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Abstract
An unsteady free convection and mass transfer flow of an electrically conducting, viscous,

incompressible fluid, past an infinite vertical porous plate in the presence of a transverse magnetic
field is studied, when the plate is moved impulsively with a constant velocity in the direction of the
flow. Both the Dufour and Soret effects are considered for a hydrogen-air mixture as the non-
chemically reacting fluid pair. The non- linear partial differential equations, governing the problem
under consideration, have been transformed by a similarity transformation into a system of ordinary
differential equations, which are solved numerically by using the Nachtsheim-Swigert shooting
iteration technique together with a sixth order Runge-Kutta integration scheme. The resulting velocity.
temperature and concentration distributions are shown graphically for different values of the
parameters entering into the problem. Finally, the numerical values of the local skin-friction
coefficient, local Nusselt number and local Sherwood number are also presented in a tabular form.
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I Introduction to geophysics, aeronautics and engineering. In

The hydrodynamic flow of a viscous light of the above applications, many researchers

incompressible fluid past an impulsively started studied the effects of mass transfer on magnet

infinite horizontal plate was studied by Stokes hydrodynamics (MHD) free convection flow;

[], and because of its practical importance this some of them are, Raptis and Kafoussias [3],
problem was extended to bodies of different Rahman and Sattar [4], Yih [5], Aboeldahab and

shapes by a number of researchers. Elbarbary [6], Megahead et al. [7] and Kim [8].
Soundalgekar [2] studied the above problem In the above stated papers, the diffusion-thermo
along an infinite vertical plate, when it is cooled term and thermal-diffusion term were neglected

or heated by the free convection currents. It is from the energy and concentration equations

also known that flows arising from differences respectively. But when heat and mass transfer

in concentration have great significance not only occur simultaneously in a moving fluid, the

for their own interest but also for the application relations between the fluxes and the driving
potentials are of a more intricate nature. It has



been found that an energy flux can be generated
not only by temperature gradients but by
composition gradients as well. The energy flux
caused by a composition gradient is called the
Dufour or diffusion-thermo effect. On the other
hand, mass fluxes can also be created by
temperature gradients and this is the Soret or
thermal-diffusion effect. In general, the thermal-
diffusion and diffusion-thermo effects are of a
smaller order of magnitude than the effects
described by Fourier's or Fick's law and are
often neglected in heat and mass transfer
processes. However, exceptions are observed
therein. The thermal-diffusion (Soret) effect, for
instance, has been utilized for isotope
separation, and in mixtures between gases with
very light molecular weight (Hz, He) and of
medium molecular weight (Nz, air) the
diffusion-thermo (Dufour) effect was found to
be of a considerable magnitude such that it
cannot be ignored (Eckert and Drake [9]). In
view of the importance of this diffusion-thermo
effect, Jha and Singh [0] studied the free-
convection and mass transfer flow about an
infinite vertical flat plate moving impulsively in
its own plane, taking into account the
Soreteffects. Kafoussias [11] studied the same
problem in the case of MHD flow. They
madeanalytical studies based on the Laplace
transformtechnique. Later, Kafoussias and
Williams [12] studied thermal-diffusion and
diffusion-thermo effects on mixed free-forced
convective and mass transfer boundary layer
flow with temperature dependent viscosity,
whereas Anghel et al. [13] investigated the
Dufour and Soret effects on a free convection
boundary layer over a vertical surface embedded
in a porous medium. Recently, Takhar et al. [4]
studied unsteady free convection flow over an
Infimte porous plate due to the combined effects
of thermal and mass diffusion, magnetic field
and Hall currents. Very recently, Postelnicu [15]
studied numerically the influence of a magnetic
field on heat and mass transfer by natural
convection from vertical surfaces in porous
media considering Soret and Dufour effects.

Therefore, the objective of this paper is to
study the Dufour and Soret effects on unsteady
free convection and mass transfer flow, past an
impulsively started infinite vertical porous flat
plate, of a viscous incompressible and
electrically conducting fluid, in the presence of a
uniform transverse masnetic field.
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2. Mathematical Analysis
We consider an unsteady two-dimensional

flow of an incompressible and electrically
conducting viscous fluid, along an infinite
vertical porous flat plate. The x-axis is taken
along the plate in the upward direction and the
y-arls is taken normal to the plate. A magnetic
field of uniform strength is applied transversely
to the direction of the flow. Initially the plate
and the fluid are at the same temperature Z-> in
a stationary condition with concentration level
C-> at all points. For time t>0, the plate starts
moving impulsively in its own plane with a
velocity U6, its temperature is raised to T, and
the concentration level at theplate is raised to
C*. The fluid is assumed to have constant
properties except for the influence of the density
variations with temperature and concentration,
which are considered only in the body force
term. Under the above assumptions, the physical
variables are functions of y and t only and
therefore the basic equations, which govern the
problem, are:
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where the variables and related section
quantities are defined in the Nomenclature
section. The initial and boundary conditions for
the above problem are:
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The last term on the right-hand side of the
energy equation (3) and concentration equation
(4) signify the Dufour or diffusion-thermo effect
and the Soret or thermal-diffusion effect,
respectively.

Now in order to obtain a local similarity
solution in the time of the problem under
consideration, we introduce a time dependent
length scale d as:

5  : 6 ( t )  ( 6 )

In terms of this length scale, a convenient
solution of the equation (l) is considered to be
in the following form:

U
v = v ( t ) = - v o  ^ .  ( 6 )

o

where Vo is the suction parameter.

We now introduce the following
dimensionless variables:
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Then, introducing the relations (6)-(8) into
the equations (2), (3) and (4), respectively, we
then obtain the followins ordinarv differential
equations:

rashof number and

ef .  (C,  -C)a '
is the local modified

oU,.

Grashof number.
The corresponding boundary conditions for

/ > 0 are obtained as:

f  = 1 ,  e  = 1 ,  0 : 1 ,  a t  0  = 0 ,  ( r 2 a )

f  = 0 ,  0  = 0 ,  d  = 0 ,  a s  r y  = o o .  ( l z b )

Now the equations (9)-(11) are locally similar
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except the ".* 
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, where / appears

explicitly. Thus, the local similarity condition
( a a a \

requires that the term | 
-; 

l in the equations
\ u  d t  . )

(9)-( I l) must be a constant quantity.
Hence, following the works of Hasimoto

[16], Sattar and Hossain [17] and Sattar et al.
[18], one can try a class of solutions of the
equations (9)- (l l) by assuming that:
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Integrating (13) we have

(14 )

where the constant of integration is
determined through the condition that t : 0
when / : 0. We have considered the problem
for small time. In this case the normal velocity
in (7) will be large i. e., suction will be large,
which can be applied to increase the lift of
airfoils. From (14), choosing )" = 2, the length

scale d(l) = 2.,1 ut exactly corresponds to the

usual scaling factor for various unsteady
boundary layer flows (Schlichting [19]). Since
6 is a scaling factor as well as a similarity

parameter .  any value of  )  in  (13)  would not
change the nature of the solutions, except that
the scale would be different.

Now introducing (13) (witV ) = 2I in the
equations (9)-(ll) respectively, we obtain the
following dimensionless ordinary differential
equations which are locally similar in time but
not explicitly time dependent.

f  + (2 r t  +  r ) f '  +Gr7  +GmQ-  Mf  :  0
f l5)

0  + P r ( 2 r 7 + v r ) 0  + P r D f  Q  = Q

where p is the viscosity, /c is the thermal

conductivity and Dm is the mass diffusivity .
The dimensionless local wall shear stress, local
surface heat flux and the local surface mass flux
for an impulsively started plate are respectively
obtained as:

from the following definitions:
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where primes denote differentiation with
respect to ry .

The equations ( 15)-(17) constitute a set of
ordinary differential equations, the solutions of
which should unfold the characteristics of the
problem under consideration. These equations
under the boundary conditions (12) are solved
numerically by using the Nachtsheim-Swigert
(201 shooting iteration technique together with a
sixth- order Runge Kutta integration scheme.

3. Skin-friction, rate of heat and mass
transfer

Now it is important to calculate the physical
quantities of the primary interest, which are the
local wall shear stress, local surface heat flux
and the local surface mass flux respectively

M * 6 = -0 (0) , (23)
D , ,  l C * - C - )

Hence the dimensionless skin-friction
coefficient, Nusselt number and Sherwood
number for impulsively started plate are given
by:

/ 7
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where Reo.  = w 

is  the Reynolds number.
t)

These dimensionless values of the local
skin- friction coefficient, local Nusselt number
and local Sherwood number for impulsively
started plate are obtained from the process of
numerical calculations and are sorted in Tables
t - )
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Fig. 1 Velocity profiles for different values
of vo and M.

Fig. 2 Velocity profiles for different values
of Sr and Df.
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Fig. 3 Temperature profiles for different
values ofv6
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Concentration profiles for different
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4. Results and Discussion
For the purpose of discussing the effects of

various parameters on the flow behaviour near
the plate, numerical calculations have been
carried out for different arbitrary values of

suction parameter vn, magnetic field parametet

M and for fixed values of Prandtl number Pr ,

Schmidt number Sc, Grashof number Gr and

modified Grashof number Gm.The value of
Prandtl number Pr is taken equal to 0.71 which
corresponds physically to air. The value of

Schmidt number Sc = 0.22 has been chosen to

represent hydrogen at approx Tm = 25" C and I
atm. The values of Grashof number Gr and
modified Grashof number Gm are taken to be
both positive and negative, since these values
represent respectively, cooling and heating of
the plate. Finally, the values of Soret number Sr
and Dufour number Df are chosen in such a
way that their product is constant.

Under the above assumPtions, the
dimensionless velocity, temperature and
concentration profiles are shown graphically in
Figs. l-6 for both cooling and heating of
impulsively started plate. The effects of suction
parameter Vo and magnetic field parameter M
on the velocity field are shown in Fig. I for both
cooling and heating of the plate.

It can be seen that for cooling of the plate
(Gr,Gm>O), the velocity profiles decrease
monotonically with the increase of suction
parameter indicating the usual fact that suction
stabilizes the boundary layer growth. By sucking
the slowed boundary layer material into the
inside of the body through nalrow slits on the
wall boundary layer separation can be
prevented. For cooling of the plate and for fixed

suction velocity (vo),velocity is found to

increase and reaches a maximum value in a
region close to the surface of the plate, then
gradually decreases to zero. From this figure we
also see that as the magnetic field parameter
increases, the velocity decreases. This indicates
that the magnetic field retards the fluid motion.
The effects of Soret and Dufour numbers on the
velocity field for cooling and heating of the
plate are shown in Fig. 2. We observe that for
cooling of the plate, quantitatively when { = Q.5

and as Sr decreases ftom 2 to 0.4 ( or Df
increases from 0.03 to 0.15), there is a22.47Vo
decrease in the velocitv value, whereas the

Thammasat Int. J. Sc. Tech., Vol. 10, No. 3, July-September 2005

corresponding decrease is 3.25Vo, when Sr
decreases from 0.4 to 0.1. In all the figures
mentioned above, compared to the case of the
cooling of the plate, opposite effects are
observed in the case of the heating of the plate.

Since the energy and concentration
equations are independent of all parameters
except the suction parameter, Dufour number
and Soret number, the temperature and

concentration profiles are shown only for vo, Df

and Sr .
The temperature profiles are shown in Figs.

3 and 4 for cooling of the plate. From Fig. 3 we
see that the temperature decreases with the
increase of suction parameter. From Fig. 4,
when 17 = 0.5 and Sr decreases from 2 to 0.4 (or
D/ increases from 0.03 to 0.15), there is a
50.82Va increase in the temperature value,
whereas the corresponding increase is 15.42Vo,
when Sr decreases from 0.4 to 0.1.

In Figures 5 and 6, the concentration
profiles are shown for cooling of the plate. It is
observed from Fig. 5 that the concentration
increases with the increase of suction parameter

close to the wall (approx. 17 < 0.60). whereas

for r7 ) 0.60, the concentration decreases with

increase of suction parameter. In Fig. 6, the
effects of Soret and Dufour numbers on the
concentration profiles are shown. It is seen from
this figure that for 1l = I and as Sr decreases
from 2 to 0.4 (or D/ increases from 0.03 to
0.15). there is a 35.967o decrease in the
concentration value, whereas the corresponding
decrease is'7 .09%o when Sr decreases from 0.4 to
0 . 1 .

TableJ Numerical values ofskin-friction
coefficient, Nusselt number and Sherwood
number for Pr = 0.71, Sr = 2.0, Df= 0.03 and
Sc = 0.22.

Gr GM M v n c f

2 -10 0.2 0.5 -10.221144 1.940148 -0.082728

2 -10 0.2 1.0 -10.193929 2.9442'74 -0.452290

r.s -11.2s6't'7r 4.445256 -1.040100

2 -t0 1.0 1.5 10.518761 4.4152s2 -1.040102

-2 -lo 3.0 1.5 -9.395594 4.445239 -1.040107

+2 +10 0.2 0.5 1.15612'7 L940148 -O.O82728

+2 +10 O.2 1.0 6.99859'7 2.9442'74 -O.45229O

+2 +10 O.2 1.5 6.686176 4.445256 -1.040100

+2 +10 1.0 1.5 5.505187 4.415252 -1.040102



Table-2 Numerical
coefficient, Nusselt
number for Pr = 0.71,
=0 .22 .

values of skin-friction
number and Sherwood
v,= 0.5,  M= 0.2 andSc

+2 +10 3.0 1.5 3.435226 4.145239 -1.040r07
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a = thermal diffusivity

F = coeffi,cient of thermal expansion

f- = coefficient ofconcentration expansion

o = electrical conductivity
p = density of the fluid

v = kinematic viscosity
d =dimensionless temperature

/ = dimensionless concentration

d = time dependent length scale

T * = wall shear stress

Subscripts:
w = condition at wall
co = condition at infinitv

Superscript:

differentiation with respect to ry

5. References

[] Stokes, G. G., On the Effects of the Internal
Friction of Fluids on the Motion of
Pendulum. Trans. Combr. Phil. Soc., Vol.
9,  pp.  8-106,  1856.

I2l Soundalgekar, V. M., Free Convection
Effects on the Stokes Problem for an
Infinite Vertical Plate, ASME J. Heat
Transfer, Vol. 99, pp.499- 501,1911.

[3] Raptis, A. and Kafoussias, N. G.,
Magnetohydrodynamic Free Convection
Flow and Mass Transfer Through Porous
Medium Bounded by an Infinite Vertical
Porous Plate with Constant Heat Flux, Can.
J. Phys., Vol. 60, pp. 1725-1729, 1982.

[4] Rahman, M. M. and Sat Tar, M. A., MHD
Free Convection and Mass Transfer Flow
with Oscillatory Plate Velocity and
Constant Heat Source in a Rotating Frame
of Reference, Dhaka Univ. J. Sci., Vol.
a9 (1 ) ,  pp .63 -73 ,1999 .

[5] Yih, K. A., Free Convection Effect on
MHD Coupled Heat and Mass Transfer of a
moving Permeable Vertical Surface, Int.
Comm. Heat Mass Transfer, Vol. 26, pp.
95-104. 1999.

[6] Aboeldahab, E. M. and Elbarbary, E.
M. E., Hall Current Effect on
Magnetohydrodynamic Free Convection
Flow Past Asemi-infinite Vertical Plate
with Mass Transfer, Int. J. Engng. Sci., Vol.
39, pp. 1641 -1652, 2001.

[7] Megahead, A. A., Komy, S. R, and Afify,

Gr GM DJ

+2 +10 2.O 0.03 7.205083 1.934014 0 087042

+2 +10 0.4 0.15 5.' l '75135 1.51'l '723 0.495844

+2 +10 0 . t  0 .60  5 .58190 1 .364.413 0 .575167

-2 -to 2.o 0.03 -to.2761 1.934014 0.087042

-2  - r0  0 .4  r ) .15  -8 .8461 1 .511123 0 .4q5844

-2  -10  0 . r  0 .60  -8 .6529 1 .364413 0 .575167

Finally, the effects of various parameters on
Cj, Nu and Slr are shown in Tables 1 and 2. The
conclusions and discussion regarding the
behaviour of the parameters on skin-friction
coefficient, local Nusselt number and local
Sherwood number are self evident from the
tables and hence are not discussed for brevity.

Nomenclature:
Bo = applied magnetic field
C = concentration
cp = specific heat at constant pressure
cj = concentration susceptibility
Dl: Dufour number
Dn = rr&SS diffusivity

/= dimensionless velocity
g = acceleration due to gravity
Gr = local Grashof number
Gm =locaI modified Grashof number
Ki = thermal diffusion ratio
M = magnetic field parameter
M- - mass flux
Nu = Nusselt number
Pr = Prandtl number
q, = heat flux
Sc = Schmidt number
Sft = Sherwood number
Sr = Soret number
Z = temperature
T n = rrrea;rr fluid temperature
U, = constant plate velocity
u, v = velocity components in the -r- and y-
direction respectively
r, )l = Cartesian coordinates along the plate and
normal to it

Greek Symbols:



A. A., Similarity Analysis in
Magnetohydrodynamics Hall Effects on
Free Convection Flow and Mass Transfer
Past a Semi-infinite Vertical Flat Plate,
Iner. Jour. Non-linear Mecha., Vol. 38, pp.
513-520,2003.

[8] Kim, Y. J., Heat and Mass Transfer in
MHD Micropolar Flow Over a Vertical
Moving Porous Plate in a Porous Medium,
Transport in Porous Media, Vol. 56, pp.
t7-37, 2004.

[9] Eckert, E. R. G. and Drake, R. M., Analysis
of Heat and Mass Transfer. McGraw-Hill.
New York. 1972.

[10] Jha, B. K. and Singh, A. K., Soret Effects
on Free Convection and Mass Transfer
Flow in the Stokes Problem for an Infinite
Vertical Plate, Astrophys. Space Sci., Vol.
173,  pp.25l -255,1990.

[ 1] Kafoussias, N. G., MHD Thermal-diffusion
Effects on Free-convective and Mass
Transfer Flow Over an Infinite Vertical
Moving plate, Astrophys, Space Sci., Vol.
r92, pp. 1l-19, 1992.

[2] Kafoussias, N. G. and Willaiams, E. W.,
Thermal-diffusion and Diffusion-thermo
Effects on Mixed Free Forced Convective
and Mass Transfer Boundary Layer Flow
with Temperature Dependent Viscosity, Int.
J. Engng, Sci., Vol. 33, pp. 1369-1384,
1995.

[3] Anghel, M., Takhar, H. S. and Pop, I.,
Dufour and Soret Effects on Free
convection Boundary Layer Over a Vertical
Surface Embedded in a Porous Medium,
Studia Universitatis Babes-Bolyai,
Mathematica, Vol. XLV, pp.ll-21, 2000.

Thammasat Int. J. Sc. Tech., Vol. 10, No. 3, July-September 2005

[14] Takhar, H. S., Roy, S. and Nath, G.,
Unsteady Free Convection Flow Over an
Infinite Porous Plate Due to the Combined
Effects of Thermal and Mass Diffusion,
Magnetic Field and Hall Currents, Heat and
Mass Transfer, Vol. 39, pp.825-834,2003.

[5] Postelnicu, A., Influence of a Magnetic
Field on Heat and Mass Transfer by Natural
Convection from Vertical Surfaces in
porous Media Considering Soret and
Dufour Effects, Int. J. Heat Mass Transfer,
Yol.4'7 , pp. 1467 -1472,2004.

[6] Hasimoto, H., Boundary Layer Growth on a
Flat Plate with Suction or Injection, J. Phys.
Soc. Japan, Vol. 12, pp.68-72,1956.

[17] Sattar, M. A. and Hossain, M. M., Unsteady
Hydromagnetic Free Convection Flow with
Hall Current and Mass Transfer Along an
Accelerated Porous Plate with Time
Dependent Temperatrure and
Concentration, Can. J. Phys., Vol. 70, pp.
369-374,1992.

[8] Sattar, M. A., Rahman, M. M and Alam, M.
M., Free Convection Flow and Heat
Transfer Through a Porous Vertical Flat
Plate Immersed in a Porous Medium with
Variable Suction, J. Energy Heat and Mass
Transfer, Y ol. 22, pp.17 -21, 2000.

ll9l Schlichting, H., Boundary Layer Theory, 6'n
Edn. McGraw-Hill, New York, 1968.

[20]Nachtsheim, P. R. and Swigert, P.,
Satisfaction of the Asymptotic Boundary
Conditions in Numerical Solution of the
System of Non-linear Equations of
Boundary Layer Type, NASA TND-3004,
1965.


