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Abstract

In Part I, the Castigliano's theorem is applied to derive the equations for the ratios of M/F and
loop stiffness for four types of closing loop, namely, the vertical helical loop, T-loop, Opus9O loop,
and helical T-loop. The last type of loop is a new design offered in this study. The theoretical M/F is
maximized to yield the optimum closing loop configurations for canine retraction where their heights
and widths are limited to 10x10 millimeters. For closing loop applications, certain serious assumptions
required by the Castigliano's theorem are violated, therefore, accuracy in theoretical prediction is not
expected. However, trends indicating the influences of various variables leading to the optimum
design of each loop type coincides with the observations of several researchers in the past. These
optimum configurations will be used to study experimentally in Part IL Since the facility for
determining M/F by experiments is not available, only experimental results on loop stiffness will be
compared to those obtained by Castigliano's theorem and a finite element method (FEM). If the FEM
yields good prediction of the loop stiffness within allowable discrepancy, then, the M/F resulting from
FEM may be used for actual estimates, even though it requires future experimental verification.

Keywords: closing loop, canine retraction, Castigliano's theorem, finite element method

l. Introduction its size, shape and supporting tissue, etc. [2,31.If
Bodily movement or translation of a bodily movement could be achieved, the level of

partially restraint body such as a tooth or a stress and strain of the supporting structure of
group of teeth occurs only if the line of force the tooth roots can be minimized. Unfortunately,
acts through its center of resistance or CRE [1]. in reality, the position of the CRE is such that it
The position of CRE for each tooth depends on is impossible to obtain a bodily movement by
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using a single force, hence, a system of force
consisting of forces and moments must be
applied to the brackets bonded to the crowns
instead. There are two methods in moving a
tooth or a segment of teeth [,4]. The first
method is called sliding mechanics and the
second, loop mechanics. The latter method is
our interest in this paper. The method involves
the application of a system of force in bending
arch wire into loops of various configurations in
continuous arch wires to deliver the appropriate
M/F to the tooth or a group of teeth when being
activated. These loops are called closing loops.
To design the closing loop to deliver the desired
M/F with proper loop stiffness K (loop applied
force per unit deflection or the slope of the
graph of force vs. deflection) is the most
difficult task for a successful movement of a
tooth. If the value of the loop stiffness is high,
then a large magnitude of force is needed to
activate one millimeter of the loop legs. For
example, if the loop stiffness K is equal to 200
gm/mm (1.962 N/mm), then to activate 2
miflimeters, a force equivalent to 400 gm (3.92
N), is required at the loop legs. The high force
magnitude may hurt the patient because of high
stress at the periodontal ligament. Also the rate
of force decay will be rapid and hence more
frequent activation is needed than a loop with
lower stiffness. Some orthodontists choose to
reduce loop stiffness by using costly arch wire
with a lower value of Young's modulus [5-7]
such as TMA arch wire.

As mentioned above, translation of a tooth
can occur only when the line of action of force
passing through CRE. But, in a real situation, we
can apply force to a tooth through the bracket
bonded on the crown only. If the distance
between the bracket and CRE is equal to d, then
an undesirable moment, M = F x d, arises. Tlre
concept of the closing loop is to generate a
moment with a magnitude equal and opposite to
the undesirable moment so that a pure
translation can be realized. Hence, the ideal ratio
of M/F of the closing loop must be equal to d,
the distance between the bracket and CRE. In
the past many researchers [,2,8-12] tried to
determine this distance and came to the
conclusion that the distance d for the maxillary
is between 7.6 to 9.6 millimeters, and the
mandibular, 7.6 to 10.3 millimeters.

Several loop configurations believed to
yield high ratio of M/F and used by
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orthodontists are: vertical helical loop, T-loop,
and L-loop. None of these loops is capable of
giving the required inherent ratio of M/F.
Therefore gable bends anterior and posterior to
the loop legs are needed to obtain a ratio of M/F
of about 8 to 10 millimeters. Siatkowski [1,8]
studied and designed new configurations of
loops, the Opus9O and Opus70, but still the
maximum inherent ratio of M/F is only about
5.5 millimeters when loops are centered between
brackets. But if the Opus7O is located off-center
with a distance from the anterior leg to the
bracket of 1.5 millimeters, he could obtain a
value of M/F close to the desired magnitude for
the tested wire size. Such an arrangement is
rather difficult in practice. Furthermore, once
the wire size changed, the M/F becomes an
unknown again.

It can be seen that if a reliable analytical or
numerical method of the closing loop analysis is
available, then any orthodontists can use this
tool to calculate the characteristic of their
closing loops theoretically without resorting to
costly and time-consuming experiments. In this
first part of the paper, the authors employ the
existing Castigliano's theorem to derive the
expressions for the loop stiffness and ratios of
M/F for various loop configurations. To
determine M/F experimentally is costly, and it is
rather difficult to obtain accurate results due to
its small size as compared to the sensor such as
a strain gage. Therefore to check the validity of
the theoretical results, only experimental results
of the loop stiffness will be compared in Part II.
Only the optimum design of each loop
configuration obtained from using the
Castigliano's theorem in Part I will be used to
study in part II of the paper employing the finite
element method. If FEM can predict the values
of the loop stiffness to within an acceptable
discrepancy, then we may assume that the
computed ratio of M/F by FEM can be used to
estimate the actual values also.

2. Material and Methods
2.1 Castigliano's theorem

ln 1879, Alberto Castigliano, an Italian
railroad engineer, outlined a method for
determining the displacement and rotation at a
point in a body. This method, which is referred
to as Castigliano's second theorem, applies only
to bodies that have constant temperature and

29



_ a u
O -  = -^ aP"

material with linearly elastic behavior. The
theorem states that [3]:

The first partial derivative of the strain
energy in the body with respect to a force (or
moment) acting at the point is equal to the linear
displacement (or angular displacement) of that
point in the direction of force (or moment).

In mathematical form. it can be written as:

where U is the strain energy of the elastic body

and if { represents a force, then { becomes

the linear displacement, but if { represents a

moment or couple, then d, becomes the angular

displacement.
In order to apply Castigliano's theorem

successfully the following assumptions must be
met:

1. The material of the arch wire is linearly
elastic.

2. After activating the closing loop, the
material is still in the elastic range.

3. Displacement is small.
4. All arch wire forming the closing loop is

in the same plane.
5. Distortion of the shape of the closing

loop after activation is small.
It is obvious that either some or all of the

assumptions 3 to 5 are violated in our
application. Hence, we are not expecting good
agreement with experimental results by
employing Castigliano's theorem in loop
analysis, as will be evident later. Nevertheless,
trends indicating how to optimize the loop
configuration are shown in the analytical
solutions.

In general, there are three types of strain
energy stored in the elastic body, namely, strain
energy due to axial load, torsion, and bending.
For the present types of closing loop
applications, the torsional strain energy due to
out-of-plane forces and strain energy due to
axial loads are small as compared to its bending
strain energy, hence the total strain energy can
be approximately written as:
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where M , is the bending moment of each basic

element I of the loop, E, the Young's modulus
of the arch wire material, 1, the moment of
inertia of cross-sectional area of the arch wire
and ds, the differential length ofthe
arch wire.

Fig. 1. Closing loop with gable bend
angle activated by a force F

Consider the closing loop model as shown
in Fig. 1 and from eqs. (l) and (2), the following
relationships are obtained:

'  ^  T  M : d s f6 = o ' = L L I F [ " " " " 1  t : r
a F  2 A F l 7 r  E r  _ l

'  ^  l -  ,M2ds l
o = 9 Y - = l : - l F r  I  G l

d M  2 A M l a r  E r  l

From eqs. (3) and (4), the expressions for
the loop stiffness, K = F I 6 andthe moment-
to-force ratio, M / F will be derived for each
type of closing loop considered herein.

2.2 Y ertical helical loop
For a vertical helical loop as shown in Fig.

2, the bending moment for each basic element of
the loop is as follows:

M r = F x - M O < x < H  ( 5 )

Mz = F(H + Rsin4,) -M 0 <Q, < r  (6)

M t = F ( H  - R s i n 4 r ) - M  0 < d r < E  ( 1 )

( l )

+ - ,

M

i 1

M

u =!ury (2)
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Eq. (13) coincides with that given by Haack

[4] without the detail of derivation.

2.3 T-loop
For a T-loop as shown in Fig. 3, the

bending moment for each basic element of the
loop is as follows:

{_
M

Fig. 2 Vertical helical loop

The strain energy for each element is:

t H

( J , = '  l G * - u l a *  ( s )
2EI i)

1 n

u,  =  +  f tn tn  *  Rs in / ,  ) -Ml ' (RdO)'  z E r i
(e)

1 r

u, = _- Irt u - R sin fi,t - M l ' ( RdO,)" 2Er i,
(10 )

Therefore the total strain energy of the vertical
helical loop is:

(  N + t \  f  N - l \
U = 2 U  + l - - - - l u  + l - 1 U  ( l l )

r \  2  ) ,  \ 2 )  r

where N is an odd number, the number of half-
turns of the helices. For one helix N=3, with
Castigliano's theorem according to eqs. (3) and
(4), the following relationships are obtained:

M I\,7

Fig.3 T-loop

M , : F x - M  0 < x < H

M r = F H - M  0 < ! , < L

M,=  F IH  +n ( t -  cos { ) ] -u

(14)

(  1s)

M _ H2 +rNRH +2R2 +EI7 /  F (12)

0 < d < n  ( 1 6 )

M ^  =  F ( n  + 2 n ) - M

Q < ) z < @ + a t z )  ( 1 7 )

Therefore the total strain energy of the T-
loop is:

H t ,I  "  
! ro,-M) 'dy,P1U = 

l(Fx 
-  M)'dx +

, o o

+ ltFH + FR(r - cos/) - Ml GdO)

L + d / 2

+ J t r ta  +2R)-Ml 'dy,  (18)

Appling Castigliano's theorem according to
eqs. (3) and (4), the following relationships are
obtained:

F

K =

2H +  nNR

6EI

4H3 +24HR2 +3nNR(2H2 +R2 )
(  l3 )

3 l
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L =W'  +  4L(H +  R)  +2nR' �  +2nRH +
F
d ( H  + 2 R ) +  E I 0 l F l l [ 2 H  + 4 L + 2 n R + d )

( le )

K = 3EI l[2H' + 6H2 L + 6nRH' +l2rHR2

+9nR' +3(2L+ d)(H +2R)' l
(:20)

2.4 Opus90loop

Fig. 4 Opus9Oloop

Since the Opus9O loop is unsymmetrical,
when it is centered within IBD (inter-bracket
distance). the inherent moments anterior and
posterior to both legs are not equal. For our
purpose of deriving the formulae for loop
optimization, we will assume that the Opus9O
loop is located off-center such that the inherent
moments at both legs are equal as shown in Fig.
4. The bending moment for each basic element
of the loop is as follows:

M r = F x , - M  0 < t , ( H + R ( 2 1 )

M, = Fl (H + R) + Rsin l . ,1-  M

0 < Q , < r l 2  ( : 2 2 )

M, = F(n +2n)-  u

O < ! , < L  ( 2 3 )

M, = Fl(n + 2R) -n(t - cos/, )] - n

0 < d ,  < f t  ( 2 4 )

M r = F H - M  0 < t r < L  ( : 2 5 )

M, = FIH + n(t - cosQ,)]- u

0 < Q, <3n l2 (26)

M, = Fl(H * R) - *,1- M

0 < x . < H + R  ( 2 7 )

Therefore the strain energy of the
Opus9O loop is:

1 H*!

EIU =  ;  J r r * ,  
-M1 ' � dx ,+

L o

I 
E/.2

;  J  ln ra  +  R +  Rs in  o , \ -  Mf '  (Rdd, )
t o

r L

*  :  l r f rn  +2R\-  M] '  dy,  +
L o

| 
"n.

-  
J [ r { ra  +2Rt -  R ( r - cos / ,  ) \  -  M l '  (RdO, l

t o

1 L .

+ : -  ) r n n - M f  d y , +

1 " ^ e ' .

;  J  [ F { n + n r t  - c o s 4 , ) \ - M l ' G d d 3 l
L o

+  I lF@+R-x , ) - t t l ' dx ,  (28 )
o

Applying Castigliano's theorem to eq.(28)
yields the following relationships :

M  
= 1 u ' 1 2 + 3 f l R H  + 3 ( l +  n ) R ' �  + 2 H L

F

+2RL+ EIe I  F l l l2(H + R) +3rR +2Ll
(2e)

K = l2E I  l [ 8H3  +12 (2+3n )H ' �R+

72(1+ r)HR'� + (56 + 54r)R' +

24(2R' �L+2RHL+n2r) l
(30)

2.5 Helical TJoop
To obtain higher M/F ratio, in principle, we

should locate the wire material as far from the
base as possible. Hence, the authors are
proposing a new configuration of loop, called a
helical T-loop, as shown in Fig. 5. This
configuration has been modified from the simple
T-loop by adding helices at the upper wings.
During derivation of the formulae any number
of helices will be considered, but for practical
purpose only one helix on each wing will be

1 l

x .  l
TI
il

* - l  l l f

J Z
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analyzed later on. By increasing the length of
the arch wire loop in this manner, it will result in
greater flexibility, in other words, reduce the
stiffness of the equivalent simple T-loop. This is
a desirable loop property because the lower loop
stiffness implies that the rate of force decays as
the tooth moves to close the gap and will be
slower. Hence, larger activation distance per
patient visit can be achieved without causing
severe stress and strain to the supporting
structure of the tooth.

Fig.5 Helical T-looP

The bending moment for each basic
element of the helical TJoop is as follows:

ul

u2

Fx -

FH

(37)

(38)

1 " n
u,  =  -+  l r {n  +R( l -cos / , t \ -u l tna0, t'  

2 E I '
(3e)

1 E

u  ̂  :+  [1n  { tn  +2R)  -R r l -  cos / , ) }" 2Er t-
- Ml'� Gdo) (40)

t  L + d / 2

u ,  = +  |  l r W  + 2 R ) -  M l '  a y ,  @ t )'  2 E I  i '

Observe from eq.(36) that for a simple T-
loop N = l, one helix N = 3, and two helices N =

5, applying Castigliano's theorem to eq. (36)

and the following relationships are obtained:

M:: -  =IH'  + 4L(H + R) +2nNR' �  +2vNRH
F

+d(H + 2R) + EI9 | Fl l[2H + 4L + 2n NR + d)
(42\

K =3EI /12n3 +6n2t+6nRH2 +12rHR2

+3(2L+  d ) (H  +zR)2  +gnNn3 l
(43).

3. Results and discussion
3.1 Theoretical findings

The aim in investigating the theoretical
results of each loop type is to find the optimum
loop configuration to yield the highest ratio of
M/F. The material of the arch wire is assumed to
be stainless steel of cross-sectional area

0.016x0.022 inch (0.40x0.55 mm) whose
Young's modulus is equal to 172,000 MPa. The
size of any closing loop will be constrained by
the anatomy of the oral cavity. For example, the
total height of the loop is limited by the
maximum height from the bracket on the tooth
crown to the vestibule. Since it is known that the
higher the loop, the higher the ratio of M/F will
be achieved [4,15], therefore in the following
investigation the total height and width (HrxW)
will be l0xl0 mm for upper canine retraction.

M) ' dx

-  M) 'dy,

=ri,
2EI i

=rir
2EI i

M r = F x - M

M r = F H - M

0 < x < H  ( 3 1 )

0 < ! , < L  ( 3 2 )

M3 = FIH +n( t -  cosQ,) l -u

0 < A < ,  ( 3 3 )

M, = F l (n +2R)- f t ( l -cos/ , ) l -M

0 < d , < E  ( 3 4 )

M ,  =  F ( n  + 2 R ) -  M

0 <  ) z  <  L + d l 2  ( 3 5 )

The total strain energy of the helical T-loop
is:

u =
f  / A / r l \  ( r r l - l  \  I

z l  u ,  + u ,  * l ' "  - '  
l u ,  * 1  : : - : '  l u  ̂ + u ,  I

L  \ 2 ) ' \ 2 ) - " 1
(36)

where N is an odd number, the number of half-
turns of the helices, and the strain energy for
each basic element is as follows:

J J



The obtained optimum configuration will be
used in experiments and analysis by FEM in part
II of this paper.

3.2 Vertical helical loop
To find the optimum configuration, we

assume that there is no gable bend angle d in
eq. (12) and consider only one helix in Fig.2.
The geometrical constraint equation is:

H+R = l0 (44)

The calculated results for each helix radius
using eq. (12) yield the following:

R = 0.5 mm, H = 9.5 mm, M/F = 5.71 mm
R = 1.0 mm, H = 9.0 mm, M/F = 6.1 I mm
R = 1.5 mm, H = 8.5 mm, M/F = 6.32 mm
R = 2.0 mm, H = 8.0 mm, M/F = 6.39 mm

Fig. 6 Effect of helical radii on stiffness of
vertical helical loop

B=1.5  mm,  H=8.5  mm,  E=172,000 Wa,  K=33.8  gm/mm
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stiffness K can be calculated by using eq. (13)
and the results are shown in Fig. 6. Notice that
the larger the values of H or R, the lower the
stiffness K will be. The optimum configuration
is summarized as follows:

R = 1.5 mm, H = 8.5 mm, MJF = 6.32 mm, K =
33.8 sn/mm

Fig. 8 Moments of vertical helical loop with
gable bend

To see the effect of the gable bend angle,
eq. (12) is used to construct Fig. 7 for various
magnitudes of activating forces F and their
corresponding moments M are shown in Fig. 8.
In Part II, the more reliable FEM will be used to
construct the same graph as Fig. 7 to
demonstrate the right trend. This confirmation of
the correct trend will be done for all four types
of closing loop.

3.3 T-loop
To find the optimum configuration of the

T-loop, we assume that there is no gable bend
angle 0 in eq. (19). The geometrical constraint
equation according to Fig. 3 is:

l
12
1 0

8
6

2

0

t=r=?sF l
+F=100 gm

L 1 F=15!91'r

First we investigate the influence of d
by arbitrarily fixing R = I mm. Then eqs. (45)
and (46) become:

H+2R = 10
2L+2R+d = 10

H = 8
2L+d= 8

(45)
(46)

(47)
(48)

Fig. 7 M/F of vertical helical loop with gable
bend

It is seen that the larger the helix radius ,
the higher ratio of M/F is obtained. But for a
practical pulpose, we choose to limit the
maximum radius to R = 1.5 mm. The loop

Now the ratios of M/F are calculated by eq.
(  19)  for  d = 0.  l ,  and 2 mm to g ive:

81.5 m, FE8.5 rr4 E=l7em tuF4 K:-338 grnh

1m
1m
1!m

e1m
E r m
5 m
= 6 m

,m
m

0
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d = 0 mm. H = 8. L = 4 mm. M/F = 6.91 mm
d= 1 mm. H = 8, L = 3.5 mm, M/F = 6.88 mm
d = 2 mm, H = 8, L = 3 mm, M/F = 6.85 mm

It is seen that d = 0 mm gives the highest
value of M/F. However, observe that the
influence of d on M/F is negligible. Also
constructing a closing loop with d = 0 mm will
facilitate the measurement of each activating of
distance and the monitoring of the movement of
the tooth. Now the constraint equations are
reduced to:
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their corresponding moments M are shown in
Fig. 10. Since loop stiffness is also an important
factor in determining the magnitude of
activating distance per patient visit, the
influences of the loop H and arch wire sizes on
the loop stiffness are also shown in Fig. 11.

d{ rm FE1 rm FEg rm t=4 rrn K=238 gnvrm
E=172mllPa

16m
14@

^ 12m
E r m
E m
. 9 9
E l m

m
0

+F-Egm

+Elm

+E150

Fig. 10 Moments of T-loop with gable bend

d=0 mm,  FF1 mm,  LF4 mm.  E=172.000 MPa

H+2R = 10
L + R = 5

(4e)
(s0)

To search for optimum configuration from
eqs. (49) and (50), we try R = 0.5, 1.0, and 1.5
mm and the following results are obtained:

R = 0.5 mm, H = 9 mm, L = 4.5 mm, M/F =

7.20 mm
R = 1.0 mm, H = 8 mm, L = 4.0mm, M/F =

6.91 mm
R = 1.5 mm, H = 7 mm, L = 3.5 mm, M/F =

6.62mm

From the above results, the smallest R
yields the highest M/F. But for practical hand-
bending of the closing loop, the smallest R is
chosen to be 1.0 mm, hence the optimum
configuration for T-loop is:

R = 1.0 mm, H = 8 mm, L = 4.0 mm, M/F =
6.91 mm, K = 23.8 gm/mm

d=0 mm, R-1 mm, FE8 mm, b4 mm, K=23.8 grvmm,

E=172,M MPA

--: I
+ r=/c gm

+F=1009m
+F=lsogTl

Fig. 9 M/F of T-loop with gable bend

To see the effect of the gable bend angle on
M/F, eq. (19) is used to construct Fig. 9 for
various magnitudes of activating forces F and

H+2R = l0
L+2R = 10

7 4 9

H (mm)

Fig. 11 Effect of arch wire size on stiffness of T-
looo

3.4 Opus90loop
For the Opus9O loop as shown in Fig. 4, the

seometrical constraint equations are:

_l
]  
+ . 0 1 6 x . 0 1 6

+.016x.022

l

(5 l )
(s2)

Following the similar procedure as the T-
loop using eqs. (29) and (30), the optimum
configuration is derived as follows:

R = 1.0 mm, H = 8 mm, L = 8 mm, M/F = 7.18
m m , K = 1 9 . 6 g m l m m

Here again the minimum radius R is limited
to 1.0 mm for practical hand-bending of the
loop. The effect of the gable bend angle on M/F
for various magnitudes of activating forces F

35



and their corresponding moments are shown in
Fig.12 and 13. The influences ofthe loop height
H and arch wire sizes on the loop stiffness are
demonstrated in Fis. 14.

FE1 m, FE8 m, UB m, K=19.6 gn/m, E=172,m lvPa

5 1 0

B (degrees)

Fig. 12 M/F of Opus9O loop with gable bend

+1 mm,l-t4 mm, LJ mm, lc19.6gnvmm,812,m l,ft
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Following a similar procedure as the T-loop
using eqs. (42) and (43) for one helix, the
optimum configuration is obtained as follows:

d = 0 mm, R = 1.0 mm, H = 8 mm, L = 4 mm,
MIF =7.43 mm, K = 23.5 gm/mm

The effect of the gable bend angle on M/F
for various magnitudes of activating forces F
and their corresponding moments are shown in
Fig. l5 and 16. The influences ofthe loop height
H and arch wire sizes on the loop stiffness are
demonstrated in Fis. 17.

d4trm &1 nm Fl€nmL4nm l<gsgn'lml
E=l7ZmN,tu

+F-759m

+E1mgm

+ ElsOgm

1 m

1 0

1 m

E t m
E
E m

= m
4{X)

200

0

:  : -
+E/5gm

+E1mgm

Erg-l

5 1 0 1 5

d (degrees)

Fig. 13 Moments of Opus9O loop with gable
bend

Fig. 15 MiF of helical T-loop with gable bend

5 1 0 1 5

d(degrees)

Fig. 16 Moments of helical T-loop with gable
bend

d=O mm.  B= l  mm.  L=4 mm.  E=172.m MPa

5 6 7 8 9

H (mm)

Fig. 17 Effect ofarch wire sizes on stiffness of
helical T-loop

5 1 0 1 5

d(degrees)

R=1 mm.  L=8 mm.  E= l72 .m MPa

1m
't4@

^ l m

tt t*
E m
9 6 6
E n o

n
0

[+-!r6xt6
+.016x.022

m

50

c 4 0
E
E 3 0
I
Y 2 9

1 0

0

50

40

6 2 0;
1 0

0

Fig. 14 Effect of arch wire sizes on stiffness of
Opus9Oloop

3.5 Helical T-loop
For the helical T-loop as shown in Fig. 5,

the geometrical constraint equations are:

H+2R = l0
2L+2R+d = l0
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4. Conclusion
In Part I of the paper, the theoretical

derivations of the ratios of M/F and loop
stiffness of four types of loop configurations
have been shown in details. For maximum M/F,
the results indicate that if one is required of to
increase the loop height (H), the loop width (L),
and use the smallest loop radius (R), except for
the vertical helical loop, the largest loop radius
is the best. This coincides with the observation
of several researchers [1,4,6,15-19].
Experiments to compare the loop stiffness will
be done in Part II. The results of the more
reliable FEM will be presented for all optimum
loop configurations obtained in Part I.
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