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Abstract
The coefficient of variations (CV) of each individual estimate and for all possible combinations

of the estimates are used to see which parameters should be random in a nonlinear mixed effects
model. From the difference of exponentials model simulations, when only one parameter is random,
the sample CV of the coresponding estimate will be the highest rank and its mean is close to the
population CV. When more than two independent random effects are considered, the corresponding
sample CV of the individual estimate equally shares the highest and the mean of each individual CV
estimate and their combinations are close to the population CV. An example on isolated perfused
porcine skin flaps data is also presented and the multivariate coefficient of variation was applied to
indicate which parameter appears to be random. The optimum solution agrees with other model
selection criteria, e.g., AICC, AIC, or BIC.

Keywords: compartment model, difference of exponentials model, fixed parameter approach,
multivariate coefficient of variation. nonlinear mixed effects model

1. Introduction and Motivation
A nonlinear mixed effects model is often

used to model repeated-measures response data.
In these types of studies, one is usually
interested in estimating the underlying
population response curuc. Since individuals are
randomly sampled from the population as a
whole, the parameters could be considered as
random effects.

Budsaba and Smith tl l  proposed an
approximate F statistics test fiom the fixed
parameter approach, which compares the
residual sum of squares from the full model and
the reduced model, to test whether random
effects are needed. From the difference of
exponentials model simulations, the test offers
very good results.

To choose which parameters should have
random effects in a nonlinear mixed effects
model, Pinheiro et al. l2l start with all
parameters as mixed effects and then examine
the eigenvalues of the estimated variance-
covariance matrix. lf one. or more, are close to

zero, then the associated eigenvector(s) would
then give an estimate of the linear combination
of the parameters that could be considered as
fixed.

The strategy we suggest here for
determining the random effects in a non linear
mixed effects model is to use the sample
coefficient of variation of each individual

i
estimate (CV( A )) and CV for all possible
combinations of the estimates. CV for more than
one estimator will be defined later and denoted

1 :

b y  C V ( d ,  . . . . . 0 , ) .  F o r e x a m p l e .  i f  a  m o d e l h a s

3 parameters, l, b, and d, we calculate

cv( 2 ), cvtb L cvt i t, cvt ),[],
cv( ),i t, cvt b,i \, una cv( ),tt,a ). we
expect that CV(; ) wil l have the highest value
when A is the only random parameter in the

model .  S imi lar ly ,  CV(b)  or  CV(d)  wi l l  have
the highest value when only b or d, respectively,
is a random parameter in the model. When two



or more random parameters are in the model, we
want to investigate the performance of those

CVs under certain conditions, e.g., CV( I ),

CV(b) ,  and CV( ) , t , )  * r t t  have the h ighest

value when both A and b are random.
The motivation of using the sample CV of

an estimator to detect the conesponding random
parameter after the significance of the
approximate F test can be considered as follows:

Suppose in a single factor balanced
ANOVA model II,

! i1  :  F i+ €11

where p, are independent l,l(trt ,o',,) ,

au are independent ,A/(0 ,o2),

trt,ande,,are independent random

var iables,  i  :  1 , . . . ,k  groups and j  -  1 , . . . ,n
replications.

From this model. f, i t un estimator of

the random parameter 11, . The expectation and

variance of I, is as follows:

E ( Y , )  =  p

^ 2

V ( Y  l = o ' , * L
n

Hence.  the populat ion CV( Y,  )  is

defined by:

.  )  d t . , a
\ o , ,  +  )

c v ( {  ) :  
'  n

The population CV( )i ) can

estimated by the sample CVt { t whictr

defined by:

-1 ) '  t ( t  -1 )1" '

l ' l
Hence the usual F statistics can be stated in

term of the sample CV( Y, ) as follows:

r : ln(/) ' �  CV'� g,)l /MS (within Group)

We can see that the larger the value of

sample CVzg,), the larger the value of F. If

the null hypothesis is false, the noncentral
parameter [3] of F is:

,  z:  ,(p, -  r t . .) '
Q : n _ _ # _  ( t )

o -
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The term Ll=,(p, - p..)t in (1) can be

estimated by ( 1)' (k I ) Ctr/ '( ) ' , ), ana then the

larger  the value o l  CV '14 
t .  th .  larger  the

value of Q . Hence the sample CV of the

estimator of a random parameter can be used as
an index to determine whether the parameter is
random after the significance of an F test. The
same idea can also be applied in a nonlinear
mixed effects model.

2. Multivariate Coefficient of
Variation

Some CV-like methods for k samples have
been reported in the literature. These include the
arithmetic mean of standard deviation over the
grand mean, the CV based on variation within
samples (the square root of the error mean
square from an analysis of variance over the
grand mean), and the CV based on variation
among samples (the square root of the added
variance component among samples in an
analysis of variance over the grand mean) [4].
The pooled coefficient of variation across
samples for homogeneity of variance test
(Bartlett's test) is defined by
-L

[L f , t cv , l '  |  . l f '  
'  .  whe re  {  i s  t he  deg rees  o l

freedom of sample i and J' is the total degrees

of freedom, and other pooled coefficients (e.g.

cRV ) tsl.
Chow and Tse [6] investigated estimators

for the common CV for a balanced k sample in
bioavailability/ bioequivalence
studies. The arithmetic mean of CV, the pooled
CV as in [5], the least square regression function

of S. and y, . th. moment estimator under one-

way random effects model, etc, were compared
asymptotically.

For the multivariate case, the literature is
lacking. We use the univariate CV as an
expansion to the multivariate variables. The
proposed multivariate coefficient of variation is
defined as: 

r
t ' f  t I  I - . . .  

- Y  
k t  

' - � i l t  t  p 1 . . . .  -  p  
A l l (  

n r 1  y ' . . . . .  y l  t ,  l ,  
1 r  r . . . . .  t ,  O , T  I  1

For examole:

be

is

k

lItr,
cv(r, ):



u(Yr.Y2\ -
_1

t  T , 2
l t  t  I  i (  ,  t  ut  l '  .  r r  )  i  

'  ( {  P '  . t r  '  I  '  '' 1  I  I  |  1

_1
u(Y) !(p)21var(Y)l-t  |  2

olP
Note that  when 1Yt  .Yt  ;  are mutual ly

independent, the reciprocal of the mutivariate
CV squared is the arithmetic mean of each
univariate reciprocal CV squared.

The sample coefficient of variation fbr k
random ra r i ab les  (  f t . . . . . ) / *  )  i s  t hen  g i ven  by :

, , - l
r  I  r ) , . .  . ) {  I  i ;  { } t . . . . . } t  1  1 , , r r ) , . .  ) t  r i  ' { } 1 . .  } t  ) '  i  I

For example:

r -  l
cv(vt .y)  -  \ | t r .yr ; [ io(r , , r r ) ] - t  I r .vr t r  |  2

_ .  - _ L
cv(r)  = 1v121t ar(Y)rr |  2

=  S I Y
Similar to the population value, when

(\, ,Yi are mutuallY indePendent, the

reciprocal of the sample mutivariate CV squared
is the arithmetic mean of each sample univariate
reciprocal CV squared.

3. Simulation Study
To see the performance of the proposed

sample CV, the multivariate sample CV is
calculated. The simulation is based on the
model:

! ii = A, {e.rp( -b,t,,, -,"!,,,!:, 
=,1,- i:r,

where l, is Normal with mean 1.5, and b,

and d, are normal with mean 0.0065 and 0.044

respectively. The random elfects are
independent in this preliminary study. The
independent normal random variables s, have

mean zero and four choices of variance, i.e. Zu

-  5.50281 x 10-" ,  l0  x  %, 100 x zn,  and

1000 x Vo. These error terms are also
independent of random effects. The model and
its parameters including thc approximate value
of the effor tems variance were generated
based on a porcine skin flaps experiment. With
these scenarios and several choices ol the
coefficients of variation (CV) of the random
effects across individuals, 1,000 Monte Carlo
replications were realized at t ime (ti j) : {0, 5,

Thammasat Int.  J. Sc. Tech.. Vol. I  l .  No. l .  . lanuarv-March 2006

1 0 ,  1 5 , 3 0 , 4 5 , 6 0 , 1 5 , 9 0 ,  1 0 5 ,  1 2 0 , 1 5 0 ,  1 8 0 ,
210" 240,270,  300,330,  360,  390.  420,  450,
480  i .

The model (2) we propose for the flux rate
profile of the porcine flaps experiment is the
difference of exponentials model Ul This
model is a compartment model. Comparlment
models are commonly used in pharmacokinetics,
where the exchange of materials in biological
systems is studied. A system is divided into
compartments, and it is assumed that the rates of
flow of drugs between compartments follow
first order kinetics. so that the rate of transfer to
a receiving compartment is proportional to the
concentration in the supplying compartment.
The transfer coefficients" which are assumed
constant with respect to time, are called rate
constants.

The reciprocal of a rate constant is called a
time constant. Our model has two constant rates
(b and d). We also assume that d > b. Since d is
greater than b, this model can be considered as a
two compaftment model with a faster absorption
constant rate than elimination constant rate. A is
mathematically explained as a function of b, d,
and an initial unobservable quantity of the
supplying compartment. This model allows the
response to be zero at time zero.

At each replication of 1,000 Monte Carlo
runs, sample CV of all subsets of the estimates
were obtained and ranked by ascending order.
We investigated the sample CV of these
estimates when all parameters are flxed, and for
all possiblc combinations of independent
random effects (one, two, or three random
parameters) with several choices of the error

va r i ancc .  i . e .  l / , ,  5 .50287  "  l 0  
" .  

l \ xV , , "

100 x (,, , and 1000 x V,, . Error terms are also

independent of the random effects. Three
choices of D, the population CV of each
random effects across individuals, i.e. .01, .05,
and.10 were studied.  These CV values ( .01,  .05
and .10) were chosen according to the pilot
porcine skin flaps experiment.

Table 1. shows the result when all

parameters are f i red.  CV t i )  is  about  90oo of

the time in the highest rank for all choices of the
error variance except for the eror variance

1000 x Zo , which is about 85%. This means

that  when a l l  parameters are f ixed.  CVt i l  is

more l ikely to have the highest value.

t)1,,



Presence of random effects are considered
in Tables 2, 3, 4, and 5. Each table presents
results of simulations for several values of u
(the population CV of each random
independent effect) and when one, two, or all

three of the eff'ects are random with the error
variance of (, : 5.50287 x 10-{', l \xV,,,

100x Zn,  and 1000x Zn ,  respect ive ly .

At Zn (Table 2), when only one parameter

is random. we observe that at least 98% of the
time, the corresponding CV will be the highest.
When the error variance is increased from l0
times to 1000 times Vn in Tables 3-5. we
observe that to attain the highest rank, usually
the population CV (u) of the random parameter
should increase correspondingly.

When only two independent random
parameters are considered at Vu(Table 2), the

corresponding sample CVs of estimators are the
highest rank (about 50% for each individual
estimate). For example, when A and b are
independent random parameters, we observe

that CV ())ana CV(b)are the highest, 50o/o of

the time when u : .01. Similar results were
obta ined when u: .05 or  u - .10.  and when A
and d, or b and d are random parameters.

When the error variance is increased to
l 0 x Zo (Table 3), 1 00 x Z, (Table 4), and

l000xZu(Table 5), to attain the highest value

of the corresponding CVs of estimators, the
population CV (u) of each random parameter
has to be increased also.

If all parameters are independently random

at variance level Vo flable 2), CV(;), CV(b)

and CV (i) share the highest rank with the

amount being 3l-35%o of the time (u - .10). To
see this pattem, when the error variance
increases, the population CV of each random
parameter has to increase (e.g. u : .05 in
Table 3).
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Figures l- 3 show the means of the sample
CV of the estimator(s) at the error variance V6
when the population CV of each independent
random effect is, respectively, .01, .05, and .10.
In each figure, the mcans of CV of the
estimator(s) when all parameters are fixed, is
shown at thc upper left comer. For this error
variance, means of CV of the estirnator(s) under
fixed effects are all within the dashed septagon
for  a l l  va lues of  u ( .01,  .05,  and .10) ,  then we
can see the pattem of the sample CV of the
estimator(s) clearly. For example, when only
one random effect is considered. the mean ofthe
sample CV of the corresponding estimator is
highest and close to the population CV. When
both A and b are independent random, the mean

o f  cv (2 ) ,  CV(b ) ,  and  cv (2 ,b )  a re  a l l

highest and close to the population CV. When
all parameters are independently random, all
means of the sample CV are close to the
population CV.

At the enor variance l0 x Vo. means of CV
of the estimator(s) under fixed effects are all
within the dashed septagon when the population
CV - .05 and. l0.  Then.  we can see the same
pattern as for the case when the error variance is
V6 for the population CV : .05 and .10 only.
Similar results were obtained when the emor
variance is 100 x Vs The mean of CV of the
corresponding estimator(s) is highest and close
to the population CV when the population CV
i s . 0 5  a n d . l 0 .  I t  i s  a l s o
clearer when the population CV : .10 than when
the populat ion CV -  .05.

When the error variance is 1000 x Vo, we
cannot see this pattem anymore since under the
fixed effects model, all means of CV of
estimator(s) are not inside the dashed septagon.
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Table. I The proporlion of times that the sample CV of the estimator(s) has the highest value when all

parameters are fixed and Var( a,, ) - 5.50287 x 106 - Vo .

vo l 0  x V , 100 x 2,, 1000 x Zo

C V ( I ) . 0 1  I .012 . 0 1 7 .075

cv(b ) .086 .087 .086 .080

c v ( d ) .903 . 901 .891 .845

cvt ) ,ol .000 000 .000 .000

cY( A,d ) .000 000 .000 .000

cY(b,d ) .000 .000 .000 .000

cv(  A,b,d ) .000 .000 .000 .000

Table. 2 The proportion of times that the sample CV of the estimator(s) has the highest value at
different

population CV (u) and Var( t ir ) - 5.50287 x 10-6 : Vo.

Random Effect(s) u :  . 0 1 u : . 0 5 . 1 0

CV( n , .98 r r .00 r .00
b cv(b ) .980 1.00 t . 0 0

d cv(d) .996 1.00 r .00
A,b cv(4)

cv(b )

.503

.497

. 5 r 5

.485

. 5  l 5

.485

A,d cY(  2 )
cv(; )

.416

.524

.s28

.412

.521

. + t )

b,d cv(b )
cv(; )

.469

. 5 3 1

.s28
A  1 ' '

.527

. + t - )

A,b,d c v ( A )
cv(b )
cv(i )

.307

.280

.431

J + Z

311

341

346

3t4

340
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Table. 3 The proportion of times that the sample CV of the estimator(s) has the highest value at

different population CV (u) and Var( s,,) - l0 x Vo .

Random Effect(s) .01 u : . 0 5 u : . 1 0
A cv())

cv(; )
.460

.504

1.00

.000

1.00

.000
b cv(b )

cv ( ; \
.476

.521

.999

.001

1.00

.000
Ju cv(d ) .953 1.00 1.00

A.b cv(.^4 )
CV(b  )

.299

. 3 1 8

.501

.493

. 5  l 0

.490

A,d cv ( r )
cv f i l

.271

. 1 t 5

. 5 i l

.489

. ) L l

.479

b,d cv(b )
cv(; )

.292

.703

.503

.497

.552

.478
A,b,d cv( ;  )

cv(b)
cY(; )

173

1 7 6

6 5 1

. J J  I

.30  |

368

3 5 r
303
346

Table. 4 The proportion of times that the sample CV of the estimator(s) has the highest value at

different population CV (u) and Var( e,, ) : I OO x 4 .

Random Effect(s) u  - . 0 1 u - . 0 5 u : . 1 0
A c v ( l )

cvtb t
CV( ;  )

.065

.074

. 8 6 1

.763

.014

. zz . t

978

000

022
b cv(b )

CV( ;  )

.132

.857

.753

.246

.918

.022

d CV

CV

D )

) t
.078

.895

. 0 1 5

.970

.002

.997
A,b cv(A

cv(b
. 0 5 1

. 1 2 2

.445

.443

. 5 0 1

.499

A,d cv( A
cv(b
cv(;

.060

.079

. 8 6 1

.394

.002

.604

A 1 ' '

000

528
b,d cv(b)

c v ( d )
. 1 2 6

.859

.383

.617

. 4 7 1

.529

A,b.d c v ( r )
cvtb I
C V ( d )

.055

.093

.852

241

224
535

308

218
414
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Table. 5 The proporlion of times that the sample CV of the estimator(s) has the highest value at

different population CV (u) and Var( e,, ) : 1000 x Zo .

Random Effect(s) . 0 1 u - . 0 5 u : . 1 0
A CV(4)

cv(b )
cv(; )

0 8 1

019

840

r99
053
748

.473

.030

.497

b cv(b )
cv(; )

.088

.840

. r 8 8

.746

.451

.504

d cv(d )
CV(b  )

.840

.079

.861

.051

9 1 0

,025

A,b cv(A)
cv(b )
CY( ; )

.086

.080

.834

. t69

. 1 4 8

.683

341
292

367

A,d cv(4)
cv(b )
cv(; \

.090

.080

.830

1 8 9

045

766

303
0 1 3

684

b,d cv(b )
cv(;)

.086

.834

. 1 5 4

.777

.270

.687

A,b,d cv(4)
cv(b )
cv(; )

.076

.079

.845

1 3 5

096

769

.2t6

.167

. 6 1 7

4. An Example
We applied the method we propose to the

methyl  sa l icy late data (MS).  400 pg /  cm2 ol
'o C - MS in ethanol were topically applied to
8 isolated perfused porcine skin flaps and
experiments terminated at 8 hrs. Perfusate was
col lected over time
(5,10,20,30,45,60,75,90,105,120 minutes and
then every 30 minutes until termination of the
experiment). Perfusate flux profiles were fitted
to an exponential difference model,

I i1 = A,(exp(-b,t,i) - exp(-d,t,,)) + t u. we

performed the statistics test from 5 flaps for the
final analysis since three flaps are outliers. Prior
to analysis, time was converted to hours and
percent of dose was multiplied by 100.

The individual estimates are shown in
Table 6.

Table. 6 Parameter estimates for each flap of
8 hr. MS data.

Flap 2 b d
I
2
J

A

5

05 16
6230
7346
7642
7 109

0.3007
0.3397
0.4414
0.3016
0.29'78

3.6095
3.2220
10.1435
5.6908
9.4859

The approximate F statistics test is 18.419

with p-value close to 0 since F,.or,,r,,oo, :1.850.

The result suggests that a random effects model
is needed for these data under model
assumptions.

Model selection to see which pararmeter
should be considered random by using the
multivariate coefficient of variation is presented
in Table 7.



A . b . d  F i x e d  a t  V 0

Thammasat Int. J. Sc. Tech., Vol. I l. No. l. Januar"r-March 2006

A ,  b ,  d  ( C V  = . 0 1 ,  R h o  =  0 )

A,b  (CV =  .01 ,  Rho =  0) A , d  ( C V  = . 0 1 ,  R h o  =  0 )

CVlA)

cv(a ,b ,d ) \

\''71\'
cvru,or--..'---{

d  ( c v  = . 0 1 )

b,d  (CV =  .01 ,  Rho =  0)

Figure I : Means of the sample CV of the estimator(s) with fixed parameters and when one, two,
or three independent effect are random at the population CV - .0,l and
Var (  r , ,  )  -  5 .50287  x  l 0  6
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A,b ,d  (CV =  .05 ,  Rho =  0)

b  ( cv  =  . 05 )

A,d  (CV =  .05 ,  Rho =  0)

d (cv = .05)

b,d  (CV =  .05 ,  Rho =  0)A,b  (Cv  =  .05 ,  Rho =  0)

cv(a)

c v ( a b , d )  

a ' h >  

c v ( b l

--.1 '/
c v i b , d ) - - - -  

\ -  

- " n " ,

"u,o.o,I 
tt'"u,o.o'

Figure 2: Means of the sample CV of
one, two, or three independent
Yar(  e, ,  )  :  5 .50287x l0 6

the estimator(s) when fixed parameters and when
effect are random at the population CV - .05 and

A , b , d  F i x e d  a t  V 0

cv{A)

c v ( A , b , d ) \  
- ! , - 1 . _ - . -  a , c u t o t

\ - , - t
. u , o o ,  -  - - l " .  - c v r d )

' /  l '
. u , o o r /  \ . u , o , , ,
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A , b , d  ( C V  =  . 1 0 ,  R h o  =  0 )

A , d  ( C V  =  . 1 0 ,  R h o  =  0 )A , b  ( C V  =  . 1 0 ,  R h o  =  0 ) b , d  ( C v  =  . 1 0 ,  R h o  =  0 )

Figure 3: Means of the sample CV of the estimator(s) when fixed parameters and when
one, two, or three independent effect are random at population CV : .10 and
Var ( r , ,  )  -  5 .50287x  l 0  6

1 0



Estimate(s) CV
)

b

d

A , b
^ i

A , d

b , ;

A . l , . d

0 .1  892

0.1192

0.s034

0.2t33

0.2606

0.2505

0.2384

Table. 7 Sample multivariate CV of the
estimates from 8 hr MS data.
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Akaike's Information Criterion (AIC). a
finite-sample corrected version of AIC(AICC),
and Schwarz's Bayesian Information Criterion
(BIC) were examined for this data set. The
order of AICC, AIC, and BIC from smallest to
largest for all combinations of random terms in
the model obtained from PROC NLMIXED of
SAS are shown in Table 9.

Table.9 Order of AICC. AIC and BIC for all
combination of random terms in the model for 8
MS data.

Rando
m

AICC AIC BIC

b,d
A,d

Au

A,b

A,b,d
b

None

-  r08 .0
- t01 .4
-92.0
-81 .9
-82.9
-41.2
-40.2
-26.5

- r 09.1
-  108.4
-92.5
-89.0
-83 .5
-43.4
-40.8
-26.8

- 1 1 1 . 8
- l l 1 . 2
-94.5
-91.7
-85.4
-47.3

A a  a

-28.4

The multivariate coefficient of variation
criteria agree with AICC, AIC, or BIC for the
best model selection as expected. The final
model is:

! i i  : A,(exp(-b,t,,) - exp(-d,t,,)) + tri,

w h e r e  A i : a ,  b , - F + b i  ,  a n d

d,=6+di  .  Note that  a,B,aruJ d denote

fixed effects paramelers. h.. and d,- denote

random efTects parameters with an unknown
covariance matrix. By assuming that the
conditional model for the data and the joint

distribution of b, and dj are normal, the

maximum likelihood estimates of the parameters
were obtained from PROC NLMIXED with
Newton-Raphson Ridge optimization technique
and integral approximations by adaptive
Gaussian quadrature. Results are shown in
Table 10.

The sample CV(; ) is highest (0.5034),

follow by CY( 2,; ) and CV( b,i ) (o.zooo una

0.2505, respectively). This might suggest a
model with only d random, or a model with

d and one other parameter. For example, a

model with A and d random, or a model with

b and d random, compared to a model with all
parameters random. The fixed parameter
approach then will be used to form an
approximate F test for model selection.

The full model here is the model with all
parameters random. The reduced model I is the
model with only d random, the other reduced

model II and III are the models with I and

i rando-. and the model with b und ;
random. The statistics test. crit ical values of the
F random variable, and p-values are shown in
Table 8.

Table. 8 Test statistics, F and p-value for testing
the full model and the reduced model for 8 hr
MS data.

Reduced Model TS F n-value

I ( d random)
l l (A,d random)
i l (b,d random)

5 .80
1 . 8 6
1 . 6 8

2.03
2.46
2.46

0000
1229
16t2

The results in Table 8 indicate that the
model with A and d random and the model

with b and d random are not different from the
model with all parameters random. Based on
the sample multivariate CV and the p-values
from the test. we then conclude that the model
with b and d random is appropriate for this data.

l l



Table. l0 Parameter estimates of the model
with b and d random from 8 hr MS data.
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From Table 10, with only 5 replications,

there is no eviclence to argue that both ouz and

6,t, are marginally significant even though a

model with b and d random is the most
appropriate. There does not appear to be a
significant covariance between them also, as

seen by the estimate of o,,,, . The final profile

fitt ing is shown in Figure 4.

Parameter Estimate SE o-va lue
a

B
6
oI
oI
oj

ou

1.6918
0.3673

6 .  1 9 1  8
0 .01  57

0.0044

1 1 . 1 5 0 2

-0.0854

0.0613
0.0355
1 . 5 8 1  I
0.0022

0.0034

7 . 7 2 1 7

0 . 1  I  7 9

000 I
0 0 1 9
0296
0054

2780

2445

5209

Final Profile Fitting for 8 hr MS

o
o
o
o
s
o
o

1 . 6

1 . 4

1 . 2

1

0.8

0 .6

0 .4

0 .2

0

Time (hrs)

Figure 4: Final profile fitting from estimates of PROC NLMIXED for 8 hr MS data.

5. Conclusion and Discussion
Multvariate coefficients of variation for

individual estimate and for all combination of
estimates were used to determine which effects
have a random component after the
significance of the approximate F statistics

test for testing whether random effects are
needed. From the difference of exponentials
model simulations, when all parameters are

fixed and the sample CV is calculated, CV( d )
is likely to have the highest value. The

t2



characteristics of the estimates summarized
here, can be seen clearly when the error variance
is small enough. If the error variance is
increased, to attain the same characteristic, the
population CV of random parameters should be
increased also.

When only one parameter is random, the
sample CV of the corresponding estimate will be
the highest rank most of the time. When more
than two independent random effects are
considered, the corresponding sample CV of the
individual estimates equally share the highest.

With only one random effect, the mean of
the sample CV of the corresponding estimate is
highest and close to the population CV. When
two independent random effects are considered,
the mean of each individual CV estimate and
their combination are highest and close to the
population CV. If all parameters are
independent and random, the mean CV of all
estimators and their combinations are close to
the population value.

When all parameters are fixed, CV( I ) is
likely to have the highest value for the

approximate gamma model but CV(d ) is likely
to have the highest value when the model is
close to a one compartment model.

An example for the difference of
exponentials model is given, and the fixed
parameter approach statistics test then is used to
test whether random effects are needed. The
multivariate sample coefficient of variation is
applied to indicate which parameter appears to
be random. Then, the fixed parameter approach
is performed to pick up the appropriate model.
The optimum solution agrees with other model
selection criteria, e.g., AICC, AIC, or BIC.
More simulation studies should be conducted to
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see the performance of the multivariate

coefficient of variation we proposed here when
random effects are correlated.
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