,0<y<B, 0<t<T. (1)
The ADI method is conditionally stable while
the LOD method needs the condition 0<s, <2/3

and 0<s,<2/3 for stability. The ADI method
has advantages over the LOD method.
We will extend these methods with the

three-dimensional time-dependent heat equation,
which is expressed in the form :

u, :on(uxx+uyy+uu) O<x<A 0<y<B

0<z<C,0<t<T 2)
With the initial condition :
u(x,y,z,O):F(x,y,z),OﬁxSA, 0<y<B,
0<z<C,0<t<T 3)
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and Dirichlet boundary conditions which are
expressed in the following form :

u(0,y,2,t)=G,(y,z), 0<y<B,0<z<C,0<t<T
u(A,y,2,t)=G,(y,z), 0<y<B.0<z<C,0<t<T
u(x,0,2,t)=G4(x,2), 0<x <A ,0<2<C,0<t<T
u(x,B,z,t)=G,(x,z), 0<x <A ,0<z<C,0<t<T
u(x,y.0,t)=Gs(x,y), 0SXx <A ,0<y<B0<t<T
u(x,y,C.t)=Gglx,y), 0<y<B,0<y<B,0<t<T(4)
where a is the thermal diffusivity .

2. The LOD Method

In order to solve the equation (2) by using
the new LOD method we split this equation into
three one-dimensional heat equations,

3a Yl (5)
| &u 32

12u o%u

Ta Y @
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Each of these equations is then solved one third
of the time step used for the complete three-
dimensional equation. First of all we introduce

some basic notation. Let U;, denote an

approximation of function u(x,y,zt). We use
the FDM to approximate its values at gridpoint
(iax, jAy, kAz, nat) for i=1,2,...1,
=1,2,...Jk=1,2,...K and n=1,2,...N. The grid
spacing Ax, Ay,Azand time step size Atare
computed by Ax=A/l, Ay=B/J, Az=C/K,
At=T/N , where LIK and N are integers. We

can compute the grid Fourier numbers in x, y
and z directions by using the following formulas

sx:otAt/(Ax)2 s sy:(xAt/(Ay)2 and s, = otAt/(Az)2 s
respectively.

Next, we shall now show that the formula used
in solving equation (5) is :

U?;Lﬂ = %(65)( _l)(Uin—z,j,k + U?+2,j,k)

2s,

+ 3 (2 - 3Sx)(Uin—l,j,k + Uin+1,j,k)

+%(2—5sx res2)un,, (8)

where i=23,.. ,I-2 for all j=0,1,2,...,] and
k=0,1,2,..,K . The problem of finding values of

U{‘J”,{3 which can not be derived by using (8)

can be overcome by using a re-arrangement of
the unconditionally stable inverted version of
the equation (8), which is obtained by setting At
for— A t in (8). Putting i=3 and re-arranging
gives :

s 824 3s, ,
oy = S ugy)
X
62+ 55, +652) nys
s (6s, +1) P

2 .
U3,j,k . (9)

_[_j‘”_[/3 S
ST (68, +1)
This gives values of U{‘)”k/3 for all j=0,2,..,J

and £ =0,1,2,...,K , because all the values on its
right hand side are known. The values of

U'}ffffk can be calculated by using a similar

formula obtained when replacing At by —At and
setting i=1-3 in the equation (8) to obtain:

o 2+3s, n
R e AUEANIE Y

~ g12+55x +682 !U,,%

s (6s, +1) K

_ Un+l/3k 4

2
I-s.j, )UH.j.k (10)

s,((6sX +1
forall j=0,1,2,....J and k=01,2,..,K. Similarly,
for computing values of U:‘;i/ * from the values
of UI‘J*L/3 in the y-sweep used in the second
stage, the formula used with j=23,4,..,J-2 for

each i=12,.,1-1 and k=12,.,K-1 is given
by :

S
Uz = 2fes, - 1)uryth c U

2l oo vt

1 2}y o+l
v -ss, 653 ur (11)
n+2/3

The formulas for computing the values U/}

and UM are given as :

82+3
- 1—;(6 o )
B 6(2 +58, + 6sf,)Un+2/3
i3k
syi6sy + 15

N Up+2/3

12 +/3
+—(——)U? ! 12
1,5,k sy 6Sy +1 1,3,k ( )
8(2+3s, )
ums — Y3 i3
i,J-Lk (65y+1§ ( i,J-2,k 1,J—4,k)

o2+5s, + 6s§)Um2/3

- 1,J-3,k
sy‘6sy +1 )
‘Up+2/3 + 12 U_n+l/3 (13)
i,J-5k Syi6Sy +1' 1,J-3.k

n+l

To compute the values of Ujj, from the values

of U:‘J*i/ 3 in the z-sweep used in the third stage,
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the formula used with k=234,..,K -2 for each
i=123,.,1-1and j=123,..,J-11is:

1 s 2/3 2/3
Ul = é(65z "1)(U;].Ik/—2 + U?Ikaz)

n+2/3 )
U1 L k+1

+ 222 (2-3s )(U:‘;i/3

+%(2—55y+6s§)ui‘j;§/3 (14)
Similarly, the formula for computing values of

U is given by :

(651 1) n+l n+l
-2 (U, +U
8(2+3S )( IJO 1}4)

. 32+5s,+ 652 !UT‘-*'
4sz(2 + 3SZ) L2

3
DU § 2k
2,(2+3s,)

n+l _
U1 gl T

n+l
YRR

(15)

At the end of the complete procedure
involving heat distribution in x, y and z

directions, the known boundary values U’}

Ui, are
used. We include the values on the right hand
side of equation (15), which all values are
known. The values of U,"J*k , are found by

using a similar equation as in equation (16).

(63 +1) n
Urfher =gy Utk + U
3!2+55, +6s2!
7 z U_nﬂ
" 4s,(2+3s,) PR
LU e (16)

m LjK-2

We will determine the von Neumann
stability [1], which is applied to the problem (8).

First let U"  _ =elelPbhgiBbh iBbh "Thep we

p.q,r
substitute it in the equation (8), to yield :

1

n+— .
ook
13 3 iBipk B gk Lif.rk

Sy (6s. -1) ( niB, (p-2)k oiB.qk .k

4 0P, {p+2)k iBEqkeiBJk) 22 (2-3.)
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(&n 1B p- 1 1[3 qk if,rk +én 1[3 p+1) iB:qkeiB‘rk)
+ 5(2 — 55, + 652 )E_,“eiﬁ‘pk g !Bk gibork
(17

Canceling all common terms, by dividing (17)
with £%e Bk gifak oiburk e get:

1
g3 :?—;(65 —1)(&:72&3‘k +e

+ 2ST"(Z —3s, )(e’iB‘k + eiB‘k)+

ZiB‘k)

%(2—53,( +6s§)

(18)
Bk, oiBk
Then using 5 =cos Bk, the
amplification factor is :
1
g3 = ———S"(6S" ‘l)cosz B1k+74s"(2_3s")cos[31k
3 3
2
+3—7sx+6sx (19)
3
!
where B, =mn;mel and let £3=G, the
condition is :
|G| <1 (20)

This is required for stability. For all positive
values of s, we obtain that FDE (8) is stable

over the interval [4]. Similarly, we obtain that
the FDEs are stable over all s, and s, in the

interval (0,2/3]. Thus this method is stable, in
the von Neumann sense, for :

0<s,,8,,5, <2/3. 21

3. The ADI Method

In order to solve the problem (2) by the
new ADI method, we use a three stage
procedure. The first stage to use in the
z—direction sweep is :

(6s, 1)UL —4(1+3s,)UNTL +(6s, -1)UTL,
= _Sx(U?—I,j,k—l + U?—l,j.kﬂ + Ui+1,j,k41 + Ui+l.j,k+1)

n n n i3
- Sy(Ui,j—l,k—l +Uijakn T Ui jeka + Ui,j+1,k+])
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- 4Sx(Uin—I‘j,k + Uinﬂ‘j,k) - 4Sy(Uin,j—l,k + U?,jﬂ,k)
(25, + 25, ~ U+ AU + U] 22)

The second stage in the next time step, the
formula in the y—direction sweep is :

(65, —1)Un 2 —4{1+3s, JUDtZ +(6s, —1)Ur?2

i.j+Lk
=-S5 (Ul ~1,j-1,

+1
‘Sy(Uij Lk~ I+Uij lk+l+Uij+1k 1+Uij+1k+1)

—as (Um U ) —as o o)
(23)

(U I]+1k+Ul+1J 1k+U1+l)+lk)

(s, +2s, 1)U s aunila U )

ij+lk

Finally, the formula to use in the x—direction
sweep is :

(6s,

U 404 38, )UTTL + (65, — 1)U

ik
(UlezJ Lk +Uin+1j+lk +Ui+lj Lk +Ui+1j+1k)

(Unle  + U l_]k+l+Ul+1Jk 1+U1+1,k+1)

—4s (U1n|2]k + U} J+1k) 4s (Unjk 1 +U|Jk+1)
(s, + 25, —1ffUnd AU U ) (24)

In order to show the stability of the ADI

n ip pk 1ﬁ qk i[},rk
method, we replace U, =&"e

into(22) and then divide by &"e iBiprpachr)k
We get :

(65, —1Ele X +e®* )-4(1+3s,
_sx{e—iﬁ,k( Bk Lo iB;k) iﬁ,k( —ip
Sy{e iB, k( B, k+ei[3,k) B k( -ip k eiB\k)}

k| oiBk )}

_4sx{efiﬁ‘k+eiﬁ,k} _ds { Kb k}
+(2sX +2s, _1){4+e Bk Bk } 25)
Using e -k P =2cosPk, for /=123,
obtain :

£ = 4s (cos B,k cos Bk)

(65 —l)cosB3 (4+l2sz)
4sy(cosB2kcos Bk)
B 2(65Z —l)cos Bk~ (4+12sz)
(—SSX cosf3 k —8s, cossz)
* 2(6s, —1)cos Bk —(4+12s,)
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((2s, +2s, —1)(4 + 2 cos B3k))

2
2(6s, —l)cosB3k—(4+12sZ) (26)
.2 Pk

We then apply cosPk =1-2sin B
a; =sin? - B‘ ;1=123 and put £=¢, in (26) to
obtain :

. _ (24-16a;)ays, +ass, )+ 2(2a; - 3)

‘ —24ass, +2(2a, - 3)

_ (233 _3)(1 —4(a,sx + aZSy)) (27)
| -12as,+(2a,-3)

Using the same argument together with (23) and
(24) yields :

e - (24-16a, J(ass, + a8, )+ 2(2a, -3)
Y - 24a,s, +2(2a, -3)

_ {(232 -3)(1-4(ass, +335z))}.

~12a,s, +(2a, - 3)

(28)

- {(24 —16a,)ass, +ass, )+ 2(2a, - 3)}

—24as, +2(2a,-3)

{ (22, =301~ 4las, +ass, ))}

—12a;s, +(2a1 —3)

(29)

Let s=s, =s, =s, which yields :

y

G= g5, =
{ (22, - 3)(1 - 4(a, +a2)s)}

—12a,5+(2a; -3)

(22, =3)(1-4(a +a3)
{ }

—12a,5 + (2a2 - 3)

X{(2;1l -3)(1-4(a, +a3)s)} _

-12a;5+ (2a1 —3)

(30)

The condition (20) is also required for stability.
In order to find the values of s which satisfy the
condition in (20), we sudstitute G =£,&E, into

(20) This yields :

31
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Let us consider the case |¢.|<I, |§y‘§1 and

e, <1 which satisfy (31).
We will show the values of s which
the condition [¢,|<1.  Consider

ZB; :i=123 where B, =

satisfy
CIf

ia; =sin mr;mel

kel then obtain sin and

2Bk _
2

we 2Bk
2

1. We now consider the values of &,

when kel. Then (233_3)(1_4(31*'32)5)
—12a3s+(2a3—3)

sin

can be expressed as a function of sin% as:
B3k
sin —— | =

2. [sn 2

[Zsm2 Bk _ 3](1 -4(a, +a,)s)

(32)
~1255sin? Bk + [Zsin2 Pk 3]
2 2

Its extreme value of &, [sm BL] occurs at
sin B—3—— =0, we now substitute this value into
equatlon (32) to obtain equation (33).
gz[sin -B;—k]:(l—4(a, +a, k). (33)

condition =

Hence the

Bs
&, (sm T]

|(1 - 4(a1 +a, )s] <1 is required for stability.

This condition requires that 0<s< .
2(a; + az)

Choosing the minimum value of we

1
2(al +a 2)
obtain 0<s<i/4. Combining all the results
leads to the conclusion that 0<s<1/4.

Similarly, applying the above procedure
with &, in (23) and &, in (24), we obtain that
0<s<1/4. Hence the FDEs (22)-(24) are
stable over the interval (0,1/4]. This shows that

the method is conditionally stable in the three-
dimensional problem.
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4. Numerical Test
We will use the LOD method and the ADI
Method for solving the following equation :

u, = oc(uXX +uyy+uzz),

0<x<02,0<y<02,0<z<01 (34)
Subject to the initial conditions:
u(x, Y, Z,O)z 300,
0<x<02,0<y<02,0<z<0.1 (35)
and the boundary conditions are :
u(O, Y, z,t) = u(0.2, Y. Z, t) = u(x,O, z,t):O (36)
= u(x,0.2, z, t) = u(x, v,0, t) = u(x, v,0.1, t)
when a=1.01183x10°m?/s. The analytic

solution of this problem is :

p+1)nx ]

0.2

X Vo2 t ZZZA 2p+l 2q+1 2r+1 Sll’l[(

p=0q=0r=0
Sin[(2q+l)1tyjsin[(2r+l}nz]X
02 0.1
2
ex%r~(x7f2[(21:);21) (2‘;;2]) (2:)‘:21) ]t‘| (37)
4.8x10°

when A(2p+1)(2q+1)(2r+1) =

(2p +1)(2q + 1){2r + )

Figure 1 presents values of the analytic
solution, (0.1,0.1,z,¢) and numerical solution
U(0.1,0.1, z, mat). We letax=ay =Az=0.01m
and Ar=49.4154156330 s. We can observe

that the LOD method gives a better
approximation than that of the ADI method.
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= 40 7
3
g 35
£
& 30 A
g
= 25 4 —#— Analytic Solution, n =36
g
E 20 4 ~®= Analytic Solution, n =72
= —— 10D Solution, n =36
S 157 ~+— LOD Solution, n =72
§ 10 %= AD Solution, n =36
g —+— ADI Solution, n=72
o 54
=
0 »
0 0.05 0.1

z-direction (m)

Figure 1. Temperature decay along z-direction
when s=1/2.

This guarantees that the ADI method is
conditionally stable when the Grid Fourier
number s is in the interval (0,1/4].

In order to present the order of accuracy of
the LOD method, we wuse the function

u(x, Y, Z, t) =exp(3a m*t)sinTx sin ysinwz
+100xyz to find the values at the grid point
(050505]1), where =001 and Ax = Ay = Az .

Table 1 presents errors of LOD solutions
when compared with the exact solution,

u(0.5,0.5,0.5,1) =13.2437218794 where m
denotes spatial grid separation.

Table 1. Errors of the numerical solution in
different number of grid spatial separation.

Error | Error | Error | Error
Error
when | when | when | when when
m | s=1/2] s=1/3| s=1/4| s=1/5
4 5 5 s=1/6
x107 | x107° | x107 | =107 P
x 10
10 | 02437 | 04410 | 02340 | 03669 | 0.5658
20 | 00150 | 00257 | 0.0110 | 0.0178 | 0.0295
30 | 0.0030 | 0.0050 | 0.0020 | 0.0033 | 0.0058
40 | 0.0009 | 0.0016 | 0.0006 | 0.0010 | 0.0019
50 | 00004 | 0.0006 | 0.0002 { 0.0004 | 0.0008
60 | 00002 | 0.0003 | 0.0001 | 0.0002 | 0.0004
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Consider the relation between error and
spatial grid separation for the LOD method in
Figure 2. This guarantees and shows that the
order of accuracy of the LOD method is four
when s satisfies the stability condition (21).

log , |error | Number of Grid Spacing
9 10 20 20 40 50
= S=12 '
g1 T s=1/3
*s=1/4
71 Ts=1/5
*Ts=1/6
‘-
5 -
4 T T
0.5 1 1.5

log,, Ax

Figure 2 The relation between error and spatial
grid separation for the LOD method.

5. Discussion and Conclusion

In the two-dimensional heat equation, the
ADI is unconditionally stable [3]. This proves
the usefulness since At can be made large
without loss of stability. Thus, the ADI method

has an advantage over the LOD method.

The result of our findings for solving three-
dimensional equations is that the ADI method
loses its advantage. Hence for solving three-
dimensional heat equations, wusing the LOD
method is better than that of the ADI method.

In applications, the temperature distribution
of the samples may be used for practical work
such as heat sensor for a black box to quickly
search for the exact location of an aircraft
accident, etc.
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