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Abstract
Buried unexploded ordnance (UXO) and land mines are considered a serious threat to the world,

particularly during the return of civilians to contaminated areas. Consequently, humanitarian demin-
ing is required before the civilian retuming process can proceed. Several humanitarian demining
projects were established by organizations and govemments including the United Nations, the Royal
Thai government, the U.S. govemment, the Japanese govemment, etc. In this research we propose a
new technique to discriminate UXO from non-UXO targets based on the energy of returning ground
penetrating radar (GPR) signals in the time-domain. In the experiments we analyze the GPR data sets
collected by Battelle company and the Ohio State University from the Jefferson Proving Ground
(JPG), U.S.A. The results are evaluated in terms of Receiver Operating Characteristic (ROC) curves
that provide information of the UXO detection ability of our technique. The ROC curves show that
our proposed technique performs better than a traditional detection technique based on energy only. In
addition, both techniques yield better results than the situation in which no technique is applied (no

discrimination ability.)
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1. Introduction

1.1 Buried UXO/Land Mine Problem
Buried unexploded ordnance (UXO) and

land mines post serious problems all over the
world []. It is estimated that there are between
60 and 100 million of them buried around the
world and that someone is killed or injured by
them every 20 minutes [2]. The main problem
arises when pieces of land are retumed to civil-
ians after wars. Even after the efforts to clear
those contaminated sites, several areas were
handed over to civilians without adequate UXO
and land mines clearance [3].

During war time, these military weapons
are used intentionally to kill or injure military
personnel on the opposite side. To make this
more serious, during the post-war period, these
weapons still cause humanitarian problems
unintentionally. Besides the problems of the

injuries and casualties of civilians fiom UXO
and land mines, the fear of contamination also
prevents civilians from using to use the lands.
Therefore, this problem affects the whole world
in many ways including public safety, society,
environment, and economy.

1.2 Thailand's Role in Humanitarian Demin-
ing
There is no exception for Thailand in the

UXO/land mine problem. A significant portion,
almost 800 square kilometers, of Thai territory
is mined. These areas stretch over 18 border
provinces in the northern, northeastern, south-
ern, and western parts of Thailand. These UXO
and land mines result in a condition in which a
Thai innocent victim dies or is injured in an
explosion every three days.

ln 1997, the Royal Thai Govemment signed
the Convention on the Prohibition of the Use,
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Stockpiling, Production, and Transfer of Anti-
Personnel Mines in Ottawa. Thailand then
deposited its ratification instrument at the
United Nations in 1998 as the first nation in
Southeast Asia to do so. In the same year, the
Royal Thai Government formed the National
Committee on Anti-Personnel Mine Manage-
ment which in turn formed the Thailand Mine
Action Center or TMAC operating under the
royal patronage of Her Royal Highness Princess
Galyani Vadhana Krom Lung Naradhiwas
Rajnagarindra [4].

1.3 UXO/Land mine clearance efforts
During the clearance effort, when an

operator of a UXO/land mine detection system
encounters a location that the system alarms, he
would guess that the location is mined and dig
up the ground. However, most of the time they
are false alarms, i.e., those locations contain
some other objects, other than UXO or land
mines, e.g., bottle caps, soda cans, fragments
from exploded ordnance, etc. A detection
system that can speciff targets more correctly is
preferred. The reduction of false alarms cuts the
expense and time of the clearance operation.

The most familiar detector is a metal
detector. The metal detector-based detection
system, however, does not work well in many
situations because it identifies every metal
object as a target. One of these situations is
when the buried object is a metal fragment (like
a non-UXO object in this research.) For this
reason, there are many efforts to apply ground
penetrating radar (GPR) signals in UXO/land
mine detection [5]-[8]. GPR-based detection
systems work better than the traditional metal
detector-based systems in many aspects,
especially when the target contains a very small
metal content, for example, an Ml4
antipersonnel land mine or an Ml9 antitank land
mine [ ] .

In addition, many efforts are also applied to
solve the UXO/land mine detection by analyzing
GPR data. Many computational tools are
applied to this problem, for example, fuzzy
systems t7l-tl0l, hidden Markov model [1],
linear prediction |21-1141, artificial neural
networks [5], [6], size-contrast filtering in
region-based analysis [7], statistical approach

[18], etc. Many researchers also proposed
fusion algorithms to fuse data collected from
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several sensors or fuse outputs of several
algorithms [10, [9]-[21].

This paper is organized as follows: Section 2
describes the brief details of data we use in the
experiments. The details of our proposed
technique are given in section 3. We show the
results and describe how to interpret them in
section 4. Section 5 concludes this paper.

2. UXO GPR Data Set
In the experiments, we used the GPR data

set collected from the Jefferson Proving Ground
(JPG), near Madison, Indiana, U.S.A., by
Battelle company and the Ohio State University
t3l,1221. The data set were collected over four
days from September 21 to 24,1998. This data
set is made available to the public by the
Unexploded Ordnance Center of Excellence
(UXOCOE), Department of Defense, U.S.A.

The UXO characterization system used in
the data collection is a manually-operated,
surface-towed, ground penetrating radar (GPR).
A Hewlett Packard network analyzer
(HP8753C) was applied in the radar system to
measure multiple frequency responses by
sweeping the frequency 2 MHz at a time from
20 MHz to 420 MHz. The bandwidth of 400
MHz provides a depth resolution of 2.5
nanosecond (ns). Therefore, there are 201
responses in each measurement. Additionally,
in each measurement, the system antenna was
lowered onto the ground surface and then
rotated to collect responses for a total of 180
degrees with l0 degree increments. At the end,
l8 sets of 201-sample one-dimensional signals
were collected. We arrange these signals in the
form of images with a size of 201x18. It shoulc
be noted that these GPR signals are not real
images. We anange and display them this way
to ease visualization.

This data set contains several types of UXO
from the Jefferson Proving Ground (JPG) site.
Here are some examples of UXO found in this
site - High Explosive (HE) with the sizes of
20mm, 76mm and 752mm, Mortar with the sizes
of 60mm and 81mm, Armor Piercing (AP) with
the size of 90mm, etc [3]. The objects in the
non-UXO class in this data set are fragments
that are usually scattered all over war zones.
Sample GPR images of UXO (20 mm high
explosive) and non-UXO (fragment) are shown
in Figures 1 and2, respectively.
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Figure 1. Sample GPR image of UXO (20 mm
high explosive) in frequency domain.
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Figure 2. Sample GPR image of non-UXO
(fragment) in frequency domain.

The target locations on the test site were
marked with flags to provide ground truths of
the target locations. Each target could be a
UXO or non-UXO. The ground truth of the type
of each target was also given in the data set.
The numbers of UXO and non-UXO collected
each day are shown in Table 1.

Tnnrn 1
THE NUMBERS OF UXO AND NON-UXO

COLLECTED EACH DAY IN THE DATA SET.

Object
Dav

UXO
Non-
UXO
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Figure 3. An example of UXO detection sys-
tem.

3. Proposed Technique
The goal of this research is to decide

whether or not an object in a given GPR image
is a buried UXO. The non-UXO objects make
this problem much more difficult than the
UXO/land mine detection problem in which we
try to distinguish blank ground and ground with
a buried object. Figure 3 shows one possible
UXO detection system. The task of the metal
detector is only to find a buried piece of metal.
The more difficult task is in the next step - the
UXO,Non-UXO discrimination - that is what
we are trying to achieve in this research.

3.1 GPR Time-Domain Analysis
Our proposed technique is based on the

analysis of GPR images in the time domain.
This can be achieved by taking the inverse
Fourier transform of a signal in each orientation
(each column of GPR images.) The time-
domain GPR images of the sample GPR images
of UXO and non-UXO shown in Figures I and 2
are depicted in Figures 4 and 5, respectively.
We can see that it is hard or impossible for a
human to tell the difference between the GPR
signals of UXO and non-UXO either in the
frequency or the time domain. Fortunately, the
energy of GPR signals from these two classes of
objects are somewhat different, particularly
when we select only the underground region that
we believe contains useful information.
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Figure 4. Time-domain GPR image of UXO
corresponding to the frequency-domain GPR
image show in Figure 1.
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Figure 5. Time-domain GPR image of non-
UXO corresponding to the frequency-domain
GPR image show in Figure 2.

3.1.1 Region of Interest Selection
From the time-domain GPR images of the

data set, we found that the ground bounces occur
around the 7th row (corresponding to a time
delay of 17.5 ns which is consistent to what was
reported in [3] and [22].) Based on this
information, we select the region of interest that
contains row I I to 20 (27.5 to 50 ns) of each
time-domain GPR image to eliminate the effects
from the ground bounce and eliminate the deep
underground area that does not contain objects.
This is an advantage of considering GPR signals
in time (or spatial) domain in which we can
select a useful depth range. This cannot be done
easily if the frequency-domain GPR signals are
considered.
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3.1.2 Detector Shifting Problem
One of the difficulties occulring during the

data collection proaess at a given location is the
shifting of the detector. The shifting prevents us
from associating a signal with the adjacent ones
directly. For example, we cannot just subtract
one from the other to achieve the change
detection. This difhculty always occurs in a
hand-held detector unit in which, ideally, we
would like to hold the detector unit over the
ground at the same height all the time. In the
data set used in this research, it is highly
possible that the location of the antenna would
shift vertically during its 18 orientations.

To solve the vertical shifting problem, we
consider one of the Fourier transform theorems

l23l:

x(n-n) <)  e- i@d x(e- ja)  ( l )

where nd is an integer, and X(e-j') is the

discrete Fourier transform of x(r). However, we
have:

le-i^,x1"-i'11=lx{"-,'11 Q)

Therefore, if we take an absolute value of the
data in the frequency domain, then the shifting
problem will be eliminated because:

le-i"n xp t,1l=le-j*, X1e-i'll=lx<at'11 (3)

where n1 and n2 are two different delay time
periods due to two different detector shiftings.

In our experiments, we take an absolute
value of each orientation (each column) of the
raw GPR data and then take the inverse discrete
Fourier transform (IDFT), i.e.,:

Y( i )=IDFT( lx( i ) l ) ,  i=r ,2, . . . ,18 (4)

where X(i) is the 4h column of the raw GPR
data which conesponds to the raw GPR data at
the orientation of 101 degrees, and I(i) is the ith
column of the output image. It should be noted
that, by considering only the absolute values of
data rather than the complex values, we lose the
depth resolution by half due to symmetry.
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3.1.3 Change Detection of GPR Signals from
Adjacent Orientations

By assuming that the shift ing problem is
already corrected, the change detection can be
easily achieved by signal subtraction. Consider
the shift-corrected signals )'. We subtract the
signal in the current orientation from the previ-
ous orientation. i.e..:

Z( i )  = Y( i  +1)  -  Y( i ) ,  i  =  t ,2 , . . . ,1 '7 ( 5 )

where Z(il is the ith column of the subtracted
image which is the difference between the GPR
signal in the orientation of l0(l+1) degrees and
that in the orientation of l0l degrees. Therefore,
we end up with 17 pairs of orientations. The
subtracted GPR image (or change-detected
image) of the GPR images of UXO and
non-UXO shown in Figures I and2 are depicted
in Figures 6 and l, respectively.

3.2 Energy-Based Features used in Detection
We compute the following features based

on the GPR signal energy, the region of interest
and the change detection image.

tr Maximum energy of GPR image X
We perform the maximum energy detection

technique to represent a traditional technique.
We use this maximum energy detection
technique as a baseline in the comparison to our
proposed technique. It is also used in our
proposed technique as one of the features. The
maximum energy of a given raw GPR image X
in the frequency domain can be calculated by:

g., .  = ru*lxt i , t ) l '

Q Energ,, of the region of interest
Given X as a region of interest, the energy of

the region of interest is computed by:

" ROI

where Row and Col are the number of rows and
number of columns of X, respectively.

J Maximum energl of the region of interest
Given X as a region of interest, the maxi-

mum energy of the region of interest is com-
puted by:
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Figure 6. Time-domain subtracted GPR image
of UXO conesponding to the frequency-domain
GPR image show in Figure l.
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Figure 7. Time-domain subtracted GPR image
of non-UXO corresponding to the frequency-
domain GPR image show in Figure 2.

En*.aor  =\? lx ' ( i , i l  (8)

Q Energt of a change detection image
Given Z as a change detection image, its

energy is computed by

(7) Ec*," =Ytlt<,,n1'
i= l  j= l

where Rou and Col are the number of rows and
number of columns of Z, respectively.

3.3 Decision Rules
From the ground truth information that is

provided along with this data set, we found that
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most of non-UXO objects are of bigger size than
UXO ones. We also set an assumption that a
non-UXO object is of irregular shape. This
assumption is intuitive because fragments in a
battlefield are usually of random shapes.
Therefore, the energy of object from the non-
UXO class should be greater than that from the
UXO class. The energy of the change detection
GPR image described in section 3.2 should be
small for an object with a regular shape like a
UXO.

Hence, we set the decision rules of the
energy detection technique and our proposed
technique as the followings:

Energt Detection (Baseline)
The object is UXO if E^*<TH|, otherwise it

is Non-UXO.

Time-Domain Analysis (Proposed
technique)

The object is UXO tf E-*x Epux E,*.pux
Egho,s"<TH2, otherwise it is Non-UXO.

The thresholding values THI and, TH2 are
the parameters to be determined by an operator
ofa detection system on a clearance site. In our
experiments, THI and TH2 are varied to several
values to evaluate the detection performance of
the techniques at several settings. We can see
that the larger the value of thresholding, the
more likely the object will be declared as a
UXO.

4. Experimental Frameworks

4.1 Evaluation Method
The evaluation of a detection system is not

straightforward. For example, the simplest way
to detect all UXOs is to declare all objects in the
data set as UXO. However, all non-UXOs will
also be declared as UXO as well. In this case,
the probability of stating "UXO" when a UXO
is present or the probability of detection or true
positives (TP) is 1. However, the probabiliry of
stating "UXO" when a non-UXO is present or
the probability of false alarms or false positives
(FP) is 1 as well. Therefore, the main goal is to
achieve the largest TP with the smallest FP.

We evaluate our proposed technique and
the energy detection technique in the form of a
Receiver Operating Characteristic (ROC) curve
which is a standard wav to Dresent overall
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performance of a target detection system. A
ROC curve is simply a plot of TP as a function
of FP. It is created by varying the thresholding
value and recording the numbers of correct and
incorrect classifications at each value of
thresholding. In this case, when the
thresholding value TH is smaller, more images
will be classified as non-UXO. If we would l ike
to classifu more UXOs correctly, then we will
have to set TH to a larger value. However,
many non-UXOs will be incorrectly classified as
UXO as well. Therefore, a ROC curve can
provide the system performance at any values
of thresholding. We can also compare
performances of detection systems by plotting
their ROC curyes. The ROC curve on the top-
left has the better performance.

4.2 Experimental Results
Figure 8 shows two ROC curves of a sys-

tem based on energy detection and based on the
proposed system variable on each day of the
four-day data collection. In this section, we
show the probability of detection or true
positives (TP) from 0.5 to I because we would
like to consider the system performance when i1
can classifu at least half of UXOs correctly. We
would not operate the system in the threshold
range such that it can classifu less than half of
our targets correctly in a real-world application
(in such a case, more than half of UXOs are
classified as non-UXOs, which is dangerous.)
We can see that the proposed technique
outperforms the energy detection for most of the
thresholding values.

The detection performances of the energy
detection and the proposed technique on the
entire data set are shown as ROC curves in
Figure 9. It is clear that the proposed technique
performs better than the energy detection
technique for all of the thresholding values. In
the figure, we also show the line of no
discrimination ability, that is the plot when a
system cannot tell the difference between UXO
and non-UXO (TP:FP.) Therefore, we would
like to have ROC curves of our techniques to be
on the top-left of this line. As seen from Figure
9, both ofthe energy detection and the proposed
technique have better performance than that.

For the UXO detection, missing a UXO is a
serious problem. Therefore, it is desirable to
have a TP of I because we would not like to
miss any UXO. It can be seen flom Figure 9
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that, at the TP of I, the proposed technique
reduces the FP of 0.88 performed by the energy
detection, to 0.84. In this particular data set,
those percentages imply a reduction of the
number of false alarms from 96 to 92. This
means a detection system operator would not
need to dig up 4 locations just to find non-
UXOs. The false alarm reduction percentage in

this case is (0.88-0.84)x100% / 0.88 : 4.55%.
It should be noted that a graph in [3] by the U.S.
Army Environmental Center and Naval Explo-
sive Ordnance Disposal Technology Division
indicates that the system of Battelle company
(the system used to collect data in our
experiments) achieved a TP of 0.47 with an FP
of 0.53. It can be seen from Figure 9 that our
proposed technique performs better by achieving
a TP of 0.5 with an FP of about 0.4.

The results are even more interesting when
we compare both techniques with the situation
of no discrimination ability. In that case, the
detection system operator has to make a decision
by himself to clear the location by guessing
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Figure 8. ROC curves of a system based on energy detection in contrast to that based on the pro-

posed technique on each day ofthe data collection.
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Figure 9. ROC curves of a system based on the
energy detection in contrast to that based on the
proposed technique on the entire data set.

or flipping a coin. In this data set, to get all
UXOs or to accomplish a TP of l, he has to dig
up all 109 locations. Here, the number of false
alarms reduction achieved by the proposed

technique is l7 or (109-92)x100%/109:15.6%,
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and the energy detection technique can reduce
the false alarms by ll.9%.

5. Conclusion
Humanitarian demining has become an

intemational issue nowadays. In this research
we propose a new technique to analyze time-
domain ground penetrating radar (GPR) signals
of the UXO/non-UXO discrimination problem.
The proposed technique is based on energy
features of the region of interest and change
detection. In our experiments, we use the GPR
data set collected by Battelle company and the
Ohio State University from the Jefferson
Proving Ground (JPG), U.S.A. We also apply
the energy detection technique to be the baseline
of the experiments. The results in terms of
Receiver Operating Characteristic (ROC) curves
show that our proposed technique has better
overall performance than the energy detection
technique. Moreover, both of the techniques
yield better results than the situation in which no
technique is applied (no discrimination ability.)
The reduction of false alarms by the proposed
technique can save operations time and money
in the UXO/land mine clearance.
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