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Abstract

The coefficient of variations (CV) of each individual estimate and for all possible combinations
of the estimates are used to see which parameters should be random in a nonlinear mixed effects
model. From the difference of exponentials model simulations, when only one parameter is random,
the sample CV of the corresponding estimate will be the highest rank and its mean is close to the
population CV. When more than two independent random effects are considered, the corresponding
sample CV of the individual estimate equally shares the highest and the mean of each individual CV
estimate and their combinations are close to the population CV. An example on isolated perfused
porcine skin flaps data is also presented and the multivariate coefficient of variation was applied to
indicate which parameter appears to be random. The optimum solution agrees with other model
selection criteria, e.g., AICC, AIC, or BIC.
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1. Introduction and Motivation

A nonlinear mixed effects model is often
used to model repeated-measures response data.
In these types of studies, one is usually
interested in  estimating the underlying
population response curve. Since individuals are
randomly sampled from the population as a
whole, the parameters could be considered as
random effects.

Budsaba and Smith [1] proposed an
approximate F statistics test from the fixed
parameter approach, which compares the
residual sum of squares from the full model and
the reduced model, to test whether random
effects are needed. From the difference of
exponentials model simulations, the test offers
very good results.

To choose which parameters should have
random effects in a nonlinear mixed effects
model, Pinheiro et al. [2] start with all
parameters as mixed effects and then examine
the eigenvalues of the estimated variance-
covariance matrix. If one, or more, are close to

zero, then the associated eigenvector(s) would
then give an estimate of the linear combination
of the parameters that could be considered as
fixed.

The strategy we suggest here for
determining the random effects in a non linear
mixed effects model is to use the sample
coefficient of variation of each individual

estimate (CV(é)) and CV for all possible
combinations of the estimates. CV for more than
one estimator will be defined later and denoted

by CV (él e .,ék ). For example, if a model has
3 parameters, 4, b, and d, we calculate
CV(A), CV(b), CV(d), CV(Ab),
CV(A,d), CV(b,d), and CV(A,b,d). We
expect that CV( /:1 ) will have the highest value
when A is the only random parameter in the

model. Similarly, CV([;) or CV(d) will have
the highest value when only b or d, respectively,
is a random parameter in the model. When two
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or more random parameters are in the model, we
want to investigate the performance of those

CVs under certain conditions, C.g.,CV(./:l),
CV(b), and CV(A,b) will have the highest

value when both A and b are random.

The motivation of using the sample CV of
an estimator to detect the corresponding random
parameter after the significance of the
approximate F test can be considered as follows:

Suppose in a single factor balanced
ANOVA model 11,

Yy TH T E,
where g, are independent N( y',O'f,),
&, are independent N0 ,6%),
random

H;and g, are independent

variables, i = 1,....,k groups and j = 1,...,n

replications.
From this model, ¥, is an estimator of

the random parameter g, . The expectation and

variance of ¥, is as follows:

E(Y)=u
2
V()=o) + -
n
Hence, the population CV(Y,) is
defined by:

N
CV(¥ )=~ n
M

The population CV(Y,) can be

estimated by the sample CV( )71.) which s
defined by:

[}E(Z—Y)z/(k—l)l"z
7

Hence the usual F statistics can be stated in

CV(Y, )=

term of the sample CV(Y, ) as follows:
F=[n(Y )’ CV?*(Y,)] /MS (Within Group)

We can see that the larger the value of
sample CV2(Z.), the larger the value of F. If

the null hypothesis is false, the noncentral
parameter [3] of F is:
Z,]'(— (,Ui _,uu)z
p=n=""—5— (1)

(e2

The term X* (g, — ) in (1) can be
estimated by (Y ) (k-1)CV *(Y, ), and then the
larger the value of CV °( )7, ), the larger the

value of ¢. Hence the sample CV of the

estimator of a random parameter can be used as
an index to determine whether the parameter is
random after the significance of an F test. The
same idea can also be applied in a nonlinear
mixed effects model.

2. Multivariate Coefficient of
Variation

Some CV-like methods for k samples have
been reported in the literature. These include the
arithmetic mean of standard deviation over the
grand mean, the CV based on variation within
samples (the square root of the error mean
square from an analysis of variance over the
grand mean), and the CV based on variation
among samples (the square root of the added
variance component among samples in an
analysis of variance over the grand mean) [4].
The pooled coefficient of wvariation across
samples for homogeneity of wvariance test
(Bartlett’s test) is defined by

k
[Zfi(CV,)2 / f1"*, where f; is the degrees of
i=1
freedom of sample ¢ and f is the total degrees
of freedom, and other pooled coefficients (e.g.
CRV ) [5].

Chow and Tse [6] investigated estimators
for the common CV for a balanced k sample in
bioavailability/ bioequivalence
studies. The arithmetic mean of CV, the pooled
CV as in [5], the least square regression function

of S,and Y,, the moment estimator under one-

way random effects model, etc, were compared
asymptotically.

For the multivariate case, the literature is
lacking. We use the univariate CV as an
expansion to the multivariate vartables. The
proposed multivariate coefficient of variation is
defined as:

For example:
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1
] ) 1
01 Yy) = {5ty RCouF 1 T2

|
b [—

oY) = {(w*ar(v)y ™

= o/u

Note that when (Y,,...,Y,) are mutually

independent, the reciprocal of the mutivariate
CV squared is the arithmetic mean of each
univariate reciprocal CV squared.

The sample coefficient of variation for k
random variables (Y, ..., Yk) is then given by:

Ly Yooy, v 2

For example:

i}
CV(YI,YZ):{%()71,?2){(7(;V(Y1,Y2)}_1()71.)72)T} 2

_1

CV(Y) = (V)2 ar(r) 1y 2

=S/Y

Similar to the population value, when
(Yl""’Yk) are mutually independent, the

reciprocal of the sample mutivariate CV squared
is the arithmetic mean of each sample univariate
reciprocal CV squared.

3. Simulation Study

To see the performance of the proposed
sample CV, the multivariate sample CV is
calculated. The simulation is based on the
model:
v, = Afexp(=bit, )—exp(~d,t; )} + &, A(2)

i=1..8 j=1..23

where 4, is Normal with mean 1.5, and p,

and 4, are normal with mean 0.0065 and 0.044

respectively. The random effects are
independent in this preliminary study. The
independent normal random variables ¢ have

mean zero and four choices of variance, i.e. V)

= 550287 x 10°, 10 x ¥, 100 x V,, and

1000 x Vi, These error terms are also
independent of random effects. The model and
its parameters including the approximate value
of the error terms variance were generated
based on a porcine skin flaps experiment. With
these scenarios and several choices of the
coeffictents of variation (CV) of the random
effects across individuals, 1,000 Monte Carlo
replications were realized at time (t;) = {0, 5,

10, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180,
210, 240, 270, 300, 330, 360, 390, 420, 450,
480}.

The model (2) we propose for the flux rate
profile of the porcine flaps experiment is the
difference of exponentials model [7]. This
model is a compartment model. Compartment
models are commonly used in pharmacokinetics,
where the exchange of materials in biological
systems is studied. A system is divided into
compartments, and it is assumed that the rates of
flow of drugs between compartments follow
first order kinetics, so that the rate of transfer to
a receiving compartment is proportional to the
concentration in the supplying compartment.
The transfer coefficients, which are assumed
constant with respect to time, are called rate
constants.

The reciprocal of a rate constant is called a
time constant. Our model has two constant rates
(b and d). We also assume that d > b. Since d is
greater than b, this model can be considered as a
two compartment model with a faster absorption
constant rate than elimination constant rate. A is
mathematically explained as a function of b, d,
and an initial unobservable quantity of the
supplying compartment. This model allows the
response to be zero at time zero.

At each replication of 1,000 Monte Carlo
runs, sample CV of all subsets of the estimates
were obtained and ranked by ascending order.
We investigated the sample CV of these
estimates when all parameters are fixed, and for
all possible combinations of independent
random effects (one, two, or three random
parameters) with several choices of the error

variance, ie. ¥, =5.50287x10"", 10xV,,
100xV,

. and 1000xV, . Error terms are also
independent of the random effects. Three
choices of v, the population CV of each
random effects across individuals, i.e. .01, .05,
and .10 were studied. These CV values (.01, .05
and .10) were chosen according to the pilot
porcine skin flaps experiment.

Table 1. shows the
parameters are fixed. CV (d) is about 90% of

the time in the highest rank for all choices of the
error variance except for the error variance

1000 x V,, which is about 85%. This means

result when all

that when all parameters are fixed, CV (c;' ) is
more likely to have the highest value.
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Presence of random effects are considered
in Tables 2, 3, 4, and 5. Each table presents
results of simulations for several values of v
(the population CV of each random
independent effect) and when one, two, or all
three of the effects are random with the error
variance of V, = 5.50287 x 10°, 10x V.,

100xV,, and 1000xV, , respectively.
At ¥V, (Table 2), when only one parameter

1s random, we observe that at least 98% of the
time, the corresponding CV will be the highest.
When the error variance is increased from 10
times to 1000 times V, in Tables 3-5, we
observe that to attain the highest rank, usually
the population CV (v) of the random parameter
should increase correspondingly.

When only two independent random

parameters are considered at V (Table 2), the
corresponding sample CVs of estimators are the
highest rank (about 50% for each individual
estimate). For example, when A and b are
independent random parameters, we observe
that CV (A) and CV (b) are the highest, 50% of

the time when v = .01. Similar results were
obtained when v = .05 or v = .10, and when A
and d, or b and d are random parameters.

When the error variance is increased to
10xV, (Table  3),100xV, (Table 4), and
1000V, (Table 5), to attain the highest value
of the corresponding CVs of estimators, the
population CV (v) of each random parameter
has to be increased also.

If all parameters are independently random

at variance level V, (Table 2), CV(;I), cv (5)

and CV(c?) share the highest rank with the
amount being 31-35% of the time (v = .10). To
see this pattern, when the error variance
increases, the population CV of each random

parameter has to increase (e.g. v = .05 in
Table 3).

Figures 1- 3 show the means of the sample
CV of the estimator(s) at the error variance V,
when the population CV of each independent
random effect is, respectively, .01, .05, and .10.
In each figure, the means of CV of the
estimator(s) when all parameters are fixed, is
shown at the upper left corner. For this error
variance, means of CV of the estimator(s) under
fixed effects are all within the dashed septagon
for all values of v (.01, .05, and .10), then we
can see the pattern of the sample CV of the
estimator(s) clearly. For example, when only
one random effect is considered, the mean of the
sample CV of the corresponding estimator is
highest and close to the population CV. When
both A and b are independent random, the mean
of CV(4), CV(bh), and CV(4,b) are all
highest and close to the population CV. When
all parameters are independently random, all
means of the sample CV are close to the
population CV.

At the error variance 10 x V,, means of CV
of the estimator(s) under fixed effects are all
within the dashed septagon when the population
CV = .05 and .10. Then, we can see the same
pattern as for the case when the error variance is
V, for the population CV = .05 and .10 only.
Similar results were obtained when the error
variance is 100 x Vo The mean of CV of the
corresponding estimator(s) is highest and close
to the population CV when the population CV
is .05 and .10. Itisalso
clearer when the population CV = .10 than when
the population CV = .05.

When the error variance is 1000 x V,, we
cannot see this pattern anymore since under the
fixed effects model, all means of CV of
estimator(s) are not inside the dashed septagon.



Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

Table. 1 The proportion of times that the sample CV of the estimator(s) has the highest value when all
parameters are fixed and Var( & )= 5.50287 x 10° = V,.

V, 10 x V, 100 x ¥ 1000 x V,

CV(A4) 011 012 017 075
cvih) 086 087 086 080
cv(d) .903 901 .897 845
CV(4,b) 000 .000 000 .000
CV(A,d) 000 000 000 000
CV(b,d) .000 000 000 000
CV(A,b,d) .000 000 000 000

Table. 2 The proportion of times that the sample CV of the estimator(s) has the highest value at
different

population CV (v) and Var(¢; ) = 5.50287 x 10°=V,.

Random Effect(s) v =.01 v=.05 v=.10
A CvV(A) 981 1.00 1.00
b CV(b) 980 1.00 1.00
d cv(d) 996 1.00 1.00

Ab CV(A) 503 515 515
cv(b) 497 485 485

Ad CV(A) 476 528 527
cv(d) .524 472 473

b.d cv(b) 469 528 527
cv(d) 531 472 473

Abd CV(A) 307 342 346
cv(b) 280 317 314

cv(d) 431 341 340
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Table. 3 The proportion of times that the sample CV of the estimator(s) has the highest value at
different population CV (v) and Var( & )= 10xV,.

Random Effect(s) v=.01 v=.05 v=.10
A CV(4) 460 1.00 1.00
cv(d) 504 .000 000
b cv(b) 476 999 1.00
cv(d) 521 .001 000
d cv(d) 953 1.00 1.00
Ab CV(A4) 299 507 510
cv(h) 318 493 490
Ad CV(A) 271 511 521
cvid) 715 489 479
b.d cv(b) 292 503 552
cv(d) 703 497 478
Ab,d CV( A ) 173 331 351
cvibh) 176 301 303
Cv(d) 651 368 346

Table. 4 The proportion of times that the sample CV of the estimator(s) has the highest value at
different population CV (v) and Var( gl./.) = 100x V,.

Random Effect(s) v=.01 v=.05 v=.10
A CV(A) 065 763 978
cv(b) 074 014 .000
cv(d) 861 223 022
b cv(b) 132 753 978
cv(d) 857 246 022
d cv(b) 078 015 002
cvid) 895 970 997
Ab CV(A) 051 445 501
cvb) 122 443 499
Ad CV(A4) 060 394 472
Cv(b) 079 002 .000
cv(d) 861 604 528
b,d cvib) 126 383 471
cv(d) 859 617 529
Ab,d CV(A4) 055 241 308
cv(b) 093 224 278
cv(d) 852 535 414
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Table. 5 The proportion of times that the sample CV of the estimator(s) has the highest value at
different population CV (v) and Var( &, )= 1000 x V,.

Random Effect(s) v=.01 v=.05 v=.10
A CV( A ) 081 199 473
CV(Z; ) 079 .053 030
CcV( d ) .840 748 497
b CV(E ) 088 .188 451
CV( d ) .840 746 504
d cV( d ) .840 867 910
CV(I; ) 079 .057 025
Ab CV(A4) 086 169 341
CV([; ) .080 .148 292
CV( d ) .834 .683 367
Ad CV( A ) 090 189 303
CV(I; ) .080 045 013
CV( d ) .830 766 .684
b.d CV(l; ) .086 154 270
cv( d ) .834 777 687
Abd CV(/AI) 076 135 216
CV(Z; ) 079 096 167
CV(c;’ ) .845 769 617
4. An Example Table. 6 Parameter estimates for each flap of

We applied the method we propose to the
methyl salicylate data (MS). 400 g /cm’of

"C —MS in ethanol were topically applied to
8 isolated perfused porcine skin flaps and
experiments terminated at 8 hrs. Perfusate was
collected over time
(5,10,20,30,45,60,75,90,105,120 minutes and
then every 30 minutes until termination of the
experiment). Perfusate flux profiles were fitted
to an exponential difference model,

y; = A (exp(=bt;)—exp(—dt;)) +¢&,;. We

performed the statistics test from 5 flaps for the
final analysis since three flaps are outliers. Prior
to analysis, time was converted to hours and
percent of dose was multiplied by 100.

The individual estimates are shown in
Table 6.

8 hr. MS data.

Flap A b d
1 1.0516 | 03007 | 3.6095
2| 16230 | 03397 | 32220
30| 17346 | 04414 | 10.1435
4 | 17642 | 03076 | 5.6908
s | 17109 | 02978 | 9.4859

The approximate F statistics test is 18.419
with p-value close to 0 since £y}, 1, =1.850.

The result suggests that a random effects model
is needed for these data under model
assumptions.

Model selection to see which pararmeter
should be considered random by using the
multivariate coefficient of variation is presented
in Table 7.
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A,b,d (CV =.01,Rho =0)

cviay cvia)
CV(A.b,d) cV(b) CV(Ab.d) . cvin)
CV(b.d) cv(d) Vo~ ~ v
/
cving) CVAb)
A (CV =.01) b (CV =.01) d (CV =.01)
cvia) cV(A) CV(A)

CVi{A,b,d) CV(b)

Vb cvin

CV(A,d) CV{Ab)

CV{Ab,d) CV{b)

Cv(d}

CV(A,d) CV(A,b)

CV(b)

Cvib,a)

cvm,d)/ \CV(A,b;

Ab (CV =.01, Rho = 0)

CV(A)

CV(A,b,d) Cv(b)

Cv(b.d) cv(g)

A.d (CV =.01, Rho = 0)

CViA}

CV(A,b,d) CV(b)

Vb~

CV[A‘d)/ “CV(A,b)

b,d (CV =.01, Rho =0)

CV(A,b,d) CV{b)

CVid)

CV(Ad) CV(A,b)

Figure 1: Means of the sample CV of the estimator(s) with fixed parameters and when one, two,

or three independent effect are random at the population CV = .01 and
Var(g,)=5.50287x10"
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A,b,d Fixed at V0
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N
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cviad)’ CV{Ab)

A (CV =.05) b (CV = .05) d (CV =.05)

CV(A,b,d) cV(b) CViab.d)

CV(A,b.d) 0.05. Cv(b}

T cv(d) cvib,d) — . / \ 7\\ cv(d) CV(b.d) —
\ s

cvib,a) — , N
CV(Ad) CV(Ab) CV{A.d) \CV(A,b) CVU‘vd'/ \CVV‘"’)
A,b (CV =.05, Rho =0) A,d (CV = .05, Rho = 0) b,d {CV = .05, Rho = 0)
cv(Aa) cvia) cv(A)
I
CV(A,b,d) i CV(b) CV(A,b,d) CVib) CV{Ab,d) CV(b)
\
CV(b.d) / /’\ cv(d) CV(b.d) //{/\/ = cv(d) CV(b.a) — —— cv(d)

y

/

/ \ /
cviad)’ ‘CV(Ab) CV(A,d)/ \evab) cviag)/ ‘CV(Ab)

Figure 2: Means of the sample CV of the estimator(s) when fixed parameters and when
one, two, or three independent effect are random at the population CV = .05 and

Var(e, )= 5.50287x 10
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A,b,d Fixed at VO A,b,d (CV = .10, Rho = 0)

GV(A)

CV(A,b,d) CV{A.b.a) CVib)

CVi(b,d) CV(b.d)

A (CV = .10) b (CV = .10) d (CV = .10)

cva) CV{A)

CV(A,b,d) CV(b)
CV(A,b,d) CVib) CV(Ab,d)

CV(b,d) CV(d) CV(b.d) CV(b,d) Cvid)

Ab (CV =.10, Rho = 0) A.d (CV =.10, Rho = 0) b,d (CV =.10, Rho = 0)

CV(A)
cv(a)

CV(Ab.d) Cv{b)
cv(b) CV(A,b.d} cvb)

Cv{d) CVi(b,d} CV(d) CV{b,d) CV(d)

Figure 3: Means of the sample CV of the estimator(s) when fixed parameters and when
one, two, or three independent effect are random at population CV = .10 and

Var(e, ) =5.50287x 10

10
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Table. 7 Sample multivariate CV of the
estimates from 8 hr MS data.
Estimate(s) cv
Y 0.1892
b 0.1792
d 0.5034
1 b 0.2133
y ,a? 0.2606
[;,a? 0.2505
4 [; ’ d 0.2384

The sample CV(d ) is highest (0.5034),
follow by CV( A,d ) and CV(b,d ) (0.2606 and
0.2505, respectively). This might suggest a
model with only d random, or a model with
d and one other parameter. For example, a
model with A4 and  random, or a model with
b and d random, compared to a model with all
parameters random. The fixed parameter
approach then will be used to form an
approximate F test for model selection.

The full model here is the model with all
parameters random. The reduced model 1 is the
model with only d random, the other reduced

model II and HI are the models with 121 and

d random, and the model with band d
random. The statistics test, critical values of the
F random variable, and p-values are shown in
Table 8.

Table. 8 Test statistics, F and p-value for testing
the full model and the reduced model for 8 hr
MS data.

Reduced Model TS F p-value
I (d random) 5.80 | 2.03 .0000
11(A4,drandom) | 1.86 | 2.46 1229
(b ,d random) | 1.68 | 2.46 | 1612

The results in Table 8 indicate that the
model with 4 and d random and the model
with b and d random are not different from the
model with all parameters random. Based on
the sample multivariate CV and the p-values
from the test, we then conclude that the model
with b and d random is appropriate for this data.

Akaike’s Information Criterion (AIC), a
finite-sample corrected version of AIC(AICC),
and Schwarz’s Bayesian Information Criterion
(BIC) were examined for this data set. The
order of AICC, AIC, and BIC from smallest to
largest for all combinations of random terms in
the model obtained from PROC NLMIXED of
SAS are shown in Table 9.

Table.9 Order of AICC, AIC and BIC for all
combination of random terms in the model for 8

MS data.
Rando AICC AIC BIC
m
b,d -108.0 -109.1 -111.8
Ad -107.4 -108.4 -111.2
d -92.0 -92.5 -94.5
Ab -87.9 -89.0 -91.7
A -82.9 -83.5 -85.4
A,b,d -41.2 -43.4 -47.3
b -40.2 -40.8 -42.7
None -26.5 -26.8 -28.4

The multivariate coefficient of variation
criteria agree with AICC, AIC, or BIC for the
best model selection as expected. The final
model is:

Yy = A (exp(=b;t,) - exp(—d,l,, N+ o

itij

b =p+b,,
Note that «,f,and & denote

where and

d =5+d,.

fixed effects parameters, b’

i

4 =a,

and d ,.* denote

random effects parameters with an unknown
covariance matrix. By assuming that the
conditional model for the data and the joint
distribution of b’ and d are normal, the
maximum likelihood estimates of the parameters
were obtained from PROC NLMIXED with
Newton-Raphson Ridge optimization technique

and integral approximations by adaptive
Gaussian quadrature.  Results are shown in
Table 10.
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Table. 10 Parameter estimates of the model
with b and d random from 8 hr MS data.

From Table 10, with only 5 replications,

Parameter | Estimate SE p-value there is no evidence to argue that both &, and
a 1.6978 | 0.0613 .0001 A2 allv sionif housh
B 0.3673 0.0355 0019 o, are margmally significant even thougn a
S 6.1918 | 1.5811 0296 model with band d random is the most
&2 00157 | 0.0022 0054 appropriate. There does not appear to be a

e significant covariance between them also, as
o, 0.0044 | 0.0034 2780 seen by the estimate of o, . The final profile
ol 11.1502 | 7.7217 2445 fitting is shown in Figure 4.

Oy -0.0854 | 0.1179 5209
Final Profile Fitting for 8 hr MS Data
1.6
1.4 1
1.2 1

g 1
8
s 0.8
3
~ 0.6 ¥

0.4 -
0.2
O i T T i T 1
0 2 4 6 8 10
Time (hrs)
—+—From Proc NLMIXED —x—Mean of Ind. Estimates

Figure 4: Final profile fitting from estimates of PROC NLMIXED for 8 hr MS data.

5. Conclusion and Discussion

Multvariate coefficients of wvariation for
individual estimate and for all combination of
estimates were used to determine which effects
have a random component after the
significance of the approximate F statistics

12

test for testing whether random effects are
needed. From the difference of exponentials
model simulations, when all parameters are

fixed and the sample CV is calculated, CV(d)
is likely to have the highest value. The
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characteristics of the estimates summarized
here, can be seen clearly when the error variance
is small enough. If the error variance is
increased, to attain the same characteristic, the
population CV of random parameters should be
increased also.

When only one parameter is random, the
sample CV of the corresponding estimate will be
the highest rank most of the time. When more
than two independent random effects are
considered, the corresponding sample CV of the
individual estimates equally share the highest.

With only one random effect, the mean of
the sample CV of the corresponding estimate is
highest and close to the population CV. When
two independent random effects are considered,
the mean of each individual CV estimate and
their combination are highest and close to the
population CV. If all parameters are
independent and random, the mean CV of all
estimators and their combinations are close to
the population value.

When all parameters are fixed, CV(;I) is
likely to have the highest value for the

approximate gamma model but CV(d ) is likely
to have the highest value when the model is
close to a one compartment model.

An example for the difference of
exponentials model is given, and the fixed
parameter approach statistics test then is used to
test whether random effects are needed. The
multivariate sample coefficient of variation is
applied to indicate which parameter appears to
be random. Then, the fixed parameter approach
is performed to pick up the appropriate model.
The optimum solution agrees with other model
selection criteria, e.g., AICC, AIC, or BIC.
More simulation studies should be conducted to
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see the performance of the multivariate
coefficient of variation we proposed here when
random effects are correlated.
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