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Abstract
Integral-equation theories of the Random Sequential Addition (RSA) model have been proposed

in our previous work. It has been extensively studied as a two-dimensional problem representing an
irreversible adsorption of large particles on a surface. This RSA model is, however, flexible enough to
be applied to situations in other dimensions. It was used to model the growth of a polymer chain or a
car-parking problem in one dimension and model a random sequential packing in three dimensions.
We used the Fourier transform to solve the Ornstein-Zernrke integral equation and its Percus-Yevick
closure, both derived by utilizing the assumption of a binary mixture of quenched and annealed
particles. In this work, we therefore applied the corresponding Fourier transform to one, two and three
dimensions to compute the radial distribution functions, g(r), and found that they are in good
agreement with the results from Monte Carlo simulations. This confirms the validity of the theory.

Keywords: one dimension; two dimensions, three dimensions, random sequential adsorption, integral-
equation theory, Ornstein-Zernike, Percus-Yevick

1. Introduction
The general description of the random

sequential addition (RSA) model can be given as
the following. To any D-dimensional space,
particles are added one at a time randomly and
remain at that position if they do not overlap
with other particles previously added. If an
overlap occurs the addition is rejected and a new
attempt is made. The study of the probability of
adding particles into available space in any
dimension has been investigated after a seminal
paper of Widom [1]. In that paper, the author
showed that at low system densities, this model
resulted in similar particle arrangements to ones
in the equilibrium situation where all particles
can move to their new positions in space all the
time. The arrangements, however, differ at
moderate and high densities. This finding
brought RSA into attention as a model for an
irreversible monolayer adsorption, where there
are no surface diffusion and desorption detected

during the time of experiment. The RSA,
therefore, has been extensively applied to the
study of adsorption which is a two-dimensional
problem. It was found that RSA could well
represent the adsorption of large molecules such
as proteins [2] and colloidal particles [3] onto a
solid surface, where the strong interaction
between the particle and surface is
comparatively greater than interactions among
the particles themselves. The studies of RSA
focus on kinetics of the deposition [4-6], in
which the transport mechanism has to be
incorporated in the model, and apply the
equilibrium theory of liquid to non-equilibrium
situations [7,8].

Not only does the deposition of large
molecules find an application in RSA, but
certain experiments of atomic adsorption can
also be described by this model. One example is
the dissociative chemisorption of oxygen on Al
(11l) t9l which is also known as "hot
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deposition", and another is the early stages of
simple catalytic reactions between CO and Oz
[0]. Still, the modification of RSA continues in
order to explain more and more realistic
situations.

In addition to the two-dimensional
problems mentioned above, RSA was also
applied to one-dimensional systems. Flory [1]
utilized this model to study polymerization of
vinyl monomers by means of statistics. That
work was done using discrete sites for addition.
Besides, the continuum version is popularly
known as "the random car parking" problem

[12], where many cars assumed as hard rods are
put one by one at random on a line.

The application in a three-dimensional case
is less popular than in any other dimensions
since no realization in nature has been seen.
Perhaps this could be a model in the study of
packing of particles in a volume [13] akin to the
well-known random close-packing used as a
model for glass formation. Therefore, the study
of RSA in three dimensions is rather theoretical
and may contribute knowledge on structures of
fluid and amorphous solids. However, the
dynamics of RSA was already investigated in
every dimension tl4l, including three
dimensions.

It should also be mentioned that as in any
other irreversible addition, RSA will finally lead
to a jamming limit or car parking limit in lD, at
which no more additional particle can be added
into the system since there is not available space
to accommodate one more particle. These limits
are quite interesting and closely related to the
detail of the modification of the simple RSA.
Typical 2D-RSA yields a jamming at a coverage
of 0.541 [3]. Such limits have to be obtained by
means of kinetics. We. however. are more
interested in the structural problems which could
be investigated through the integral-equation
theories which we developed before for RSA

t8l. In that work, we only studied two-
dimensional problems. Thus, in this work we
applied the model to one- and three-
dimensional structures, which can be
represented by the radial distribution function,

S(r). By definition, this function tells the
probability of finding a particle in many distance
r, far from a reference particle. In Section 2, we
provided one of our theories, based on the
binary-mixture approximation. Section 3 gives
the details of numerical intesration and the
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simulation method. Section 4 provides the
results along with the discussion and Section 5
summarizes this paper.

2. Ornstein-Zernike Equation (OZ)
Integral equation theory was first used to

study the structure of equilibrium liquids both in
three and two dimensions, i.e. the monolayer
film structure. In equilibrium situations, all
particles move under the effects of other
particles' interactions. However, there are some
systems composed of moving particles in
quenched structures such as a equilibrium, liquid
in porous media. Madden and Glandt [5] and
later Given and Stell tl6l developed the
application of integral equation theories to
systems where at least one of the components is
not in equilibrium, but quenched in an imposed
configuration. The Replica Ornstein-Zernike
(ROZ) integral equations ll7l, which are
presented in the next section, have been applied
to the description of fluids adsorbed within
quenched disordered matrices. In a sequential
quenching process, each newly arriving particle
samples the space within the disordered matrix
formed by the already quenched ones, and is
thus a particular case of a quenched-annealed
mixture. Even though process details of
sequential quenching and RSA of hard spheres
on a surface are different, surface diffusion is
incorporated in sequential quenching but not in
RSA, the final structures of the film grown
through both models are equivalent, no matter
whether each hard particle moves or not before
it is quenched [8]. Thus, integral equation
theory for sequential quenching can be directly
applied to RSA of hard spherical particles. The
hard sphere interparticle potential (D is defined
as a function of the center-to-center interparticle
separation r, and with the particle diameter d:

In the next subsection we give a brief
explanation of equations used for adsorption
within disordered matrices followed by the
derivation of the integral equation for RSA
based on a binary-mixture approximation.

[ *  i f  r 3 d
<D1r; = i

| . 0  , f  , > d
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2.1 Adsorption within Disordered Matrices
A fluid within in a disordered porous

matrix can be viewed as a binary mixture of
quenched particles (component 0) and
equilibrated or annealed particles (component
1). Without loss of generality, we limit this
presentation to systems with spherically
symmetric interparticle forces. Let

p*(')(r)denote the quenched structure's pair

density function, let g*(r) = p*('\{r)l pot be its

pair correlation function and let
I+*(r)=8oo(r)-1 be the residual or total

correlation function between two particles
("roots") separated by a fixed distance r.
Similar conelations may be defined for 0-1 and
l-1 pairs. The Replica Ornstein-Zernike
equations (ROZ) for such a system are:

4o?) = c*(r) + pscn(r) a hooQ)

14,?) = c o,Q) + poc *(r) @ 14,(r) + prcor(r) @ h,,,(r)

lqo?) = cro(r) + pocro(r) I hryl(r) + prc,.rr(r) @ l4s?)

lq, (r) = c,, (r) + poc,o(r) @ LhJ r) + prc,r, ( r) @ 14,?)

+ prcurr ( r )Qh, . r , ( r )

h, r , ( r )=c,r , ( r )+ prc, , , ( r )Qh,r r ( r )  (2)

where the symbol I denotes a convolution
integral. The c(r) in the above equations are

the direct correlation functions, i.e. the sums of
all coefficients ("diagrams" or "cluster

integrals") in the density expansions of the
conesponding total conelation functions ft(r)

which are free from nodal points. These cluster
integrals are best represented in graphical form;
a review of graphical notation can be found in
classical references [l8]. The sub-indices c and
b denote the so-called connected and blocking
parts of the l-l correlations, distinguishing
whether all paths between the roots in their
graphical representation pass through a matrix
particle or not.

2.2 Binary-Mixture Approximation
An evolving sequentially or differentially

quenched system can be viewed as a binary
mixture of the previously quenched particles
(denoted by the index 0) and the (infinitely
dilute) newly added particle(s) (denoted by l),
of number densities p and d p, respectively. In

this approximation the instantaneous ROZ
system (Eq. (2)) reduces to a single equation
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determining the equilibrium configuration of the
annealed molecules prior to quenching:

h r r ( r )=co r? )+ph* ( r )@co , ( r ) .  ( 3 )

Equation (3) must be supplemented with an
approximate closure such as the Percus-Yevick
(PY) or any alternative. The PY closure for this
quenched-annealed system is:

f  (r)[r+ 4, ( ') ]  = co,?) [t  + 1111] @)

When the total density of the system increases
from p top+dp, a balance of particle pairs

yields the change in the pair density function:

t p + d p l 2  g * ( r : p + d p l =  p 2 g r ( r : p l  
( 5 )

+2p dp gn,e;p)

The first term on the right-hand side
represents the pre-existing pairs while the
second corresponds to the additional 0-0 pairs
created upon quenching of equilibrium particles.

A term of order (d p)2 has been neglected.

Upon rearranging we get:

44yA = 2pgn,e:p)

Equation (6) together with its initial condition:

SooO;P=o)=e  
/ tD ( "  Q)

1
whereB --=. f is the temperature and ft is' k T

Boltzmann's constant. O(r) is the pair

interaction, which for this work is a hard sphere
as in Eq. (1) and describes the evolution of a
structure built through sequential quenching.
Equation (3) and its closure, e.g. Eq. (4), must
be solved for go,(r) at each density in order to

compute g*(r) through integration of the

differential equation.
This theory has been proven in two

dimensions before [8, 19] and now we present
the complete manipulation for other dimensions
in the next sections. Another work on integral-
equation theory of RSA, derived from the
diagrammatic expansion [7], is also investigated

(6)
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in all dimensions. It could be a sood asset for
comparison.

3. Numerical Integration and Simulation
Method

3.1 Numerical Integration
For computational purposes, it is necessary

to approximate the system by a mixture of
discrete species, corresponding to the stepwise
addition of finite amounts of material. The
correlation functions were discretized in p -

space using Ap =0.001. The cut-off distance, at

which the conelation functions are expected to
decay to unity, is chosen to be 4,, = 6d , where d

is again a core diameter of a spherical particle.
Both in real space (r-space) and Fourier space
(fr-space), 120 increments are used in the
calculations. The details are as follows. The
initial pair correlation function at infinite
dilution is simply Eq. (7). The structure evolves
as the density of the system increases, which we
denote as 4 . On taking the Fourier transform

of both sides of Eq. (3), we obtain an algebraic
relation:

l , . , l f :  p  )  .^
c " , ( k :  p ,  )  -  " -  (U )

l+  p ,h * ( k . . p , )

Here, d denotes the Fourier transform of
function c. Several numerical methods can be
used in Fourier transformation, including the
method by Lado [20]. The one-dimensional
Fourier and inverse Fourier transforms are siven
by:
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where "/o is the Bessel function of the first kind.

Lastly, the three-dimensional Fourier and
inverse Fourier transforms are:

( l  la)

( l  1b )

We solve for gn, (r) from Eq. (6) and PY

approximation (Eq. (a)) simultaneously, using a
standard Picard iteration algorithm at
successively larger values of the density,
t.e. p,*, = pi + Lp, with Ap =0.001 for 3D,

0.0025 for 2D and 0.01 for lD, all
corresponding to the insertion of only one
particle at one time in the simulation method.
We have tried many sizes of Lp and we found

that they give very little differences. However,
using bigger L,p than we use in this study may

lead to a false calculation because the effect of
the term (lp)2 has been neglected as shown in

Eq. (5). In case of large Ap, we have to use the

full version of Eq. (5) and the whole set of OZ
equations as written in Eq. (2). This case has
also been investigated. Each result for go,(r) is

used to compute the next g.(r) from Eq. (6),

written in discretized form as Eq. (12) until the
required density is reached.

,  p l  g*0:p, l+2p,Lpgn,0:p, )  .  , . \g m \ r l P , , t ) =  ,  l l z t
Pi*t

3.2. Simulation Method
We performed Monte Carlo simulations to

verify the accuracy of the numerical results from
the Ornstein- Zemike equations. The calculation

of the radial distribution function gta +{t is,
z

as customary, based on a histogram for small
increments of width Lr . The averaged
distribution function is then trivially obtained as
the ratio between the number of pairs N,

collected from n configurations, at the
separation ranging from 4 and 4 + Ar from the

average particle to the corresponding number in
a system of ideal-gas or randomly placed
particles. The function is calculated from Eq.

-  A t ^
F(k)=f l  rrOlt in(kr)dr

F1r;==f f oato lsin(kr)dk
2tr 'r  a

Fttl = 2 l" F1r;cos1 kr)dr .
$

1 e -
F(r)=-  |  F(k)cos(kr \dk

The two-dimensional Fourier and
Fourier transforms are written as:

Fgrl =2r 
f rFe)Jn(kr)dr ,

F ( rt : -!- | rr, r v o( kr tdk
2 r h

(9a)

(eb)

inverse

( l0a)

(10b)
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(13.1), (13.2) and (13.3) for one-, two- and
three-dimensional systems, respectively.
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4. Results and Discussion
4.1 RSA on a line (one-dimensional problem)

Figure 1 shows the numerical solutions and

the simulation points at a reduced density of p-

= 0.50, 0.65 and 0.74, closer to the jamming or

saturation limit, p-- = 0.147 lll. The jamming

limit of RSA in lD can be obtained analytically
but for other dimensions, the jamming densities
have to be estimated from the kinetic law
written as:

p- '  -  p .  f t \  [ t 'D  . (14)

wherep'(t)is the density near jamming limit, t

is the time and D is the corresponding
dimension. The details of how to obtain this law
can be found in Ref. [14]. As typically known
in RSA study, the pair correlation function
diverges logarithmically at contact at the
jamming limit. The numerical solution shown in
the figure fails to follow that behavior. In fact,
the theoretical results do not show any
anomalies at the saturation density. This finding
is not surprising given that the PY
approximation neglects the elementary diagrams
required for the description of the close packing
of annealed particles, and presumably, also of
the jamming of quenched particles.

The distribution function g(r) shows the
first peak which represents the probability of
finding a particle at contact with the reference
particle and a small second peak displaying
short-ranged order which is the characteristic of
hard-sphere systems. The function finally
decays at long distance where there show no
correlations among particles. If we use any
attractive potential, when comparing at the same
density, the distribution would contain more
number of peaks and the peaks should be higher
than the case of hard spheres, since there would
be a clustering of particle.

We also checked the result with Ref. [7]
whose graph showed the first peak with the
same height as ours, confirming consistency
with our result. In Figure 1, the simulation
result agrees very well with the theoretical result
at the system density of 0.50 and the difference
at contact is seen for a density of 0.65 while
discrepancies both at contact and at the second
peak are pronounced at a density of 0.74. The
discrepancies are attributed to the PY
approximation which neglects some terms

A,r 2N,
P , ^ ( r , + - ) = 4

2 L,r p,oN n

. A,r N,
x .  ^  I  r r  T  -  

t  -  -

2 nqLrproNn

.  L r '
gto1r, + 

7) 
= Ni

(13 .1 )

(r3.2)

( r3.3)
2n42 A,r proN n

N is the total number of particle in the system
and p is the number density of the system

defined according to its dimension as the
number of particles per length, area and volume
for one-, two, and three- dimensional systems,
respectively. The reduced density can be

defined as pio = prod , pro = prod' and

pr, = prod', where d is denoted before as the

hard-core diameter of a sphere.
The details of the simulations are as the

following. Particles were added one by one in a
system whose size is l00d in one dimension,
20d x20d in two dimensions or l0d x lOd x lod
in three dimensions. We have tried many
system sizes in this study and found that the
difference is very little. The small system sizes
used here are acceptable regarding the
interaction of particles which only comes from a
repulsive hard core. However, a finite size
effect has to be taken into account if the
potential contains long-range interactions. For
example, if the interaction is a Stockmayer
potential which incorporates a dipole-dipole
interaction in addition to a soft Lennard-Jones
part, the size has to be bigger to cover the long
range of the interaction.

The simulation began with adding a particle
onto a simulated surface. If the added particle
overlapped with previously quenched particles,
it was removed and a new addition is attempted
until the insertion was successful. We employed
a periodic boundary condition and the minimum
image convention, surrounding the primitive cell
with a periodic lattice of identical cells, so that a
particle interacts with all other particles in this
infinite system. Our final results, averaged over
at least 10000 realizations in lD and over 1000
configurations in 2D and 3D, are presented in
the followins section.
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whose numerical values
density increases.

are greater as the

Fig. l: The radial distri'bution function g(r) for
the one-dimensional RSA for density of 0.50
(bottom), 0.65 (middle) and 0.74 (top). The
bold line represents results from theory and
circles are simulation results. For clarity, the
toD two curves were shifted.

Fig. 2: The radial distribution function g(r)
from theory for the one-dimensional RSA at
different densities, from 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.65, and 0.70 (lowest to highest first
peaks)

Figure 2 compares g(r) at different
temperatures ranging from density 0.10 to 0.70.
The graph is more structured at higher density,
showing higher first and second peaks because
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when the system gets denser, particles will be
deposited at the position closer to one another.
At the lowest density shown here, the function
almost shows no correlation beyond the range of
contact. The minima of all graphs are at the
same position of r = 2d. This could be
explained by imagining adding particles on a
line one by one. A new particle will be added
on either the right- or the left-handed side of the
fixed particle. Since the particle is added at
random, the probability for particles to be
connected as a three-bead chain is the least.
Particles will be deposited around the distance
2d, but rarely at the exact position 2d. This
volume exclusion happens in the same way at
every density, which is different from what
happens in other dimensions as will be discussed
in the next section.

4.2 RSA on a surface (two-dimensional
problem)
As in the one-dimensional case, we show

the comparison between simulation results and
theoretical results in Figure 3. Both results are
in good agreement at the density of 0.40 but the
theory underestimates the value at contact at a
density of 0.64, which is close to the jamming

limit p-- =0.696 [2]. The jamming limit in this

case could be estimated by using the kinetic law
(Eq. 1a), but D is now equal to 2, corresponding
to 2 dimensions.

Fig. 3: The radial distribution function g(r) for
the two-dimensional RSA for density of 0.40
(bottom) and 0.64 (top). The bold line
represents results from theory and circles are
simulation results. For clarity, the top curve was
shifted.

0
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Figure 4 shows the comparison of g(r) at
various densities, ranging from 0.10 to 0.60.
Again, featureless structure is seen at the lowest
densities and disordered configurations
generated through RSA are characterized by a
weakly structured g(r) at higher densities. As
can be seen from the figure, the minima of the
curves shift to the left when the density
increases. This is not seen in one dimension.
The least probable distances, which the particles
are deposited far from the reference particle, is
dependent on the density. At a very low density,
the particles see each other as they are in one
dimension so the minima is located near the
distance 2d. When the density increases, more
particles will be added at the position around the
reference particle. If particles can move in the
system and the density is at the saturation
density, the structure will finally develop to the
triangular-crystalline structure of which the
peaks of g(r) will be at r = d, |.732d,2d and so
on. For this irreversible situation where
particles cannot move, the volume exclusion
will bring about the least probable distance
shown in Figure 4 which gets closer to the value
1.132d as the density increases. It should also be
noted that the second peaks of g(r) in two
dimensions are less obvious than in one
dimension, showing that the structure in one
dimension is more ordered than in two
dimensions.

Fig. 4: The radial distribution function g(r)
from theory for the two-dimensional RSA at
different densities, from 0.10, 0.20, 0.30, 0.40,
0.50 and 0.60 (the lowest to highest peaks).
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4.3 RSA in a volume (three-dimensional
problem)
RSA in three dimensions is studied

along with other types of spherical packing
in a volume. The distribution functions are
shown in Figure 5 at the densities of 0.4 and
0.6, which is close to the jamming density
p-. =0;735 [13]. The kinetic law (Eq. 14) used

to predict this limit in this case contains the
parameter D = 3.

o l r ' , 0 3 4

Fig. 5: The radial distribution function g(r) for
the three-dimensional RSA for density of 0.40
(bottom), 0.60 (middle) and 0.70 (top). The
bold line represents results from theory and
circles are simulation results. For claritv. the
top curve was shifted.

The comparison between results from
theory and simulation is very consistent at a
density of 0.40 and they are much different at
the densities of 0.60 and 0.74. Again the theory
fails to report the correct values at contact for
the density of 0.60 and both at contact and the
second peak for the density of 0.74. These are
due to the PY-approximation as already
discussed. The short-range ordering can be seen
at high density as shown in other dimensions.
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Fig. 6: The radial Airt lUutl." function g(r) from
theory for the three-dimensional RSA at
different densities, from 0.10, 0.20, 0.30, 0.40,
and 0.50 (the lowest to highest peaks).

Figure 6 compares the function g(r) at
various densities ranging from 0.10 to 0.50 in
three dimensions. This comparison is like ones
in other dimensions, showing only short range
correlations resulted from compact
arrangements at high densities and uncorrelated
structures at low densities. The minima of the
curves shift to the left when the density
increases, as in the case of two dimensions. If
we consider the structure of the three-
dimensional crystal, the peaks of g(r) will be at r
=ld, I.632d, 1.732d, 2d, and so on. In our
systems of random sequential addition, both the
irreversibility and exclusion effects cause the
arrangement of particles to be disordered as also
seen that the second peaks are not apparently
formed.

5. Summary
The integral-equation theory or specifically,

the modified Ornstein-Zernike equation for
RSA, was first applied to the study of random
sequential adsorption, a simple model for an
irreversible deposition. Here, the theory has
been adapted for other dimensions which may
find applications in various fields ranging from
chemistry, physics of liquids to biology. The
dimensionality has been integrated into the
theory by means of Fourier and inverse Fourier
transforms which are essential tools for solving
the equations. The results were shown, in every
dimension, for various densities. The g(r) at
higher densities are more structured than at low
density and they are consistent with the results
from Monte Carlo simulations for the low and
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moderate system densities while they are quite
different for the high densities. This is
predictable since the integral equations were
solved simultaneously with the PY-
approximation which is poor at high density.
We also checked our results with ones from a
previous treatment in Ref. [7] and found good
agreement. Even though the integral-equation
theory underestimates the values at contact
around jamming limits, it is, however, a method
based on statistical mechanics which could
provide clear understanding in terms of
molecular interactions in the RSA process and
other self-assemblies.
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