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Abstract
The use of Lie algebraic Methods offers the calculation of high order aberrations and also new

insight into the origin and possible correction of aberrations. In this paper, it will be shown using Lie

algebraic methods, how to describe the transposition of the OTIS, characterise its optical elements and

simpliff the calculation of their aberrations. A preliminary numerical study of its optical elements

indicatis that, by simultaneously removing almost all third-order (and higher-order) aberrations, it is

possible to design a lens system, a Fourier transform lens, having an eror function approaching zero.
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In thin lens (axis-symmetry) system as
shown in Figure l, the object phase space(q',p')

in geometrical optics is transformed canonically
to the corresponding image space (q',p') through

its representation matrix which is the composite
ofthe operators ofparaxial free propagation (q

and ,n,) in a homogeneous medium of refractive

index r after the object and before the screen, by
distances z, &nd zr, arnd the action of the

refraction surfaces (q). The concatenation of

these operators produces the Lie map of the

system % =r$,F2. These operators are Lie

(exponential) operators, and they are given by

o,= *,[?(-,. *?',',)] ='{''-+'[l
n, '= *ol-;(': '')*;o,uuo,l = n{or,[rt,

', '= *ol?(-'.;t',t)] = 4''-r'[l

where L = 2l zz and n' is the refractive index of

thin lens. Let z, = z, = 7 (focal length of thin

lens), n (air) : l , and a=-/r. The

transformation lvt of the thin lens system is
given by

1. Introduction
The propagation of a ray in an optical

system can be described in many cases by a

Hamiltonian. The Hamiltonian formulation of
geometrical optics describes light rays as points
(q, p) in an optical phase space' The position

coordinate of a ray g=lq,,q,) determines the

intersection with the 0 Plane. The
momentum coordinate p =(p,,pr) is the

projection, on the plane, of the ray direction
vector. Fermat's principle leads to an optical
Lagrangian [1,2,3] from which the canonical
momentum p is shown to be a vector in the z :

constant plane, along the projection ofthe ray on
the plane, of magnitude p = nsin? , where n is the

refractive index of the medium at (q, z), and d is

the angle between the ray and the z axis. The
initial and final values of the system are
represented by ni and wr, respectively. The set

of vectors p is the optical phase space. The

initial conditions determine the final conditions
and can be expressed in terms of a functional
relationship that is denoted formally as the
optical transfer map or optical symplectic map.
The optical symplectic map can be written as a
product of Lie transformations. The Lie

transformation is a linear operator acting on

functions of phase space, and is formally
defined by the exponential series.
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where r is the radius of thin lens. The Lie
operators : lr: is defined as:

) / r '  . \

: i , :  : = I l  
o n  o  - o n  o  

l , = h . . 1  ( 3 )
Alaq, dP, ?P, aq, )

Figure 1. Thin lens system.

The matrix 1 o 1r1 from equation (2) is
l - r / r r  o  l

corresponding to the transformation matrix in
geometrical optics [5], i.e.:

where M &re 2x2 matrices of determinant 1.
These kinds of matrices are called (linear)
canonical transformations or symplectic
transformations. Any refracting lens system can
be considered as the composite of several
systems of two basic types:
(a) Afer translation by a distance t, the formula

is :

t  r  t /
/ n (5)

where n is the refractive index of the
medium.
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(b) Refraction at the boundary surface between
two regions of refractive indices ,, &11d n2 ,
the formula is:

f q , )  (  t  o ) f q  )
t - t  i l  l

\ n t )  [ - p  r ) \ n t )

(  I  o )  ,  n )  n ,
d e t l  , , - l . P =  ^  ( 6 )

\ - p  t )  ^

where R is the radius of the refracting

surface.
From these two results. we can calculate the

matrix of the thin lens (a double convex lens)

between a reference planes r, located a distance

/(a focal length of the thin lens) to the left of the
lens and a reference plane r, located a distance/

to the right (Figure 1), then we have:

w h e r e I  u . , , { L  f l  . *  i s t h e r a d i u s o f t h e
I  \ R ,  R t )

left refracting surface and n, is the radius of the

right refracting surface. From equation (7), the
elements A and D of the matrix are zeros. This
means there are two cases we will consider as:
1) D = 0. This means that all rays entering the
input plane from the same point emerge at the
output plane making the same angle with the
axis, no matter at what angle the rays enter the
system. In another words, the position of the ray
is transformed into an angle. 2) A = 0. This
means that all rays entering the system at the
same angle will pass through the same point in
the output plane. Therefore, the angle is
transformed into the position of the ray [6]. With
two cases it shows that the lens system
transforms the coordinate system \q , p ) by

rotating the axes by e0' :

(n , r )  n  ( -o ,n)  (8)

In this paper, we used Lie algebraic methods
to describe the system called the Optical
Transpose Interconnection System (OTIS). The
OTIS system, which is described in Ref. 4, has
three stages of lenses, an array of microlenses in
stage I, a macrolens in stage II, and an array of
microlenses in stage III, as shown in Figure 2.

r )

(';,)=l r il[l) (7,

l n , l = l  e  a 1 ( a , )  , f r , l  r + r
I r . /  \ c  D ) \ P , )  l P ' /

(  q , \  ( l
I  t = l

lp , /  \o
/ r  r  )

de t l  I
l 0  t )

' l [n ]r )\P, )
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2. Fundamental Theory of the OTIS
The transpose interconnection ofthe system

is a one-to-one mapping between u"u inputto
lv x rl output beamlets. The input and output
beamlets are arranged as an .lrv,.[u array of
.[n,,[u sub-array. Each .[i",[u sub-array of
input and output beamlets are at the front and
back focal planes of each of the lenses of stage I
and III which are arranged as an ,[i",[u anay,
respectively. Each input and output beamlets has
a coordinate (n,n\ where n,n=r,...,,[u",[u . The
input beamlet with the coordinate (n,r) is
mapped to the output beamlet with the
coordinate (n,n), called the transposition of the
input. We can write as the equation:

(n,n) - (n,n) (9)

The sources of input beamlets are telecentric
sources, i.e. the chief ray of each source is
parallel to the optical axis of the corresponding
lens in stage L The microlenses in stage I are
positioned one focal length away from the
sources. The macrolens in stage II and
microlenses array in stage III are positioned as
shown in Figure 2(a) so that the images of the
input beamlets can be Fourier transformed at the
output. Figure 2(b) shows the diagram of the
system for N and M = 16. The system
composites of 256 input and output beamlets are
arranged &s 8rr 4x4 array of 4x4 sub-array, an
4x4 dfid! of lenses in stage I, a macrolens in
stage II, and an 4x4 srrd! oflenses in stage III.
The input beamlet with coordinate (r,r), for
example, on the microlens n : I in stage I is
mapped to the output beamlet with coordinate
(r,r) on the microlens n : I in stage III, similarly
the input beamlet with coordinate (1,2) on the
microlens n -- | in stage I is mapped to the
output beamlet with coordinate (z,r) on the
microlens n = 2 in stage III, and so on. Hence,
the hansposition of the input coordinates to the
output coordinates can be done by three lenses.
Therefore, the optical transpose interconnection
system composite of three stages of lenses to
transform the input beamlets with coordinates

I i I into the coordinates of the output beamlets

lo^l . Equation (10) below is the equation of

the system:
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(o)
\P ),. (10)

whete fr,fr, and ft are the focal lengths of
lenses in stage I, II, and III, respectively, and the

effective focal length of the system is 
ff. 

ny

Gaussian beam analysis and linear optical
desigrr, the optical transpose interconnection
system [8] has been designed and simulated as
shown in Figure 3.

3. Aberrations in the OTIS
Let *t be any symplectic map having a

Taylor series expansion of the form,

z{ = K, +ln.rz; *7r,*z'rz: 
1tZ)

+l tJ  "o"ot 'u t ' " to  *  , . .

An incoming initial ray is specified by the
phase-space coordinates z', and the outgoing
final ray has the corresponding phase-space
coordinates zr . From equation (12), it can be
shown that 9! can be written uniquely in the
factor product form,

ctil = exp("4 )"*p( l, :)exp( l, :)exp( I )...
exp(.f ^:) (ts)

where each function /) is a homogeneous

polynomial of degree m in the variables z' .By
definition, knowledge of W is equivalent to
knowledge of the relation between the initial
conditions z' and the final conditions zt .
According to equation (13), knowledge of W
amounts to determining certain homogeneous
polynomials ,f,,.fr,.fr.fn,etc. In light optics, the

factorization theorem indicates that the effect of
any collection of elements can be characterized
by a set of homogeneous polynomials. It can be
shown that the polynomial f, reproduces the

_[' -T\,\
lh o fo),.

( Af, \
(q \  - l - -To l
\p),.- |  4o I (r r)

l. /t/: )-o
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constant terms K,, in the Taylor expansion, and
the polynomial /, reproduces the linear matrix
(paraxial optics) terms R ", . And the
polynomials f., f^,etc. describe departures

from paraxial optics and reproduce the nonlinear
terms f r. ,U ,,n , etc. Moreover, unlike the terms

K., R.n,T,,b,,etc., the polynomials 1,, are all
independent. Much of geometrical light optics is
concerned with systems composed of lenses
having axial symmetry and constant index of
refraction. For such systems the transfer map M
can be written in the form

M = exp(: /, :)exp(: y* :)exp( y. :)... (14)

Only f _ in equation (13) with even lz occurs
due to symmetry, and it can depend only on the
var iables pt ,q ' ,andp.q.  From equat ion (14) ,
the results of the equation (2) is one part of an
expression of the form

(  l 5 )

The quantity M(j denotes the Gaussian

(paraxial) porrion of the map r exp( 7, :) r and
is given by the relation of the equation (2). The
last term, exp(: /rj :), describes third order
departure (aberrations) from Caussian optics. [n
general, l; has an expression ofthe form

l , i  :  A ' (p ' I  + B'p:  (p .q)+ c"(p .q) '  *  D'p 'q '  + r ' (p .qh'  *  r ' (q,  ) '
( l 6 )
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Coordinates of lenses and inputs in stage I

Coordinates of lenses and outputs in stage
III

(b) Front View of inputs, outputs, and
mesolenses in stage I and IIL

Figure 2. Diagram of the OTIS with N = M = 16
t7 l .

5 l

(a) Side View of layour of the OTIS Figure 3. Modelling of the OTIS [7]
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The Seidel third order aberrations are classified

[9,10,1 l] and given in Table I below

Table 1. The Seidel aberrations.

The determination of the function 4 and its

coefficients can be carried out using the

Campbell-Baker-Hausdorff formula [8]. Each

lens of the system can be expressed as a linear

part and third-order terms, which are nonlinear
(cubic) transformations of phase space, i.e.,

aberrations. There are also inhomogeneous

terms in the system because the translations of

the optical axis of the microlenses in stage I and

III. To examine the effect on phase space of

each of the aberration coefficients
(A', B',c', D', n', r ') and translation, the cubic

monomials, which are produced out of p and q

through the action of the operators of the

system, are considered. These monomials are

p 'p,  ptq,  P '< lP,  P ' r lQr  q 'p,  q 'q '  To consider  the

effect on phase space of the aberration

coefficients and translation at a time, whilst

leaving everything else perfect. Therefore, the

classification ofthe effect on phase space ofthe

aberration coefficients is as follows:

Translation:

Microlenses in stage.Ill
p;, = p. = [r -(,' - t),ebl, -(,' - t)l r,fu',, + fit,
qi,, = q"' = (r *",),e -b'-t)tlb',,+l(r,-(n -lyyy��.)1',fu|,+fil',

Spherical aberration (t'):

,(l) = 
[," _oo;.,,o.)

(18)

This aberration unfocuses qc, the ray position

with translation, but produces no change in the

ray direction with translation.

Coma (n'):

^ , (p\_(  po+B'p 'po , l  ( ts l
" '[qJ - 

lq" - B'Pp' qpo * p'qo!)

Here rays on a cone (lpol .onttunt) issuing from

an object point qo fall on a circle with center at

o,=qo(t -n 'nz)  and radius p=r 'p ' � lq ' l '  This

gives rise to the familiar 60o "comet" image of

points. The two meridional rays on the cone fall

on the same point in the direction of qo, and the

two sagittal rays (perpendicular to the former)

on the diametrical opposed point, also in the

direction of gc. Momentum space pc is also

distorted, i.e., po -+ po (l + B' p' ) uut not

unfocused because p' is independent of qo .

Astigmatisru (c'):

Due to the common p.q coeffrcient, sagittal

rays are unaffected but meridional ones are.

Rays on a cone map onto straight segments,

centered and directed along qo, of half-length

2c'q'lpol.

Curvature offield (o'):

(2r)

fn ')_rfn)_[n"] (r7)
\q' l  (q/ \qol

* (o \= ( r "+2c 'p .qpo \  (20 )
-  - t  

q /  \ so -2C 'p 'qco )

,[;)=[t:li"::i:)

This translation produces change in the ray

direction and the position.

Microlenses in staee I
p'- p" = [t -(" '- l)f h -lQ'-1)1r,fo+z�t,

ei = co, = (r * I ).n - ("' - rM' b * ( r, - (n' - lfi)l r,fu + i t'
Macrolens in stage II
t'* tr = lr - (" - t.ff/..,fo', - l(n' - t)l',fo', - i t"

Qrr=Q6u =10*n)f,-("-t)tib',+l(r,-(n'-t[)l 'rfo],-it, 
positions are unfocused as well as momenta of
the phase space origin. Rays on a cone map onto

Coefficient Term Seidel Aberration
I  t V
t p ' I Spherical aberration

B' p ' ( p ' q ) Coma

C' ( p ' q ) ' Astiematism

D p'q' Curvature of Field

D b 'qh ' Distortion

F' (q,I Pocus

52



a circle with center

They fall into focus

z =2D'q2 .

Distortion (E )i

qo and radius 2o'4'�lpol.

in qc on a paraboloid

This is the Fourier conjugate of coma. Position
two-space is distorted (r' > 0 it is of the
"barrel" type), but it remains in focus, while in
momentum space the comatic phenomenon
appears.

Pocus (r'):

This is an pc-unfocusing aberration, Fourier

conjugate to spherical aberration. Position space
is neither distorted nor unfocused. so this has not
been usually counted among the Seidel
aberrations of the system. For F' >0, ray slopes
increase cubically with lqol in the direction of

qo and thus depth of field decreases away from

the origin.
The aberration coefficients in equation (16) are
given by

1' = - y I t + [(n' - r\z n' + r)/ t n' rly' - l(n' - r\2,' - r)l +,' lr '
*l(n' -r\+n'' -t,' *+lv'11' -11,' -rf lu'11' Q4)

B' = -lb" - r)l z"',1 *lz,' 1n' - r)f zr'11'
-l(,' -tft;, - s,' *z)lz,'ly' +\fu' -rf lztll' Q5)

c' = -[(," -rlz,'l +l(n'-r\2,'' -�tn'*zlz,'l' -1fu'-�rf lz,'j11'
(26)

o' = (n' - | I a n' r - l("" - | 1 +,' 11 * lfu - r\z "'' - t "' + z)l +,' l1t'

-[,'-rl l+']1' (27)

r' =(n'-r)f zr'-[("'-t\, ' ' -"'+tyz,'lf +l(,'_�r)o f z,o];'
(28)
(2e)
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where y,,y, and 7 are the focal lengths of the

lenses in stage I, II, and III, respectively. r,,rr,
and r3are the radii ofthe lenses in stage I, II, and

III, respectively. ,' is the refractive index of the
lens.  n=\ . . . ,JN and f i=; . . ,Ju.  A,andA, or€

the pitches of the lenses in stage I and III,
respectively.

4. Discussions
l. Equations (17)-(23) show that sphericaL

aberration and coma are the dominant
imperfections on phase sphce. It also shows that
the macrolens in stage II is the most critical
component in the system because the focal
length and the radius of the macrolens are large.

2. The diameters of microlenses and a
macrolens can be scaled down to t.gzJN and

19.9il^N [8], respectively. The focal lengths of

microlenses and a macrolens are also scaled
down to t.u.Ju and 9.992J1,1 , respectively. This

implies that the radii of the microlenses and the
macrolens can be also scaled down to the
magnitude of wavelength. This means that the
effects on phase space of each aberration
coefficient can be scaled down to the magnitude
of the propagatory wavelength. By using the
design of optical MEMS with many optical

codes such as GLADTM. microlenses and
macrolenses for the size of wavelength can be
fabricated.

3. The third-order terms in each equation
represent aberration with Seidel aberration
coefficients A',8' ,c' ,D' ,E , and F' . These
aberration coeffrcients are derived from the
intrinsic aberration coefficients, i.e.,
A,B,C,D,E,F, plus the transition from the
front focal point to the lens and the transition
from the lens to the back focal point [8]. From
theoretical points of view, therefore, the intrinsic
aberrations ofa single lens can be corrected by a
well-designed compound lens system but there
are still imperfections from the transition and
misalignments.

4. The translation terms depend on
positions of the microlenses in stage I and
i.e., the term 7tr, and ;76,.

5. The macrolens in stage II is a bi-convex
single lens, which performs as a Fourier
transform lens. From those equations, the
aberration coefficients ofeach lens in stage I, II,
and III can be obtained as:

. , (p\  _(p"+ El2n.rr .o*q'pol l  e2)" ' [qJ  - [  
qo-E 'q 'qo  )

*(v\=(n" +aF'a'qol  Q3)
\ q / [  Q o  )

the
III,

r' = n'(n' -t)/srl
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Microlenses in stage I (Unit: mm.)
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where 6, and c. &re the surface

curvatures of a thin lens. x can also be written
in terms of the lens power, K, and refractive
index of a thin lens, n', as

. .  n  l ,  ,
x  -  1 . ,  + ( , , (  3 1 )

The following relations are also easily proven:

A' = 5.46
C- = -0.001

E = 1 .9 ' l  x l }  a

Macrolens in stase II
A' = 30.315
C- = -0.001

E -  = - 0 . 6 x 1 0  s

B' - 0.162
D ' - O . 0 O 2
p ' = 4 . 7 J x 1 0 - 6

B' = 0.33
D ' = 4 . 4 8 x 1 0 4
F. = 2.5-5 x l0 8

Microlenses in stase III
A' = 5.16
c ' -  0 . 0 0 1
E - 1.9'7 xl}a

B' = Q.t62

D ' - O . O O 2

F .  -  4 . 75x lO  6

From these results, spherical aberration and
coma are the dominant imperfections. This
shows that the macrolens of the OTIS system is
the most critical component with respect to these
effects.

5. Conclusions
This paper discusses the use of Lie Methods

to characterize the aberration of third order of
the macrolens in stage II of the OTIS. This
approach, like that of Hamiltonian optics,
embodies the restrictions imposed by Fermat's
principle. Moreover, it has the feature that the
relation between initial and final quantities is
always given in explicit form. In particular, it is
possible to represent the action of each separate
element of a compound optical system,
including all departures from Gaussian optics,
by a certain operator. These operators can then
be concatenated by well-defined rules of Lie
algebraic methods to obtain a resultant operator
that characterizes the entire system. That is, the
use of Lie methods provides an operator
extension of the matrix methods of Gaussian
optics to the general case. Finally, their use, as is
the case with characteristic functions, facilitates
the treatment of symmetries in an optical system
and the classification of aberrations. This is one
of the major advantages of Lie methods to
provide additional insight concerning the
sources of various aberrations. The expressions
for the primary (third order) aberrations of a
single lens depend on the surface curvatures of
the lens. The dependence of abenations on the
surface curvatures can be expressed in terms of
the shape factor of a thin lens. The shape factor
of a thin lens is defined as

X  = ' L  
' l

c t - c z

(32)

The shape factor is also often called bending

factor. If we substitute these equations into the
equations of aberration coefficients, it yields the
expressions of aberrations depending on the
bending factor. Therefore, the best way to
remove the aberrations is by bending lenses and
by using a system of compound lenses. For
example, with two thin lenses in contact, it is
possible to eliminate both spherical aberration
and coma, by judicious choice of the lens shape.
The macrolens in stage II is a bi-convex single
lens. By using these results the macrolens can be
designed using CODE V (lens design software,
Optical Research Associates, U.S.A.) as a
compound lens system with 6 lenses as shown in
Figure 4.

Figure 4 shows a Fourier transform lens [8]
which performs the same function (Fourier
transform) as the bi-convex single lens in stage
II does. This compound lens system can
eliminate almost all aberrations as shown in
Table 2 below.

Figure 4. A Fourier Transform Compound
Lens.

r  r ( x + r )
' l  

r  2 (n ' - t )

1 ,(a(X - 1)
'  

\  2 \ n ' - t )

(30)
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" t  -o ,265263 0 . ,1O3,186 -O,206"12 ' t  -O.010312 -O.OO21{9
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9  - 2 . 1 s 3 1 6 2  - ? . A 3 L ? 1 - A  - 1 , 1 6 s 3 6 0  - 0 . 5 1 8 2 0 5  - O . 7 9 1 6 2 ?
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Table 2. Third order Aberrations of the compound lens
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o. ciooooo o, oooooo
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