
1. Introduction
In order to predict the physical behaviors of

a full-sized structure or prototype from its
corresponding scaled model, the similitude
conditions between the prototype and its scaled
model must be satisfied. Together with several
methods used in the past, derivation of a scaling
law by utilizing a governing differential
equation, is the most systematic and rigorous
method t 1l This technique has been
successfully applied to several problems, for
example, buckling of a composite plate [2, 3],
free vibration response of a composite plate [3,
4] as well as free and forced vibration response
of an elastic supporled rectangular plate under a
moving point load [5].

In the method of goveming equations, after
substituting the scaled variables into the
governing equation of the prototype, the
equation is then compared with an equation of
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the model. The similitude conditions are
obtained by equating the coefficients that appear
in both equations. The concept insight of this
process can be stated as: the sufficient and
necessary condition of similitude between two
systems is that the mathematical model of the
one be related by a one-to-one transformation to
that of the other []. Scaling factors obtained by
this process are called "explicit scaling factors"
[5]. However, the structural behaviors depenc
on boundary conditions, i.e. methods of
restraint. To achieve a complete similitude
between model and prototype behaviors, it is
necessary to properly scale the boundary
conditions also. The scaling factors for boundary
conditions are called "implicit scaling factors"
[51.  In  the method of  governing cquat ions.  an
implicit scaling factor is separately derived by
other methods such as dimensional analysis.
Therefore, it is worth developing a method that
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can unify the deriving process of both types of
scaling factors.

In this study, the scaling laws are derived
by considering the principle of conservation of
energy, since the principle considers the whole
system, i.e. body, loads, and boundary
conditions. The similitude conditions can not be
sufficiently derived by scaling each one of the
strain energy, external work, and kinetic energy,
but they must be derived by scaling all types of
energy simultaneously. This process leads to a
scaled energy equation which has to obey the
principle of conservation of energy for the
model. The last requirement introduces the
condition of complete similitude between both
systems. This idea has been successfully applied
to 2-D truss and beam bending problems [6].
The process of deriving a scaling factor by this
method is systematic and has no requirement to
specify the boundary conditions similar to the
method of using a governing equation. This
implies that both methods have the same order
of generality. However, when the structure is
constructed from several members, e.g. truss'
frame. etc.. the proposed method directly gives
the scaling factor for the structural behavior.
The method of governing equations derives the

scaling factor from the governing equation of a
member, then employs a scaling factor to the
whole structure. The final derived a scaling
factors from both methods are the same. The
energy approach is more straightforward in the
scaled behaviors.

ln the present work, the applicability of the
proposed method is further explored by applying
it to several structural problems.

2. General procedure
This section presents a general procedure to

derive a similitude condition for behaviors of
structural members employing an energy
principle. The principle of conservation of
energy states that ifthere is no energy loss in the
form of heat and chemical reactions, the strain
energy U stored within the body is equal to a
summation of the work produced by external
loads 14/ , and kinetic energy Z :

u ( x , l -  w ( v , l + r V ^ l  ( l )

where X ,, Y i , and Z r are the lists of physical

variables, i.e. dimensions, material properties,
for each type ofenergy.
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Let the physical variables of a model and a
prototype for each type of energy be defined
similarly to those that appeared in Eq.( 1) with an

addition of the subscripts " m" and " p", i.e.

X *, and X pi , Y*1 , and Y,,1 as well as Z,n, and

Z up, respectively. Furthermore, all variables of

both systems are related to each other by the
equations:

X11  :C iX ,n ,

Y,, : C ,Y,,
and Z ,r : Cr,Y,*

where C,, C, and Cr are

prototype variables

(2a)

(2b)

(2c)

scaling factors of

Substitute Eq.(2) into (l) yields

u(c,x.,)-wlc jY*i)-r(c rz.) = o (3)

ln order to achieve a complete similitude
condition, it is necessary that the equation must
be rewritten in the following form:

a(C , )U  (  x , , , 1 -  xK  \w  (v , )  .'  , . \  ,  - , ,  ( 4 )
-0 (c  k ) r  (z ,k )  =  o

where qo(C, ), Ac ,) and {(C r) are functional

relationships among the scaling factors.

The complete similitude requirements are
achieved if and only if the condition of
conservation of energy of the model is satisfied,

i .e .  u(x, , ) -w(v, , ) -  T( .2 ^*) -  0 .  Therefore,

all of the functional terms in Eq.(4) have to be
equal:

q(c,)= x lc t )= d@r) (s)

3. Application
This section presents an application of a

general procedure to determine scaling factors
for structural behaviors ofa beam and thin plate
These behaviors are static deflection and natural
frequency. In section 3.1, the procedure is used
in derivation of a scaling factor for the
deflection of a beam having different types of
support under a concentrated load. The objective
is to present an invariant scaling factor for the
boundary conditions. ln section 3.2, the
procedure is used in the derivation of a scaling
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factor for deflection of a plate subjected to
concentrated load and uniformly distributed
load. The objective is to present the dependency
of the scaling factor to types of load. Finally, in
section 3.3, the procedure is used in the
derivation of a scaling factor for the frequency
response ofa plate.

The derived scaling factors are verified by
comparing the behavior of a prototype, which is
computed from closed-form solutions, with that
f rom a s imi l i tude theory.

3.1 Scaling factor for beam deflection
3.f .1 Beam with rigid or free support
subjected to a concentrated load

In this case. the reaction forces at the
supports produce no work and there is no kinetic
energy. Applying the conservation of an energy
principle to the prototype which is subjected to a
concentrated load Q,, yields:

|  /  .  , l' i E , , l  
, ,  I J  r ' , , )  I

l - - l  
- -  

|  d x , ,  -  ^ Q , , ^ , ,  = 0 .  ( 6 )
i  )  \ , 1 * , , -  )  

'  2 - '  t

where E is Young' s modulus, 1 is area
moment of inertia, Z is beam length, r is
linear distance along the beam length, w is
static deflection. and A is deflection at the
loading point in the direction of the force p.

The subscript " p " is added to emphasize that

these variables belong to a prototype.

The relationship among prototype and model
variables are:
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CoC, d \C,x,,)
(8)

C' L.

I
.  ' l

E. I , ,  C , , ' (  d ' . , , l
, 4 l d - : )

I- -C,,C,,Q.A',,  =o
2 '

For geometric similarity, C, becomes equal to

C L. The complete similitude requirement

obtained by Eq.(5) is:

CECIC  
2

c . t  
-  =CQC'  (9 )

The scaling factor for static deflection derived
from the above condition is:

L , , C ,
L , , .  - -"  

C ,C ,
(  l0 )

To verify the above scaling factor, consider
a cantilever beam having a length of L and
subjected to a single concentrated load Q at a
distance a as shown in Fig. l. The solution for
the deflection at the tip (point l) d.,, obtained

by elementary beam theory is:

a , = { Q r * o 1 .  ( l t ). E I

The values ofprototype variables are:

E  , ,  
=  207GPa ,  [  ,  : 10  6  ma  ,  L , ,  : 2  m

0 p = l m , a n d Q , , = 5 0 0 N

Q,,  :  CqQ*,E, ,  -  C pE. , I , ,  :  C11, ,  Thevalues ofmodel  var iablesare:

L , , :C  tL , , r ,  x r , :  C ,x , , ,  r t , , ,  =  C , , . u ' , n  E , ,  - 70  Gpa ,  1 , ,  =2x10 ,  * ,  ,  L r , : 0 .4  m
a n d A o : C , , L , , ,  ( 7 )  a , , : O . 2 m , a n d e , , : l 5 N

where Co, Cn, C,, C, and C,,. are scaling

factors for load, Young's modulus, area moment
of inertia, length, and deflection, respectively.

Substitute Eq.(7) into (6) yields:

Fig. I Cantilever beam subjected to a single
concentrated load
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The deflection at point I ofthe prototype beam
computed by Eq.(l1) is 2.01 mm downward.
The deflection at point I of the model computed
by Eq.( l l )  is  0.714 mm downward.  The
scaling factor for deflection is 2.818. Therefore,
the deflection of a prototype beam computed by
simi l i tude theory is  2.818x 0.714 = 2.01 mm.
It can be concluded that under a complete
similitude condition, similitude theory predicts
the exact result.

3.1.2 Beam with l inear spring support
subjected to a concentrated load

In this case, reaction forces at spring
locations produce work which is a function of
deflection and stiffness ofthe spring. Consider a
beam that is supporled by a single linear elastic
spring, the principle of conserrration of energy
for the prototype which is subjected to a
concentrated load Q,, can be written as:

L  
' n E I f a t " . )

; k , , d , -  * l - + l  , , l d r ,.  , - ,  t  \dx , ,  )  ( l r2 )

- |e , ,o ,  =0 ,

where k and 6 are spring stiffness and
deflection of the beam at the spring support,
respectively.

Let the scaling factor for spring stiffness be C*

and is defined as k ,, f k, . It should be noted that

the scaling factor for deflection at any point on
the beam is equal; therefore, it is not necessary
to define a scaling factor for deflection of the
spring. Substitute Eq.(7) together with
C * = k u f k^ into Eq.(12) yields:

Equation (14) provides the scaling factor for
static deflection as:

^  ^ l
L , , L  ,- _"  CrC,

C r C n ' - = y = C e C "

5- o
s  -  1 6 -
t ' r -  

|  F I \
f r l  l + 3 " - .  I
\  k L ' )

and the scaling factor for spring stiffness as:

CrC'
L /  

-

(  t 4 )

( l 5 a )

( l 5 b )

( t 6 )

To verify the above scaling factor, consider
a beam with built-in end and spring supporl
(Fig.2). Dimensions of beam as well as section
properlies and load are equal to those in the
previous section. The stiffness of the prototype

spring ft,, is 5000 Nf m . The spring stiffness of

the model which is required so that both systems
are similar, and similitude theory is applicable
can be determined from Eq.(l5b). The result is
k,,, - 422.7 Nf m . Ftom the theoretical solution,

deflection at point A, d u can be detemined

from:

[- (.,."')lr^u.'

For the prototype beam, the computed
deflection is 1.89 mm. For the model beam the
computed deflection and scaling factor are 0.67
mm and 2.818 mm, respectively. Using the
model' s result and similitude theory, the
prototype result is predicted as
2.81 8 x 0.67 = 1.89 mm. Therefore, under a
complete similitude condition, similitude theory
predicts the exact result.

*C  r c , l  ̂"  l u  _ , , 1  
o ,  r .  \ ' , , ,

c, '  ;  ' la ' , , , ' ) " -

-cnc,( :0.o.) l :o (r3)

The complete similitude requirement obtained
by Eq.(5) is:

-JO

Fig. 2 Beam with builrin end and spring support



3.2 Scaling factor for deflection of a thin plate
3.2.1 Plate subjected to uniformly distributed
load

For a th in p late of  uni form th ickness f t
subjected to a uniformly distributed load q , the

conservation of an energy equation for a
prototype is [7] :

( r ^ ,  ^ r  1 2

! l l  1 , h , ,  ] l 1 - 1 . *  d - ' l  I  -
t  J J t ) l t - r \  l l  ' . -  

r  J  I  -
-  r , . ' - \ '  ' r ' ) l t  I .  O V r -  )
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where C. is the geometric scaling factor.

However, to satisfy the condition in the form of
Eq.(4), it is necessary that:

C,, : I (21)

The complete similitude requirement obtained
from Eq.(19) is

c F c r r c , , 2  _ -  -  n  1  , 1 a \- - C t : :  - ( " ( 4 L t  \ : : l

The scaling factor for deflection is:

C  . C , 4
c". = .* (23)

CrCo

To verify the above scaling factor, consider
a regular pentagon plate of a thickness of ft
which is simply supported at all edges and
subjected to a uniformly distributed load 4 (Fig.

3). A general solution for a deflection, w is [8]:

*=4iJ4lp^ luo+o.o2a'e(r t.$tB,)

+ 0.00712685 (t - o.tsotB' )cos(ad)
+ 0.000 1 263 B 

"' (t + o.zoov p' ) cot(z " e)
* 0.0000 |  0e7 p ' \ t  o.zszsp')cos(3n01] Qat

where 6 = rla , r is the radial distance from
the center of the plate and a is the radius of a
circle that circumscribes the pentagon.

[  ^ r  ^ )2(t-v,,1'#+ tf;l
' ] ]  

, ' ' ,

|  . "
- -  l l q  w.dx . .dv . .  -0

) ' l . l - r ' t  t ' t
- A,,

where I is the area of the plate surface and v
is Poisson' s ratio.

Let the variables ofthe prototype be related
to those of the model through the scaling factors
as follows:

x, ,  = C.rx, , ,  !  p  = C, . ! r , ,  h , ,  -  C 1,h.

q r = C q q n 1  , v r : C , v , ,

E , , :C rE r , , and  wr ,  =C , , . | | n ,  ( 18 )

where C, , C, are scaling factors for plate

thickness and Poisson's ratio, respectively.

Substitute Eq.( I 8) into ( I 7) yields:

For geometric similarity,

C ,  = C , : C r

Fig. 3 Pentagon plate which is simply supported
at all edges subjected to a uniformly distributed
load.

The values ofprototype variables are:

E, ,  =207GPa, v ,  :  0 .3,  hp = 20mm

! 119,cil/., Iil'-+. r.{r- l2 J , ! .  l - c , t r , , '  
l l  

c , '  e r " , t  c , '  4 ' . , , '  J
f "
I  r  -  Ar  r . .  ? )  v . , ,-2( l  C", , t#; ;

- gi .o'i- l ']|1r,,,0r,,,,,c, 'c, '  l ,a. , ,0.  I  _lJ
-(c,,crc,c,,)!!n*q,,ar,rtt,, =o (te)

,1,,,

t
t l

t
' 1 .

I  1 ..t

(20)
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a  p  = 1 . 5 m ,  a n d  q  n  = t o o  N  I  m t

The values of model variables are:

E , ,  = J j G P a ,  v ^  = 0 . 3 ,  h , , : l m m

a,, :0.3 m , and q,, : tOt t l lmt

The maximum deflection of a prototype
plate computed by Eq.Qa) is 8.31 mm
downward. The maximum deflection of a model
computed by the same equation is 3.15 mm
downward. The scaling factor for deflection
computed by Eq.(23) is 2.642. Then the
deflection of prototype beam determined from
similitude theory is 2.642x3.15 =8.31 mm.
Therefbre, for a complete similitude between
model and prototype, the derived scaling factor
is exact solution.

3.2.2 Plate subjected to a concentrated load
In the case of a plate subjected to a

concentrated load Q, the conseruation of an

energy equation for a prototype is:

^  .  t  f ,  ^ ,  ' 2
I  i i  L , , h , ,  l l ,  

- , ,  
, ,  

- t , '  
I;J,]//[_A'I; ' �  o,i )r ,  '  , '  ,  

[ r  
t '

[ - ,  ,  . )  r 2 - . l l
-z(t -v,i :t 

" 
\-l + | l lo, u,,

L d r / -  
q r / -  l , x , . t ,  l  l l

- l O - o ,  = o  1 2 5 )
2 * r ' t

Substitute Eq.(1tl), except C, which is replaced

by Co def ined as Cr-QolQ, , ,  in to Eq.(25)

yields:

(,,,;#)+Irr#%lf*.*)'
\  ( r -  ) / i  t 2 \ t - v , , , ' l l [ l r , , '  ? y , , , '

[  ^ ,  ^ )  t 2 - l ]

+ 2(r- ,,N:+'�^\ -l ++: I l lar.,dt.,
ldx,- 

d.r'.- \ o.Y.cY,, ) ))
,  ' |-  (c , ,  cp  ) ;Q-L , ,  =  o  (261

Complete similitude requirement obtained from
Eq.(26) is

c uc o3 c,,2
^ 2  

- = C , C e  Q 7 )
L L

Thus, a scaling factor for deflection is:

C , , C , ,
C, ,  =--  (28)

( t ( n

To verify the above scaling factor, consider
a regular pentagon plate with free edges and
corner supports subjected to a concentrated load

Q at Ihe middle of the plate (Fig. a). A general

solution for a deflection, w is [8]:

(o 2 l0q * 0.0as66" ( l  Pl *
1 + v

1 
lo.ozzoo(r - o.:ossvft - B'.or(oa))*

1 - v '

5.696 x l0 '0 - 3.169r[ - f 
"t cos(Zoe))-

r .34 x ro o ( t  -  t .a376l( r  -  p 's  cos(3f f i ) ) )  fzs l

where B =rla , r is the radial distance from

the center of the plate and a is the radius of a
circle that circurnscribes a pentagon.

The values ofprototype variables are:

E  p  : 2 0 7 G P a ,  h , ,  -  2 0 m m ,  a  p  = 1 . 5 m ,

Q p = l } a 1 y ' , a n d  v , , = 0 . 3 .

e6

Fig. 4 Pentagon plate with free edges and corner
supports subjected to a concentrated load Q.

The values of model variables are:

E, ,  :70GPa, h.  =1 mm, ant  :  0 .3 m

U , r \ -

, , \

ht ,

D,,,
( e  

' -
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Q , , : 5 N , a n d  v . = 0 . 3

The maximum deflection of a prototype
plate computed by Eq. (29) is 9.51 mm
downward. The maximum deflection of a model
computed by the same equation is 4.53 mm
downward. The scaling factor for deflection is
2.642. Then the deflection of a prototype beam
determined from similitude theory is
2]14x4.53 =9.57 mm. Therefore, for a
complete similitude between the model and
prototype, the derived scaling factor is the exact
solution.

3.3 Free vibration of a thin Plate
The conservation of an energy equation for

prototype plate is expressed by the following
equation [9]:

-  r  { , ^ ,  ^ )  \ 2
I l l  L u h r '  l l a " r ,  o ' , , I
_ il____z__,,rlt . * -_-| +
2 r4r t2\ t  -v r '  ) l l  dx r"  ay r '  )

(c ,c^c , , tc , ' )  I  , r ,  f  a r -  ) '
I  

' '  
:  

"  
l - l l l

I c, )2 r,,:'"P*l t: I 
dx*dv- = o

(3  1 )

The complete similitude requirement conditions
for this problem is:
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c oc ot c,,t _ c hc,,c,,) c,.2

Crt  C, '

Solve for the scaling factor for time yields:

Scaling of time is equivalent to scaling of the
vibration period. Thus the scaling factor for

frequency response is an inverse of C,:

To verify the above scaling factor, consider
a rectangular plate with all edges simply
supported (Fig. 5). A general solution for natural
frequency of the fundamental mode is [9]:

(32)

/ 1 1 )

l /  ^ )  \ -
,  , l  I  a - l { '  I

t l t - ' ,  l l  
-  i '  I. \ '  , u ^  |

l \ o x  r c ! ,  )
L

;  1 2
1  r r  ( 6 w  l- ; J lh , ,p , , l ; f l dx ,dy ,=o  (30 )
' ^ u  \  " ' P  

/

where p is density of material and I is time.

Substitute Eq.(18) except Cn , together with C,

and C,  def ined as pr fp-and tn l t . ,

respectively, into Eq.(30) yields:

(c,,o,!^' lf 1.f f-r,' , fi qy-* u''i "
\  Cr -  )2 ' , :12 \ l -v , \  l l  a " . '  Ur , '  )

l /  ^ t
. l l  d - \ u  I

+ 2 ( t - v - ) l  l ^ _ ^ L  |  -
| \ ox-oy- )
L

The values ofprototype variables are:

E n -207GPa. pt,  -  1000+. v r  = 0.3

a p  = l m ,  b ,  - 2 m , u n a  l r ! = S * *

The values of model variables are:

E ,  = 7 0 G P a .  p .  - 2 0 0 0 +  . v .  = 0 . 3
m '

a^ = 0.2m , b, = 0.4m , and hm : lmm

-|
) ' w o  6 ' w , ,  l l  ,-  
-  2  ^  ,  l l dx ra l ,ox, o!t, 

ll

^) ^) 
-l 
I

?+?+lla*.av,
Or.- Oy, 

))

Fig. 5 Rectangular plate with all edges simply
supported.

The natural frequency of a prototype plate
computed by Eq. (34) is 101.51 radlsec. The
natural frequency of a model computed by the
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same equation is 552.17 radlsec. The scaling
factor for frequency is 0.1 84. Therefore, the
natural frequency ofa prototype beam computed
by similitude theory is 0. I 84 x 552.17 = 1 0 I .5 I
rad/sec. Therefore, under a complete similitude
condition, similitudc theory predicts the exact
result

5. Discussion
As already mentioned, the proposed method

is not restricted to specific boundary conditions;
thcrefore, a scaling factor derived by this
method is independent of thc boundary
conditions. This has already been shown in
Eqs.(10) and (15a), where the scaling factor for
deflection of a cantilever beam with free end
and that with elastic suppoft, are the same.
Furthermore, this method can derive an implicit
scaling factor, i.e. scaling factor for spring
stiffness together with a scaling factor for
structural behaviors. So this approach
guarantees that no similitude requirement is
missed.

Although the proposed mcthod is based on
the principle of conseruation of energy which
can be solved for a deflection of a single-load
system, it is applicable to the case of a structurc
subjected to multiple applied loads of the same
type or multiple elastic supports. This is possible
because, the scaling factor is derived without
solving the conservation ofenergy equation. The
complete similitude requirement in this case
requires that all applied loads and all elastic
suppofts have to be scaled with the same
proporlion.

6. Conclusions
A general procedure for deriving a scaling

law by an energy theorem was described. The
applicability of the method was demonstrated by
deriving a scaling law for both static and
dynamic behaviors of a beam and plate. All of
the derived scaling factors are verified with
problems having an exact solution. The results
showed that thc derived scaling factors can help
exactly predict the prototype's behavior, when
the complete similitude requirements are
fulfilled. The scaling factors depend on the
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structure type, loading typcs and behaviors of
interest.
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